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Abstract
Interleukin (IL)-15 has multiple roles in innate and adaptive immunity, especially regarding

CD8+ T cells and natural killer cells. However, the role of IL-15 in regulating differentiation of

T helper cell subsets and mononuclear phagocytes (MPs) in different tissues in vivo is

unknown. Here we report that IL-15 indirectly regulates Th17 but not other Th subsets in the

intestinal lamina propria (LP), apparently through effects on MPs. Th17 cells in the LP were

more prevalent in IL-15 KOmice than their wild-type counterparts, and less prevalent in IL-

15 transgenic mice than their wild-type littermates, even co-caged. MPs from the LP of

these mice were sufficient to mimic the in vivo finding in vitro by skewing of cocultured wild

type OVA-specific CD4+ T cells. However, production of IL-15 or lack thereof by these MPs

was not sufficient to explain the skewing, as addition or blockade of IL-15 in the cultures had

no effect. Rather, a skewing of the relative proportion of CD11b+, CD103+ and double posi-

tive LP MP subsets in transgenic and KO could explain the differences in Th17 cells. Thus,

IL-15 may influence MP subsets in the gut in a novel way that alters the frequency of LP

Th17 cells.

Introduction
The cytokine interleukin 15 (IL-15), a protein of 114 amino acids, was first discovered in 1994
and had IL-2 like stimulatory actions on T cells [1, 2]. It is a pleiotropic cytokine of the com-
mon cytokine receptor γ chain family, which includes IL-2, IL-4, IL-7, IL-9 and IL-21 [3, 4].
IL-15 is produced by a broad array of cell types, which includes dendritic cells (DCs), mono-
cytes, epithelial cells, macrophages, and fibroblasts [5].

Remarkable progress has been made in understating of IL-15 biology, including its role in
the normal host immune responses and its potential for participation in the pathogenesis of
disease since its discovery [5]. IL- 15 has multiple roles in the innate and adaptive immune
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system, including the development, activation, homing and survival of immune effector cells,
especially CD8+ T cells, natural killer cells and natural killer T cells. In light of the crucial role
of IL-15 in the generation and maintenance of these immune cells, using IL-15 as an adjuvant
provides a new perspective for the development of preventive vaccines against tumors and
infectious agents [6–12]. Conversely, IL-15 is a pro-inflammatory cytokine and plays a primary
role in the development of autoimmune diseases and inflammatory diseases such as rheuma-
toid arthritis, sarcoidosis, inflammatory bowel disease [5].

The receptor of IL-15 is a heterotrimeric receptor composed of IL-15R α, IL-2/IL-15R β and
γ chain. IL-15R α alone is sufficient for high affinity binding of IL-15 and can present IL-15 in
trans to cells that express IL-2/IL-15Rβ and γ chain but not IL-15Rα [13, 14]. IL-2/IL-15Rβ
interacts with JAK1, and the γ chain with JAK3 and together lead to phosphorylation of STAT-
5 and STAT3, which affect cellular survival and proliferation, and also through β chain interac-
tion with Shc induce the MAP kinase and PI3 kinase/AKT pathways that lead to mitogenic and
antiapoptotic signals [7, 15].

Naïve CD4+ T cells can differentiate, during a primary antigen response, into several distinct
polarized subsets such as Th1, Th2, regulatory T cells (Tregs), as well as the more recently dis-
covered lineage Th17 cells [16, 17]. Th1 cells mainly produce IFNγ, which is important for
macrophage activation and clearance of intracellular pathogens, whereas Th2 cells produce IL-
4, IL-5 and are critical for clearance of extracellular parasites [18]. Natural regulatory T cells
(nTregs) develop in the thymus and are responsible for immunologic self-tolerance and nega-
tive control of immune responses [19]. Th17 cells producing IL17 play important roles during
immune responses against extracellular bacteria and fungi, and are involved in autoimmune
diseases [20]. Earlier studies support the classification of IL-15 as a proinflammatory type-1
cytokine [21–23], whereas a few have observed IL-15 as a costimulator of type-2 cytokines
[24]. The addition of exogenous IL-15 favored human Th1 T cell differentiation in vitro [22].
These data suggested that the role of IL-15 in the development of CD4+ T cell immunity is
complex. However, the role of IL-15 in CD4+ T helper cell differentiation at the level of the
whole organism by using IL-15 deficient mice and IL-15 transgenic (Tg) mice has not been
studied. Our present study addresses this issue.

