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The impacts of interferon (IFN) signaling on COVID-19 pathology
are multiple, with both protective and harmful effects being docu-
mented. We report here a multiomics investigation of systemic IFN
signaling in hospitalized COVID-19 patients, defining the multio-
mics biosignatures associated with varying levels of 12 different
type I, II, and III IFNs. The antiviral transcriptional response in circu-
lating immune cells is strongly associated with a specific subset of
IFNs, most prominently IFNA2 and IFNG. In contrast, proteomics
signatures indicative of endothelial damage and platelet activa-
tion associate with high levels of IFNB1 and IFNA6. Seroconversion
and time since hospitalization associate with a significant decrease
in a specific subset of IFNs. Additionally, differential IFN subtype
production is linked to distinct constellations of circulating
myeloid and lymphoid immune cell types. Each IFN has a unique
metabolic signature, with IFNG being the most associated with
activation of the kynurenine pathway. IFNs also show differential
relationships with clinical markers of poor prognosis and disease
severity. For example, whereas IFNG has the strongest association
with C-reactive protein and other immune markers of poor prog-
nosis, IFNB1 associates with increased neutrophil to lymphocyte
ratio, a marker of late severe disease. Altogether, these results
reveal specialized IFN action in COVID-19, with potential diagnostic
and therapeutic implications.
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The impact of interferon (IFN) signaling on the course of
COVID-19 pathology has been the subject of much investi-

gation, with both protective and deleterious effects being
reported. There are three major types of IFN signaling defined
by the transmembrane receptors and downstream signaling kin-
ases engaged (1). Type I signaling involves IFN-α, -β, -ε, -κ, and
-ω IFNs, the IFNAR1 and IFNAR2 receptors, and the down-
stream kinases JAK1 and TYK2. Type II signaling involves the
IFNG, the IFNGR1 and IFNGR2 receptors, and the down-
stream kinases JAK1 and JAK2. Type III IFN signaling involves
the λ IFNs, the IFNLR1 and IL10RB receptors, and the JAK1
and TYK2 kinases. However, this broad classification does not
capture the biological complexity driven by subtypes acting
through the same receptors. This is most evident by the differ-
ential effects of α-subtypes versus IFNB1 within type I signaling
(1). Even within α-subtypes there is significant heterogeneity in
cellular source, site of action, and downstream effects (1).

In the context of SARS-CoV-2 infections, the protective
effects of IFN signaling are demonstrated by studies showing
that severe COVID-19 is associated with decreased IFN signal-
ing (2–4), the presence of autoantibodies blocking the action
of specific IFNs (5–9), and genetic variants that impair IFN

signaling (10, 11). In the nasal mucosa, autoantibodies targeting
type I IFNs correlate with high viral load and severe COVID-19
(8). In the upper respiratory tract, high levels of type III IFNs,
and to a lesser extent type I IFNs, are associated with reduced
disease risk or severity (12). In bronchial aspirates, increased
levels of type III IFNs correlate with lower viral load and faster
clearance (3). However, type I IFN signaling has been estab-
lished as a driver of pathology in mouse models of both SARS-
CoV-1 and SARS-CoV-2 infections (13, 14), and type I and III
IFNs have been implicated in disruption of lung barrier function
and increased susceptibility to secondary bacterial infections in
mice (15, 16). This duality in the role of IFN signaling could be
explained in part by an untuned viral response during SARS-
CoV-2 infections, whereby antiviral IFN signaling is delayed
relative to proinflammatory signaling (3). Furthermore, the
impacts of IFN signaling could vary at different sites, even
along the upper versus lower respiratory tracts (12). This com-
plexity has fueled the design of seemingly contradictory clinical
trials using either IFNs (17) or agents that block IFN sig-
naling, such as JAK inhibitors (18). Thus, it is possible that
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context-dependent variations in IFN signaling may attenuate or
exacerbate COVID-19 pathology. Indeed, retrospective analysis
of IFN-α2b treatment in COVID-19 showed that early adminis-
tration was associated with reduced mortality, whereas late
administration was associated with increased mortality (19).

Within this context, we report here a multiomics analysis of
systemic IFN signaling in hospitalized COVID-19 patients,
including a comprehensive examination of the whole-blood
transcriptome, plasma proteome, anti–SARS-CoV-2 antibodies,
peripheral immune cell repertoire, plasma and red blood cell
(RBC) metabolomes, as well as immune and clinical markers of
disease risk and severity in relationship to circulating levels of
12 different IFNs. These analyses revealed heterogeneity in the
relationship between levels of each IFN and key molecular, cel-
lular, metabolic, and physiological processes relevant to
COVID-19 pathophysiology. These results indicate that modu-
lation of IFN signaling in the clinic, with either agonists or
antagonists, must take into account the endogenous state of the
IFN milieu at the time of intervention, and that subtype-
specific effects are to be expected.

Results
Variable IFN Signaling in COVID-19 Associates with Levels of a Spe-
cific Subset of IFNs. We analyzed the datasets generated by the
COVIDome Project (covidome.org) to investigate IFN signal-
ing in hospitalized COVID-19 patients. The COVIDome Project
datasets have been previously described (20, 21) and include
matched whole-blood transcriptomes, plasma proteomics via
complementary SOMAscan and mass spectrometry (MS) assays,
measurement of 82 immune factors by multiplexed immunoas-
says, SARS-CoV-2 seroconversion assays, immune cell profiling
by mass cytometry, plasma and RBC metabolomics, as well as
annotated clinical metadata. The cohort analyzed in this study
consists of 73 hospitalized COVID-19 patients with mild-to-mod-
erate disease at the time of research blood draw and 32 controls
(SI Appendix, SI Extended Methods; see Dataset S1 for cohort
characteristics).

To monitor IFN signaling, we first analyzed the transcrip-
tome dataset. DESeq2 analysis, adjusting for age and sex as
covariates, identified 2,299 genes differentially expressed in the
blood of COVID-19 patients (Fig. 1A and Dataset S2). Gene
set enrichment analysis (GSEA) identified the Hallmark Inter-
feron Alpha and Gamma Response gene sets as the most sig-
nificant positively enriched signatures in COVID-19 patients
(Fig. 1B and Dataset S3). To assess interindividual variation in
expression of these IFN gene signatures, we calculated z-
score–based IFN-α and -γ scores for each sample, showing that
COVID-19 patients display significantly increased yet variable
IFN scores relative to controls (Fig. 1C and SI Appendix, Fig.
S1A). In order to assess the degree to which this variability in
IFN signaling is associated with the levels of circulating IFNs,
we mined the SOMAscan proteomics and multiplexed immuno-
assay datasets (Meso Scale Discovery, MSD), which collectively
measured a total of 17 different IFNs. To validate the reagents
in these two platforms, we spiked single (SOMAscan) or multi-
ple concentrations (MSD) of commercially available recombi-
nant IFNs into a pooled plasma reference sample (SI Appendix,
SI Extended Methods). We discarded five SOMAscan measure-
ments (IFNA5, IFNA8, IFNA14, IFNA21, IFNL2) due to lack
of sensitivity, and relabeled three measurements based on
apparent cross-reactivity (IFNA4/16, IFN7/17/21, IFNL3/2) (SI
Appendix, Fig. S1B). When the same IFN was measured by
both platforms, we preferred the MSD measurement, which is
quantified against a standard curve (SI Appendix, Fig. S1C).
This exercise allowed us to focus on measurements for 12 IFNs
in our subsequent analyses: IFNA1, IFNA2, IFNA4/16, IFNA6,

IFNA7/17/21, IFNA10, IFNA16, IFNB1, IFNG, IFNL1,
INFL3/2, and IFNW1 (SI Appendix, Fig. S1 B–D).

We next determined Spearman correlations between the
RNA-based IFN-α scores and levels of these 12 IFNs (Fig. 1D).
Interestingly, the correlations were highly variable, with four
IFNs lacking significant associations with the IFN-α score
(IFNB1, IFNA16, IFNW1, and IFNA6). This result is clearly
illustrated by the type I subtypes IFNA2 and IFNA6, which are
the most and least correlated with IFN-α scores, respectively.
Although both subtypes are significantly up-regulated in the
plasma of COVID-19 patients (Fig. 1E), only IFNA2 levels cor-
relate with the IFN-α scores (Fig. 1F) and with mRNA expres-
sion of well recognized IFN-inducible genes (ISGs), such as
ISG15 and OAS2 (Fig. 1G). Repeating this analysis for IFN-γ
scores produced a similar rank of correlations (SI Appendix,
Fig. S1A).

To explore this phenomenon more deeply, we completed a
comprehensive analysis of gene expression signatures in the
whole-blood transcriptome associated with varying plasma lev-
els of the 12 IFNs, using only data from COVID-19 patients.
Toward this end, we defined Spearman correlations between
IFNs and 15,000+ mRNAs detected, which identified thou-
sands of significant correlations, with great variability across
IFNs (SI Appendix, Fig. S2A and Dataset S4). We then analyzed
the ranked correlations for each IFN using GSEA to identify
known gene sets with significant enrichment among positive or
negative correlations (Fig. 1H and Dataset S5). This analysis
showed that the top gene signatures positively associated with
eight of the IFNs are indeed the IFN-α and -γ responses, fol-
lowed by related inflammatory and immune pathways. In contrast,
for the other four IFNs (IFNB1, IFNA6, IFNW1, and IFNA16),
the top signatures enriched in the positive correlations are related
to cell proliferation, such as G2M checkpoint, E2F targets, and
MYC targets (Fig. 1H). In fact, some of these IFNs show negative
correlations with the IFN-α and -γ responses (Fig. 1H). Again, this
differential behavior is illustrated by IFNA2 and IFNA6. Whereas
mRNAs positively associated with IFNA2 show clear enrichment
of the IFN Alpha Response gene set, these same mRNAs are neg-
atively correlated with IFNA6 levels (e.g., ISG15) (SI Appendix,
Fig. S2B).

Altogether, these results suggest functional specialization
among circulating IFNs, whereby only specific IFNs associate
with the IFN transcriptional response of circulating immune
cells.

Individual IFNs Show Differential Proteomic Signatures Associated
to COVID-19 Pathology. Next, we investigated the proteomic sig-
natures associated with each IFN. Using linear regression,
adjusting for age and sex, we identified 963 epitopes measured
by SOMAscan differentially abundant in the plasma of
COVID-19 patients (Fig. 2A and Dataset S6). GSEA identified
Hallmark IFN alpha and gamma responses as the top proteo-
mic signatures induced in COVID-19 (Fig. 2B and Dataset S7).
As for the transcriptome, we calculated protein-based IFN-α
and -γ scores for each sample, which showed significantly
higher yet variable IFN scores among COVID-19 patients (Fig.
2C and SI Appendix, Fig. S3A). Notably, protein-based IFN
scores may inform about the organismal IFN response, not just
that of circulating immune cells driving the whole-blood tran-
scriptome IFN signature, as multiple organs and tissues could
contribute to secretion of IFN-related proteins.