Mononuclear phagocytes (MPs) that function as antigen presenting cells (APC), especially
dendritic cells (DCs) and macrophages, are essential for the different lineages of CD4+ T cell
polarization. MPs expressing CD11c and MHC II were originally believed to be just DCs, but
more recent evidence suggests that macrophages in the gastrointestinal tract can express
CD11c, causing some confusion in the classification of intestinal lamina propria (LP) MPs
[25–28]. Classification has usually been based on the expression of CD11b, CD8α, and CD103,
defining distinct subsets of CD103+CD11-, CD103+CD11b+ and CD103-CD11b+ MPs that
exhibit different functional properties [29–32]. Both subsets that express CD103 are generally
believed to be true DCs, whereas some of the CD103-negative subsets, including many CD11b
single-positive cells and especially those expressing CX3CR1 (which extend dendrites through
the epithelium but now appear to be sessile macrophages), include macrophages derived from
Ly6C+ monocytes rather than from DC precursors [25–28]. However, recently a population of
CD103- CD11b+ cells was defined that are true DCs, lacking the macrophage markers CD64
and F4/80 [25, 33]. While sessile macrophages may not be able to traffic to draining lymph
nodes (LNs) to prime T cells there, these CD11b+ single positive true DCs can traffic to the
draining LNs and thus prime T cells and skew their phenotype. CD103+ MPs could induce gut-
homing molecules on effector T cells and help the generation of Treg cells [34–36]. CD8α+

DCs and CD103+CD11b- DCs are especially effective at cross-presentation to CD8+ T cells [25,
27]. The CD103+CD11b+ (double positive) MP subset and CD103-CD11b+ single positive MPs
promote Th17 cell differentiation either constitutively or in responses to TLR ligands [25–28,
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37–42]. A newly defined subset of CD103-negative CD11b+ true DCs that express CCR2 has
been found to be especially effective at inducing Th17 differentiation (even more so than dou-
ble positive MPs) [33]. Thus, the IL-17-inducing MP subsets are generally those expressing
CD11b, with or without CD103. Both of these IL-17-inducing CD11b+ subsets were found to
be IRF4-dependent [25, 33]. Moreover, the tissue environment in which MPs reside has a
major impact on their phenotypic and functional properties [43]. Besides effects of the micro-
biome [44], vitamin A (retinol) from diet or from bile can influence MP imprinting within the
intestinal mucosa [45].

IL-15 knockout (KO) mice have been shown to have reduced numbers of memory CD8+ T
cells, NKT cells, NK cells, and subsets of intestinal intraepithelial lymphocytes [46]. IL-15
receptor deficient mice also demonstrate a broadly similar phenotype [47]. On the other hand,
IL-15 Tg mice have early expansion of CD8+ T cells and NK cells [5, 48] and unconventional
CD8αα NK1.1+ T cells [49]. However, the distribution of MP subsets in these mice and their
role in the differentiation of CD4+ T cell polarized subsets remains unexplored. Thus, here we
address two previously unaddressed questions, the role of IL-15 in differentiation of CD4+

helper T cell subsets in the gut mucosa and its role in the differentiation of MP subsets in the
gut mucosa, and the connection between these.

Material and Methods

Mice
Six to eight week old C57BL/6 mice or C57BL/6 background IL-15 KO mice and OT-II mice
were purchased from Taconic Farms (New York, USA). Human IL-15 gene Tg mice were pre-
viously reported [48]. Mice were maintained in specific pathogen free conditions in the animal
facility of National Cancer Institute. All animal protocols were reviewed and approved by the
Animal Care and Use Committee of the National Institutes of Health. Mice to be compared
were co-housed in the same cage to avoid differences in their gut microbiome.