We then defined correlations between the 12 IFNs and the
protein-based IFN scores, which revealed both similarities and
differences relative to the RNA-based IFN scores (Fig. 2D and
SI Appendix, Fig. S3A). Whereas IFNA2 and IFNG remained
the most correlated with the protein-based IFN-α and -γ scores,
other IFNs behaved differently (Fig. 2D and SI Appendix,
Fig. S3A). For example, IFNA10, which was significantly
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Fig. 1. IFN signaling at the whole-blood transcriptome level correlates with a subset of IFNs. (A) Volcano plot for differential mRNA expression analysis
by COVID-19 status, adjusted for age and sex. Horizontal dashed line indicates a false-discovery rate (FDR) 10% for negative binomial Wald test; numbers
above plot indicate significant genes. ISGs are highlighted in green. (B) Bar plot of top 10 Hallmark gene sets as ranked by absolute normalized enrich-
ment score (NES) from GSEA. Bar color represents NES; bar length represents -log10(q-value). (C) RNA-based IFN-α scores by COVID-19 status. Data are pre-
sented as a modified sina plot with box indicating median and interquartile range; number above bracket is the q-value for Mann–Whitney U test. (D)
Ranked heatmap representing correlations between RNA-based IFN-α scores and plasma levels of IFNs. Values are Spearman correlation coefficients (rho);
asterisks indicate significant correlations (10% FDR). (E) Sina plots comparing abundance for the indicated IFNs by COVID-19 status. Data are presented as
modified sina plots with boxes indicating median and interquartile range. Numbers above brackets are q-values for Mann–Whitney U tests. (F) Scatter
plots showing the relationship between RNA-based IFN-α score and plasma abundance of IFNs in COVID-19 patients. Points are colored by density; blue
lines represent linear model fit with 95% confidence intervals in gray. (G) Scatter plots showing the relationship between ISG mRNA levels and plasma
abundance of IFNs in COVID-19 patients. (H) Heatmap representing enrichment of Hallmark gene sets among Spearman correlations between mRNA lev-
els and plasma levels of IFNs. Values displayed are NES from GSEA; asterisks indicate significant enrichment (10% FDR); columns and rows are grouped by
hierarchical clustering. See also SI Appendix, Figs. S1 and S2. n.s., not significant.
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Fig. 2. IFN signaling at the proteome level correlates with features of COVID-19 pathophysiology. (A) Volcano plot for linear regression analysis of
SOMAscan proteomics data by COVID-19 status, adjusted for age and sex. Horizontal dashed line indicates an FDR threshold of 10% (q < 0.1); numbers
above plot indicate significant proteins. Proteins encoded by ISGs are highlighted in green. (B) Bar plot of top 10 Hallmark gene sets as ranked by abso-
lute NES from GSEA. Bar color represents NES; bar length represents -log10(q-value). (C) Protein-based IFN-α scores by COVID-19 status. Data are presented
as a modified sina plot with box indicating median and interquartile range. (D) Ranked heatmap representing correlations between protein-based IFN-α
scores and plasma levels of each IFN. Values displayed are Spearman correlation coefficients (rho); asterisks indicate significant correlations (10% FDR). (E)
Heatmap representing enrichment of Hallmark gene sets among Spearman correlations between plasma levels of proteins measured by SOMAscan versus
IFNs. Values displayed are NES from GSEA; asterisks indicate significant enrichment (10% FDR); columns and rows are grouped by hierarchical clustering.
(F–I) Scatter plots comparing relationships between plasma proteins and IFNs in COVID-19 patients. Points are colored by density; blue lines represent lin-
ear model fit with 95% confidence intervals in gray. See also SI Appendix, Figs. S3 and S4. n.s., not significant.
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correlated with the RNA-based IFN scores, was not so with the
protein-based scores. In contrast, IFNA6 and IFNB1 ranked
higher in their association with the protein-based scores (Figs.
1D and 2D and SI Appendix, Figs. S1A and S3A). We then
defined Spearman correlations between the 12 IFNs and
4,800+ epitopes measured by SOMAscan and analyzed the cor-
relation results with GSEA (Fig. 2E, SI Appendix, Fig. S3B, and
Datasets S8 and S9). Interestingly, some IFNs with weak tran-
scriptome signatures present strong proteomic signatures. For
example, IFNA6 and IFNB1, which show very weak correla-
tions with mRNAs (SI Appendix, Fig. S1A), are among the
IFNs with the most numerous significant associations with cir-
culating proteins (SI Appendix, Fig. S3B). This suggests that
whereas IFNA6 and IFNB1 may not contribute to the IFN
transcriptional response of circulating immune cells, they may
nonetheless contribute to IFN responses in tissues and organs
contributing to the protein-based plasma IFN signature. This is
illustrated by the behavior of CXCL11, a canonical ISG, which
is significantly correlated at the protein level with IFNA2,
IFNA6, and IFNB1 (SI Appendix, Fig. S4A). Additionally, IFNs
often display highly dissimilar, even opposite, relationships to
certain proteomics signatures, as illustrated by the PI3K/AKT/
mTOR signature (Fig. 2E; compare correlations to HRAS for
IFNA1, IFNA6, and IFNB1 in SI Appendix, Fig. S4B).

To probe further into this phenomenon, we examined the
top five positively and negatively correlated epitopes for each
IFN using unsupervised clustering analysis, which revealed
many specialized relationships of relevance to COVID-19
pathophysiology (SI Appendix, Fig. S4C). For example, several
chemokines involved in immune control showed differential
associations, such as CXCL10 (compare IFNG to IFNW1 in
Fig. 2F), CX3CL1 (compare IFNA10 to IFNA6 in Fig. 2G),
CCL7 (compare IFNA2 to IFNA16 in SI Appendix, Fig. S4D),
and CCL5 (compare IFNB1 to IFNA10 in SI Appendix,
Fig. S4E). Notably, the top positive correlations for IFNB1 are
dominated by proteins stored in α-granules of platelets, such as
PPBP (multiple SOMAscan aptamers), PDGFA, PDGFD, and
PF4 (SI Appendix, Fig. S4C and Dataset S8). These markers of
platelet degranulation are also associated, albeit to a lesser
degree, with IFNA6, but not so with other IFNs (Fig. 2H, com-
pare IFNB1 to IFNA10, and SI Appendix, Fig. S4C). This
suggests that IFNB1 production is associated with platelet acti-
vation, which could be interpreted as a sign of endothelial dam-
age at sites producing IFNB1. A subset of IFNs showed strong
associations with complement factors, such as C1QC (Fig. 2I,
compare IFNA2 to IFNB1, and SI Appendix, Fig. S4C). The
top correlated epitope for IFNA10 is TRIL, a component of
the Toll-like receptor-4 complex, but this association was
weaker for many other IFNs (SI Appendix, Fig. S4C, compare
IFNA10 to IFNA6 in SI Appendix, Fig. S4F). KIR3DL2 and
KIR3DS1, two killer cell immunoglobulin (Ig)-like receptors
expressed by natural killer (NK) cells and subtypes of T cells,
were strongly correlated with a subset of IFNs, most promi-
nently IFNA6 (SI Appendix, Fig. S4C, compare IFNA6 to
IFNA10 in SI Appendix, Fig. S4G). OLFM4 (Olfactomedin 4),
a protein selectively expressed in inflamed colonic epithelium,
was strongly associated with IFNA4/16, but not other IFNs (SI
Appendix, Fig. S4C, compare IFNA4/16 versus IFNA10 in SI
Appendix, Fig. S4H).

Altogether, these results reveal that circulating levels of dif-
ferent IFNs associate with proteomic signatures indicative of
diverse pathophysiological processes, such as tissue-specific
inflammation, complement activation, and endothelial damage.