Antibodies and reagents
FITC or PE-Cy5 conjugated anti-mouse CD11b (clone M1/70), Percp or PE-Cy7 conjugated
anti-mouse CD11c (clone N418), APC or Percp conjugated anti-mouse CD4 (clone GK1.5),
PE or FITC conjugated anti-mouse CD3 (clone 17A2), APC conjugated anti-mouse IFNγ
(clone XMG1.2), APC or PE conjugated anti-mouse IL-17A (clone TC11-18H10.1), APC or
FITC conjugated anti-mouse Foxp3 (clone MF14), APC conjugated anti-mouse CD103 (clone
2E7), and Pacific Blue conjugated anti-mouse MHC class II antibodies were purchased from
Biolegend (San Diego, CA, USA). PE conjugated anti-mouse CD8α (clone 53–6.7), FITC or
APC conjugated anti-mouse MHC class II (clone M5/114.15.2), APC conjugated anti-mouse
CD11b (clone M1/70) and purified anti-mouse CD3 antibodies were from eBioscience (San
Diego, CA, USA). PE conjugated anti-mouse CD103 (M290) was purchased from BD Biosci-
ence. Recombinant human IL-15, recombinant mouse TGF-β, GM-CSF and IL-6, rabbit anti-
human and anti-mouse IL-15 were purchased from PeproTech (Rocky Hill, NJ, USA). Stained
cells were analyzed on FACSCalibur or LSRII flow cytometers (BD Biosciences).

Isolation of cells
For splenocytes, spleens were cut into small fragments and then were digested for 30 min at
37°C with 2mg/ml collagenase D (Sigma) in complete culture medium. For cell from draining
LNs, LNs were directly minced and cell suspensions were passed through a strainer. For cells
from the small intestine, small intestines were removed and were carefully cleaned of their
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mesentery, then Peyer’s patches were excised and the intestines were opened longitudinally
and washed of fecal contents. Intestines were cut into 1.0 cm pieces, which were incubated and
shaken in Hanks’ balanced salt solution containing 5mM EDTA and 0.1mM dithiothreitol for
20 min at 37°C to separate intraepithelial lymphocytes (IEL). Cell suspensions (IEL) were
passed through a strainer and purified on a cushion of Lympholyte-M separation medium. The
remaining intestinal tissue was washed, then minced, and then transferred to a 50 ml conical
tube and incubated for one hour in complete culture medium containing 2 mg/ml collagenase
D and 200 μg/ml DNAse I (Sigma). Cell suspensions (lamina propria) were collected and
passed through a strainer and pelleted by centrifugation at 300 x g. The cells were resuspended
in 10 ml of the 40% Percoll and separation was performed by centrifugation for 10 min at
800 x g at room temperature. The cells were resuspended and washed twice for different
experiments.

Culture of mononuclear phagocytes (MPs) with CD4+ T cells
MPs from spleen or small intestine lamina propria (LP) were enriched by positive immuno-
magnetic selection using anti-mouse CD11c beads (Miltenyi Biotec). OTII CD4+ T cells were
isolated from splenocytes using a CD4+CD62L+ T cell isolation kit II fromMiltenyi Biotec.
MPs were shown to be>90% CD11c+ and 99%MHC II+ (S2 Fig).

For in vitro stimulation, purified LP MPs (1 x 105) were cultured together with OTII CD4+

T cells at a ratio of 1:2 in 250 μl RPMI complete medium in 96 well round-bottomed plates. For
antigen specific Th17 differentiation, 5 μg/ml OVA323–339 (ISQAVHAAHAEINEAGR) was
added to the MP and OTII CD4+ T cell coculture experiments in the presence or absence (as a
control) of IL-6 (10ng/ml), TGF-β (5ng/ml), and anti-IFNγ (50μg/ml). In some experiments,
human IL-15 (which acts on mouse cells) at 20 ng/ml or anti-mouse IL-15 at 5 μg/ml or anti-
human IL-15 at 5 μg/ml (which both block mouse IL-15) were added in the co-culture of OT II
CD4+ T cells and wild type (WT) MPs to induce Th17 cells. After 4 days, the cocultures were
restimulated for 4 hours with 20 ng/ml phorbol 12-myristate 13-acetate (PMA) and 1 μg/ml
ionomycin in the presence of brefeldin A for intracellular cytokine staining.