Differential IFN Action at the Cell-Based vs. Organismal Levels. Up
to this point, our analyses indicate specialized IFN action in
the context of SARS-CoV-2 infection, which could be explained
by several nonmutually exclusive potential mechanisms,

including tissue-specific expression of IFNs (22), variable tim-
ing of IFN production during the course of viral infection (23),
self-amplification of certain IFNs via positive feedback (24, 25),
differential turnover of IFNs in circulation (26), or blockade of
specific IFN subtype production by SARS-CoV-2 proteins (27).
Remarkably, this specialization was different when analyzing
the transcriptome versus proteome. To investigate this phenom-
enon further, we stimulated peripheral blood mononuclear cells
(PBMCs) from uninfected donors with IFNA2 and IFNB1, two
type I subtypes that show distinct relationships with the tran-
scriptome of COVID-19 patients, and analyzed their impact on
the PBMC transcriptome at 18 h posttreatment (SI Appendix,
SI Extended Methods) (28). We identified 2,179 RNAs signifi-
cantly induced by at least one subtype, with 65.6% being
induced by both IFNs (core ISGs), 7.4% of them being signifi-
cantly induced by IFNA2 only (173 genes), and 26.7% by
IFNB1 only (583 genes) (Fig. 3A). Examples of core ISGs are
ISG15, IFIT1, and LAG3; examples of IFNA2-specific ISGs
are AGX2, DLGAP5, and NDUFVP2; and examples of
IFNB1-specific ISGs are GJA3, YPEL5P2, and CIB2 (Fig. 3B).
Notably, ∼25% of all mRNAs induced in the whole-blood tran-
scriptome of COVID-19 patients correspond to core ISGs iden-
tified in PBMCs (Fig. 3C) and, at the protein level, ∼17% of
proteins elevated in COVID-19 patients are encoded by core
ISGs (Fig. 3D). Thus, type I IFN is a major contributor to the
transcriptome and proteome changes observed in COVID-19.
However, analysis of correlations between circulating levels of
the two subtypes indicates that only IFNA2 levels are signifi-
cantly correlated with mRNA expression of core ISGs (Fig.
3E). Of the core ISG mRNAs detected in the whole-blood
transcriptome, ∼45% have significant positive correlations with
IFNA2, whereas none have significant correlations with IFNB1.
In contrast, at the protein level, both subtypes display numer-
ous significant correlations with proteins encoded by core ISGs
(Fig. 3G).

Altogether, these results indicate that the differential rela-
tionship between ISG expression in circulating blood cells and
levels of IFNA2 and IFNB1 is not necessarily a function of
their ability to induce transcription of core ISGs, but rather the
consequence of other mechanisms acting at the organismal
level.

Seroconversion Modulates the Peripheral IFN Milieu. Next, we ana-
lyzed correlations between the 12 IFNs and plasma proteins
measured by our MS platform, which is complementary to the
SOMAscan dataset as it detects many abundant proteins for
which SOMAmer reagents are not available, including various
Igs. Using linear regression, adjusting for age and sex, we
identified 70 proteins differentially abundant in plasma of
COVID-19 patients (SI Appendix, Fig. S5A and Dataset S11).
Of the 28 significantly elevated proteins, 17 of them are Igs
(labeled green in SI Appendix, Fig. S5A), potentially indicative
of seroconversion in some patients. We then calculated Spear-
man correlations between IFNs and all proteins detected by
MS (SI Appendix, Fig. S5B and Dataset S12) and visualized the
top five positively and negatively correlated proteins for each
IFN via unsupervised hierarchical clustering (SI Appendix, Fig.
S6A). This analysis confirmed some observations made with the
SOMAscan dataset, but also revealed several new associations.
First, a subset of IFNs associates strongly with IFN-inducible
proteins, such as B2M (compare IFNA7/17/21 to IFNA6 in
Fig. 4A), and LGALS3BP (compare IFNA4/16 to IFNA6 in SI
Appendix, Fig. S6B). Second, many of the same IFNs associate
with elevated levels of complement subunits, such as C2 (com-
pare IFNL1 to IFNA6 in Fig. 4B) and C9 (compare IFNA2 to
IFNA6 in SI Appendix, Fig. S6C). Third, several key regulators
of coagulation and fibrinolysis were significantly associated with
specific IFNs. Salient examples include HABP2 (compare
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IFNA2 to IFNB1 in Fig. 4C), FGA (compare IFNL1 to
IFNA16 in SI Appendix, Fig. S6D), F13B (compare IFNA10 to
IFNA6 in SI Appendix, Fig. S6E), and PROZ (compare IFNW1
to IFNB1 in SI Appendix, Fig. S6F). Fourth, very distinctly,
IFNB1—and to a lesser degree IFNA6—associate positively
with markers of platelet degranulation, such as PF4, THBS1,
PPBP, MMRN1, and SPARC (Fig. 4D, compare IFNB1 to
IFNA10, and SI Appendix, Fig. S6A). Finally, IFNs have distinct
relationships to a subset of Ig heavy- and light-chain variable
domain peptides that were associated positively or nega-
tively with the levels of specific IFNs (compare IFNA2 to
IFNA6 in Fig. 4E and IFNA1 to IFNB1 in Fig. 4F). This result
could be explained by varying levels of IFNs upon seroconver-
sion (20).

To investigate in detail the interplay between specific IFNs,
Ig levels, and seroconversion, we examined correlations
between the IFNs and all Ig variable domains detected by MS
proteomics, as well as seroconversion assays used to detect
IgGs against SARS-CoV-2 peptides (S1 full-length, spike; S1 N
terminus; and S1 receptor binding domain [RBD]; nucleocap-
sid) (Fig. 4G). This analysis revealed that a subset of IFNs is
strongly anticorrelated with seroconversion (e.g., compare
IFNA2 to IFNB1 in Fig. 4H) and specific Ig variable domains
that have been previously found enriched in the bloodstream of
COVID-19 patients, such as IGHV1-24 and IGLV3-1 (29).
This observation could be interpreted as early production of
some IFNs with subsequent declines upon seroconversion (e.g.,
IFNA2, IFNG), followed by later production of other IFNs
(e.g., IFNA6, IFNB1), potentially from sites where SARS-CoV-2
evades humoral neutralization. Overall, these results further sup-
port the notion of differential action of IFNs in COVID-19 path-
ophysiology, suggesting a temporal sequence of IFN production
before and after seroconversion.

Distinct Immune Cell Signatures Associate with Fluctuations in IFN
Levels. Next, we investigated the relationship between plasma
levels of IFNs and circulating immune cells analyzed by mass
cytometry. First, we employed the unsupervised clustering algo-
rithm PhenoGraph (30) to identify distinct subpopulations of
immune cells, combined with t-stochastic neighbor embedding
(t-SNE) dimensionality reduction to aid in visualization (31),
resulting in identification of ∼30 clusters (Fig. 5A and SI
Appendix, Fig. S7 A and B). We then identified clusters whose
relative frequency among all live cells was significantly associ-
ated with varying IFN levels, using β-regression, with adjust-
ment for age and sex (Fig. 5A, SI Appendix, Fig. S7 C and D,
and Dataset S13). This analysis revealed that multiple IFNs are
significantly associated with increased abundance of clusters
enriched for T cells and NK cells, while also displaying negative
associations with clusters enriched for B cells (Fig. 5A and SI
Appendix, Fig. S7 C and D). For example, IFNA1 is positively
associated with clusters 9 (CD8+ T cells) and 30 (CD56+ NK
cells) and negatively associated with cluster 15 (switched mem-
ory B cells) (SI Appendix, Fig. S7E).

To further these observations in relationship to known
immune cell subpopulations, we analyzed associations between
the IFNs and 50+ immune cell types defined by traditional gat-
ing based on marker expression (Fig. 5B, SI Appendix, Fig.
S8A, and Datasets S14 and S15). This exercise confirmed spe-
cialized relationships between some IFNs and specific lymphoid
cell subsets. For example, among CD4+ T cells, the T-helper 1
(Th1) subset displays significant positive associations only with
IFNA1, IFNA2, IFNA7/17/21, IFNA10, IFNG, and IFNL3/2
(Fig. 5B, compare IFNA10 to IFNA16 in Fig. 5C). This pattern
was also apparent for many, but certainly not all, T cell subsets
(Fig. 5B). Similarly, NK CD56bright cells also showed differen-
tial positive relationships with IFNs, with an overall pattern
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Fig. 3. The cellular action of IFNA2 and IFNB1 does not explain their differential biosignatures in COVID-19. (A) Scatter plot comparing fold-changes for
IFNA2- and IFNB1-stimulated genes in PBMCs treated ex vivo. (B) Heatmap representing differential expression of selected genes from each class in A. Val-
ues displayed are fold-changes for stimulation with IFNA2/baseline and IFNB1/baseline; asterisks indicate significant differences over baseline (10% FDR);
rows are grouped by hierarchical clustering. (C and D) Pie charts displaying the relative fraction of mRNAs (C) or proteins (D) up-regulated in COVID-19
patients in each class from A. Absolute numbers are indicated in legend. (E) Spearman correlation score (rho) distributions for core mRNAs against plasma
levels of IFNA2 and IFNB1. Data are presented as a modified sina plot with boxes indicating median and interquartile range with number above bracket
indicating the q-value for Mann–Whitney U test (Left) and scatter plots with points colored by density (Right). (F) Spearman correlation score (rho) distri-
butions for core proteins detected by SOMAscan against plasma levels of IFNA2 and IFNB1. Data are presented as a modified sina plot with boxes indicat-
ing median and interquartile range with number above bracket indicating the q-value for Mann–Whitney U test (Left) and scatter plot with points col-
ored by density (Right). n.s., not significant.
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similar to that of key T cell subsets (compare IFNA2 to
IFNA16 in Fig. 5D). Notably, this analysis also revealed signifi-
cant positive associations between specific IFNs and plasmacy-
toid dendritic cells (DCs), which are strong producers of IFNs
during viral infections (compare IFNA10 to IFNA16 in Fig. 5E).
Many IFNs positively associated with CD4+ T cell subsets were
negatively associated with B cell subsets, while IFNA6 displays
the opposite relationship (Fig. 5B, compare IFNA10 versus
IFNA6 in Fig. 5F). These differential associations could be inter-
preted as a transition from T cell-driven responses prior to sero-
conversion, followed by B cell activation and differentiation
toward antibody-producing plasmablasts during seroconversion,
along with decreased production of a specific subset of IFNs.

Altogether, these results suggest a temporal sequence of IFN
production in coordination with changes in the peripheral
immune cell compartment. An overview of salient IFNs associ-
ations along the paths of T cell and B cell activation and differ-
entiation is shown in SI Appendix, Fig. S8B.

Metabolic Signatures of IFN Signaling in COVID-19. Next, we inves-
tigated metabolic signatures associated with varying levels of
IFNs, calculating Spearman correlations for detected metabo-
lites in plasma and RBC samples against each of the IFNs (SI
Appendix, Fig. S9 and Datasets S16 and S17). In plasma,

significant positive correlations were observed between the
tryptophan/indole pathway metabolites kynurenine and
5-hydroxyindoleacetate and IFNG, but not other IFNs (Fig. 6A,
compare IFNG to IFNA16 in Fig. 6B). In RBCs, kynurenine
pathway metabolites showed a strong positive association with
IFNG, as well as IFNA7/17/21 (SI Appendix, Fig. S10 A and B).
Activation of the kynurenine pathway has documented in
COVID-19 (32), and kynurenine production can be stimulated
by induction of IDO1, an ISG downstream of all three major
types of IFN signaling (33). Therefore, it is interesting that this
pathway is preferentially associated with IFNG in COVID-19.

Plasma levels of IFNA2 showed significant positive correla-
tions with the markers of oxidative stress glutathione disulfide
and 5-oxoproline, a byproduct of the γ-glutamyl cycle (Fig. 6A,
compare IFNA2 to IFNW1 in SI Appendix, Fig. S10C), and
negatively associated with markers of endothelial dysfunction
and nitric oxide signaling (arginine, citrulline) (Fig. 6A; com-
pare IFNA2 to IFNW1 in SI Appendix, Fig. S10D). In RBCs,
IFNA2 once again had strong positive correlations with several
markers of oxidative stress (5-oxoproline) or pentose phosphate
pathway activation (sedoheptulose phosphate) (SI Appendix,
Fig. S10 A and E), which is required in RBCs to generate
reducing equivalent (NADPH) for recycling oxidized glutathi-
one and other NADPH-dependent antioxidant enzymes.

G H
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FD

Fig. 4. Differential association of IFNs with seroconversion. (A–F) Scatter plots comparing relationships between plasma proteins measured by MS proteo-
mics and IFNs in COVID-19 patients. Points are colored by density; blue lines represent linear model fit with 95% confidence intervals in gray. (G) Heatmap
representing correlations between IFNs and plasma levels of Igs measured by MS proteomics (Upper), or antibody reactivity against SARS-CoV-2 measured
by immunoassays (Lower). Values displayed are Spearman correlation scores (rho); asterisks indicate significant correlations (10% FDR); columns and rows
are grouped by hierarchical clustering. (H) Scatter plots comparing relationships between plasma antibody reactivity against SARS-CoV-2 S1 RBD region
and IFNA2/B1 in COVID-19 patients. Points are colored by density; blue lines represent linear model fit with 95% confidence intervals in gray. See also SI
Appendix, Figs. S5 and S6. n.s., not significant.
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Fig. 5. Differential association of IFNs with immune cell signatures. (A) t-SNE plots of 69,000 cells analyzed by mass cytometry from 69 COVID-19 patients
(1,000 cells each). Leftmost panel is colored by major cell lineages; all other panels have cells within each PhenoGraph cluster (as shown in SI Appendix,
Fig. S7A) colored by the fold-change in cluster proportion among live cells per SD of abundance for the indicated IFN, as determined by β-regression anal-
ysis, adjusting for age and sex; numbers indicate clusters with significant associations with IFN abundance (10% FDR). (B) Heatmap representing relation-
ships between IFNs and gated subpopulation proportions among live cells, as determined by β-regression analysis. Values displayed are fold-change in
cluster proportion among live cells per SD of IFN abundance; asterisks indicate significant associations (10% FDR); columns and rows are grouped by hier-
archical clustering. (C–F) Scatter plots comparing relationships between gated subpopulation proportions among live cells and IFNs in COVID-19 patients.
Points are colored by density; blue lines represent β-regression model fit with 95% confidence intervals in gray. See also SI Appendix, Figs. S7 and S8. n.s.,
not significant.
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IFNA2 levels also positively correlated with fatty acid mobiliza-
tion in RBCs (SI Appendix, Fig. S10A), likely a result of the
activity of peroxiredoxin 6 or phospholipase A2 activity on com-
plex lipids to fuel fatty acid release in the bloodstream to sus-
tain viral capsid formation (34). Of note, among the positive
correlates to IFNA2 levels in the fatty acid compartment, we
observed only saturated (octanoic, dodecanoic, hexadecanoic,
octadecanoic) or monounsaturated fatty acids (tetradecenoic,
hexadecenoic, octadecenoic) (compare IFNA2 to IFNB1 in SI
Appendix, Fig. S10F), suggestive of limited fatty acid desaturase
activation despite the stress induced by the viral infection (35).
Several ATP precursors/breakdown products (AMP and ade-
nine) positively correlated with IFNA2 in RBCs, as did pyru-
vate, phosphate and diphosphate, all suggestive of altered
glycolysis and overall energetics associated with IFNA2 signal-
ing (SI Appendix, Fig. S10A). IFNA2 also negatively correlated
with several amino acids in RBCs, including the antioxidants
taurine, arginine, threonine and methionine, critical for RBC
redox damage repair in the face of the incapacity to synthesize
new proteins (SI Appendix, Fig. S10A) (36).

Plasma IFNL1 significantly correlated with several glycolytic
metabolites (e.g., pyruvate) (compare IFNL1 to IFNA1 in
Fig. 6C), as well as short-chain fatty acids hexanoate and hepta-
noate, potentially indicative of dysregulation of mitochondrial
metabolism in patients with high IFNL1. In RBCs, IFNL1 lev-
els showed positive correlations with the levels of inosine
diphosphate (IDP) (compare IFNL1 to IFNA6 in SI Appendix,
Fig. S10G) and negative correlations with carnitine and

acetylcarnitine, potentially suggestive of RBC deformability
issues (37) as a function of IFNL1 signaling.

Plasma IFNA7 and IFNA10 (and to a lesser extent IFNA1
and IFNA2) were positively associated with a cluster of acylcar-
nitines (including octenoyl, dodecanoyl, dodecenoyl, hexadece-
noyl-carnitine) (compare IFNA10 to IFNA6 in Fig. 6D),
suggesting an association between these IFNs and altered fatty
acid oxidation. These data are relevant in light of the role of
acylcarnitines in coagulation and the dysregulation of coagula-
tion cascades in COVID-19 (38).

Plasma levels of IFNB1 showed a strong negative correlation
with metabolites tied to the nitric oxide pathway (citrulline), as
well as other amine group donors (glutamine, serine) or oxi-
dant stress-related metabolites (carnosine, cystine). On the
other hand, IFNB1 positively correlated with the plasma levels
of glutathione and spermidine (antioxidant metabolites), succi-
nate (marker of mitochondrial dysfunction), and purinergic
agonists involved in vasodilatory/hypoxic responses (ADP and
AMP), perhaps produced by hemolytic events (compare IFNB1
to IFNA10 in Fig. 6E and SI Appendix, Fig. S10 H and I).

Altogether, these results not only confirm metabolic signa-
tures previously associated with IFN signaling (e.g., activation
of the kynurenine pathway), but also reveal unexpected associa-
tions between specific IFNs and diverse metabolic processes
dysregulated in COVID-19.

Interplay between IFNs and Markers of COVID-19 Risk and Severity.
Next, we aimed to define the relationship between IFNs and
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Fig. 6. Differential metabolic signatures associated with IFNs. (A) Heatmap representing correlations between IFNs and plasma metabolites. Values dis-
played are Spearman correlation scores (rho); asterisks indicate significant correlations (10% FDR); columns and rows are grouped by hierarchical cluster-
ing. (B–E) Scatter plots comparing relationships between select metabolites and IFNs in COVID-19 patients. Points are colored by density; blue lines repre-
sent linear model fit with 95% confidence intervals in gray. See also SI Appendix, Figs. S9 and S10. n.s., not significant.
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available clinical variables, using linear regression with adjust-
ment for age and sex. Among COVID-19 patients, none of the
IFNs was significantly different by age or sex (Fig. 7A and
Dataset S18). Although all samples in this study were collected
when patients were presenting mild-to-moderate symptomol-
ogy, some patients were subsequently admitted to an intensive
care unit (ICU) or required higher O2 supplementation. None
of the IFNs was significantly different by ICU status (i.e., never
ICU vs. ever ICU) or O2 requirement (high vs. low) (Methods).
However, seven IFNs showed significant decreases with increas-
ing time between hospital admission and research blood draw
(Fig. 7 A and B), all of which were negatively correlated with
seroconversion values (Fig. 4B). This indicates that whereas
specific IFNs are produced earlier in the course of symptomol-
ogy, prior to seroconversion, others are produced later in the
course of the disease, a notion supported by longitudinal analy-
ses (3, 8, 39, 40).

Next, we investigated correlations between IFNs and clinical
laboratory values closest in time to the research blood draw,
which revealed several significant associations (Fig. 7C and

Dataset S19). For example, IFNG and IFNA4/16 were the most
positively correlated with levels of C-reactive protein (CRP), a
well-recognized biomarker of poor prognosis at the time of hos-
pitalization (Fig. 7 C and D) (41). In contrast, IFNB1 and
IFNA6 were significantly correlated with the neutrophil/lympho-
cyte ratio (N/L ratio), a marker of severe COVID-19 pathology
(42) (Fig. 7 C and D). Several IFNs were significantly associated
with depletion of white blood cells, lymphocytes, and platelets
(Fig. 7C), most of which also showed decreased levels with time
since hospitalization (Fig. 7 A and B), supporting the notion that
cytopenias occur earlier in the course of COVID-19, prior to
seroconversion (20). Notably, IFNB1 (and to a lesser degree
IFNA6) showed positive correlations with platelet numbers, sug-
gesting that platelet recovery later in the pathological cascade
co-occurs with increased levels of these IFNs (Fig. 7C).

Next, we investigated more deeply the interplay between
IFNs and immune markers whose elevation in circulation has
been associated with poor prognosis in COVID-19, including
interlelukin (IL)-22, SAA, IL-10, IP-10, IL-6, IL-8, MIP-3α,
IL-1RA, MIP-1α, TNF-α, MCP-1, and MCP-4 (Fig. 7E and
Dataset S20) (39, 40, 43–45). This analysis highlighted IFNG as
the IFN with the highest number of positive associations with
these immune markers of poor prognosis (Fig. 7 E and F).
Overall, each IFN has its unique profile of association with
these markers, as clearly evidenced by IFNB1, which is strongly
positively associated only with IL-22, or IFNW1, which has
negative correlations with CRP and IL1-RA (Fig. 7 E and F).

Altogether, these observations reveal differential relationships
between different IFNs and clinical variables in COVID-19, with
some IFNs being associated with the hyperinflammatory stage of
the disease (e.g., IFNG), whereas others associate with markers
of late severe disease, such as increased N/L ratio (e.g., IFNB1).

Discussion
IFN signaling is a critical component of the innate immune
response and a main driver of the antiviral defense. In the con-
text of viral infections, deficiencies in IFN signaling cause pro-
found susceptibility in humans, as demonstrated by various
inborn errors of immunity affecting IFN signaling (46). Despite
these protective effects, exacerbated IFN signaling can also con-
tribute to diverse pathologies, as exemplified by type I interfero-
nopathies (47). In the context of COVID-19, the role of IFN sig-
naling has been the subject of much study and debate, with both
protective and deleterious effects being documented in different
experimental systems and clinical settings (4–6, 8, 9, 11–13, 19,
40). Within this framework, we completed a comprehensive
analysis of multiomics signatures associated with production of
multiple IFNs in hospitalized COVID-19 patients, revealing a
high degree of diversity, even among closely related subtypes.

During vertebrate evolution, the IFN gene family has under-
gone significant expansion through tandem gene duplication
and retrotransposition events, likely contributing to increased
regulatory diversity and functional specialization (1). Although
modest, our current understanding of IFN specialization is
increasing. Functional specialization between major type I, II,
and III IFNs has been revealed by analyzing genetic mutations
affecting specific receptors or downstream kinases and tran-
scription factors in both humans and mice (1, 46). For example,
it is accepted that deficiencies in type I/III signaling confer sus-
ceptibility to viral infections, whereas deficiencies in IFNG
signaling are associated with mycobacterial disease (46). IFN
specialization is also evident in the clinical use of recombinant
subtypes, with IFNB1 being the most effective for the treat-
ment of multiple sclerosis, whereas IFNA2 preparations are
preferred for the treatment of chronic viral infections and some
malignancies (48). Notably, type I subtypes display vastly differ-
ent potencies to impede HIV replication ex vivo (49, 50), and
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Fig. 7. Differential association of IFNs with clinical variables and markers
of prognosis in COVID-19. (A) Heatmaps summarizing linear regression
analysis of plasma IFNs abundance against age (continuous), sex (males/
females), ICU status (ever ICU/never ICU), O2 group (high/low), or days
since admission (continuous, limited to ≤14 d) for COVID-19+ samples,
adjusted for age and/or sex as appropriate; asterisks indicate significant
associations (10% FDR). (B) Scatter plots comparing relationships between
days since admission and IFNs in COVID-19 patients. Points are colored by
density; blue lines represent linear model fit with 95% confidence inter-
vals in gray. (C) Heatmap representing correlations between clinical labo-
ratory measurements and plasma levels of each IFN. Values displayed are
Spearman correlation coefficients (rho); asterisks indicate significant corre-
lations (10% FDR). (D) Scatter plots comparing relationships between clini-
cal laboratory measurements and the indicated IFNs in COVID-19 patients.
(E) Heatmap representing correlations between selected immune factors
associated with poor prognosis in COVID-19 measured in plasma by MSD
assays and plasma levels of IFNs. Values displayed are Spearman correla-
tion coefficients (rho); asterisks indicate significant correlations (10% FDR).
(F) Scatter plots comparing relationships between immune factors and IFNs
in COVID-19 patients.
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SARS-CoV-2 replication in vitro (51), with different constella-
tions of subtypes being the most effective to control each virus.
Despite these advances, little is known about the mechanisms
behind these differential effects (52). In this context, our work
provides a valuable resource for future mechanistic research.

Although our multiomics analysis is descriptive in nature and
based largely on statistically significant associations that should not
be interpreted as cause–effect relationships, its value is confirmed
by the many associations observed for which mechanisms have
already been established. For example, our unbiased analysis of
the transcriptome confirmed that 8 of the 12 IFNs tested are
indeed significantly associated with a transcriptional program
highly enriched for ISGs. Likewise, the association between IFNG
and metabolites in the kynurenine pathway can be explained by
induction of IDO1, a known ISG, during the inflammatory
response elicited by SARS-CoV-2 (32, 33). Therefore, using these
confirmatory observations as reference points, we propose that the
datasets described here will help the field elucidate many novel
cause–effect relationships explaining IFN specialization.

The specialized biosignatures of IFN action could be due to sev-
eral nonmutually exclusive mechanisms, such as action through dif-
ferent receptors (1), differences in affinity or allosteric regulation
for the same receptors (1, 52), differences in the location and tim-
ing of IFN production (23), differential turnover in circulation of
various IFNs (26), differential self-amplification of IFNs (24, 25),
or uneven antagonism of IFN production by SARS-CoV-2 proteins
(27). One limitation of our study is that all measurements were
performed from peripheral blood, which can only inform about a
subset of the pathophysiological processes modulated by various
IFNs. However, other studies have documented differences in IFN
action and regulation at different sites during SARS-CoV-2 infec-
tion, even along the upper and lower respiratory tract (8, 53), or
when comparing mucosal versus systemic immune responses (54).
It is also possible that the specialized biosignatures observed are
driven in part by SARS-CoV-2 itself. Like other members of the
coronavirus family, SARS-CoV-2 has evolved diverse strategies to
evade the antiviral effects of IFN signaling, and it is likely that
these escape mechanisms do not affect all IFNs equally (27).

Despite these limitations, key observations produced by our
study include the differential relationship between IFNs and
the antiviral transcriptional program in circulating immune
cells, the specialized relationship between seroconversion,
immune cell-type abundance and IFN levels, distinct metabolic
signatures associated with each IFN, and their differential rela-
tionship with clinical metadata and biomarkers of poor progno-
sis and severity. Throughout the study, the contrast between
IFNA2 and IFNA6 exemplifies these points. Both IFNA2 and
IFNA6 are significantly up-regulated in the COVID-19+

cohort. However, whereas IFNA2 is strongly associated with
the IFN transcriptional program in immune cells, IFNA6 is
not. IFNA2 proteomic signatures are enriched for cytokines
and chemokines previously linked to IFN signaling, whereas
IFNA6 proteomic signatures, similarly to those of IFNB1, are
enriched for markers of platelet degranulation. IFNA2 levels
decrease with seroconversion and time since hospitalization;
IFNA6 levels do not. Accordingly, IFNA2 abundance associ-
ates with increased frequency of various T cell subsets involved
in the early antiviral response, while IFNA6 levels correlate
with B cell maturation. While IFNA2 has the highest number
of significant associations in the RBC metabolome, IFNA6 has
none. Lastly, only IFNA2 levels correlate with many immune
markers of poor prognosis. Therefore, a detailed comparative

study of these two IFNA subtypes is warranted, including stud-
ies in human cell preparations and animal models.

In sum, our analyses and datasets provide a rich resource to
advance understanding of the IFN family in humans. To accel-
erate the use of these datasets, they are made readily available
through the COVIDome Explorer Researcher Portal (21),
where users can recreate the cross-omics correlations described
here, investigate any other cross-omics correlations of choice,
and download all data for further analysis.

Methods
Study Design, Participant Recruitment, and Clinical Data Capture. Research
participants were recruited and consented for participation in the COVID
Biobank of the University of Colorado Anschutz Medical Campus (Colorado
Multiple Institutional Review Board [COMIRB] Protocol #20-0685). Data were
generated from deidentified biospecimens and linked to demographics and
clinical metadata procured through the Health Data Compass data warehouse
at the University of Colorado under COMIRB Protocol #20-1700. Participants
were hospitalized either at Children’s Hospital Colorado or the University of
Colorado Hospital. COVID-19 status was defined by a positive PCR result or
antibody test within 14 d of the research blood draw. The control cohort con-
sisted of COVID-19� research participants receiving medical care for a range
of conditions, none of them in critical condition at the time of the research
blood draw. ICU status was defined by whether the patient was subsequently
admitted to an ICU, but all research blood draws were obtained prior to any
such events. Respiratory support (O2 group) was defined using the highest level
of oxygen support required during the entire hospital stay, with “low” consist-
ing of room air or oxygen mask only, and “high” consisting of noninvasive ven-
tilation, high-flow nasal canula, heated high-flow nasal canula, or invasive
ventilation. A summary of cohort characteristics can be found in Dataset S1.

Dataset Generation and Primary Analysis. Methods for blood processing,
whole-blood RNA library preparation and sequencing, plasma proteomics by
MS and SOMAscan assays, cytokine profiling and seroconversion by multiplex
immunoassay, mass cytometry analysis, and MS-based metabolomics of
plasma and RBC have been described previously (20, 21) and are provided in
full in SI Appendix, SI ExtendedMethods.

Data Availability. Anonymized RNA-seq data reported in this paper have been
deposited in the Gene Expression Omnibus (GEO) database, https://www.ncbi.
nlm.nih.gov/geo (accession nos. GSE167000 and GSE191317). Meso Scale Dis-
covery platform cytokine profiling has been deposited in Mendeley, https://
data.mendeley.com/datasets/2mc6rrc5j3/2. SOMAscan proteomics have been
deposited in Mendeley https://data.mendeley.com/datasets/2mc6rrc5j3/2. MS/
MS proteomics have been deposited in the PRIDE/ProteomeXchange, http://
www.proteomexchange.org/ (accession no. PXD022817). UHPLC-MS metabo-
lomics have been deposited in Metabolomics Workbench, https://www.
metabolomicsworkbench.org/ (accession no. PR001110). Mass cytometry data
have been deposited in the Flow Repository, https://flowrepository.org/ (acces-
sion no. FR-FCM-Z367). Previously published data were used for this work
(20, 21).
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