Intracellular staining and cell surface staining
After cell surface staining with anti-CD4 and anti-CD3, cells were permeabilized with Cytofix/
Cytoperm (PharMingen, San Diego, CA) in accordance with the manufacturer’s recommenda-
tions. Intracellular staining was performed with anti-IFNγ, anti-IL17A, and anti-Foxp3. Cells
were analyzed on a fluorescence-activated cell sorter (FACS) Calibur (BD Biosciences) or LSR
II and analyzed by using CellQuest software (BD Biosciences) or FlowJo software (TreeStar,
San Carlos, CA).

Statistics
Values are expressed as mean ± standard deviation (SD). A value of<0.05 indicates signifi-
cance. Statistical analysis was performed using nonparametric Mann-Whitney test. A paired
Student t-test was used for comparing different CD11b, CD103 subset MPs.

Results

Increased frequencies of Th17 cells in IL-15 deficient mice are
consistent with reduced frequencies of Th17 in IL-15 transgenic mice
Th17 cells are a subset of effector CD4+ Th cells defined by their production of IL-17 [50].
Specific commensal microbiota play a critical role in Th17 cell differentiation in the LP of the
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small intestine [51]. In our present experiments, all the mice were co-caged to ensure similar
gut microbiota. Here, we first examined Th17 frequency among CD3+CD4+ cells in the small
intestine LP and spleen of IL-15 Tg mice and IL-15 KO mice as compared to their matched
WT counterpart mice. In agreement with the literature, a large number of Th17 cells were spe-
cifically enriched in the small intestinal LP of normal naïve un-manipulated mice [52]. In con-
trast, Th17 cells were hardly detectable in the spleens of these mice (Fig 1A and 1B).
Interestingly, IL-15 KO mice showed much higher frequencies of Th17 cells in the LP than WT

Fig 1. Differences in Th17 cell frequencies in the LP of IL-15 Tg or KOmice, but not in frequencies of Th1 or Treg cells.Cells from spleen and small
intestine LP were stimulated for four hours with PMA and ionomycin and stained with surface markers CD3 and CD4, followed by intracellular staining of IL-
17, IFNγ or Foxp3. A. Higher frequencies of Th17 cells were found in the LP of IL-15 KOmice than matched co-cagedWTmice (p < 0.001 by Mann-Whitney).
B. IL-15 Tg mice showed significantly lower frequencies of Th17 cells in the LP compared with their co-cagedWT littermates (the littermates were considered
as matchedWT controls) (p < 0.001 by Mann-Whitney). C. The frequencies of IFNγ -producing CD4+ T cells were not significantly different in the LP of IL-15
KO vsWT and IL-15 Tg vs littermateWT control.D. The frequencies of CD3+CD4+Foxp3+ cells were not significantly different in small intestinal LP of IL-15
KO vsWT and IL-15 Tg vs littermateWT control. This figure pools data from several independent experiments with similar results.Double asterisk
(**denotes P<0.001).

doi:10.1371/journal.pone.0143001.g001
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mice, but not in the spleen (Fig 1A). In contrast, IL-15 Tg mice showed much lower frequen-
cies of Th17 cells in the LP as compared with their littermates (the WT littermate was consid-
ered as WT control mice for IL-15 Tg mice, Fig 1B). These data suggest that loss of IL-15 in
mice leads to an increase of Th17 cells, and excess IL-15 does the converse.

Th1 and Treg cells showed no significant differences in LP of IL-15-
deficient mice and IL-15 transgenic mice compared to their matchedWT
mice
Earlier studies support the classification of IL-15 as a proinflammatory type-1 cytokine [22, 53,
54]. Moreover, addition of exogenous IL-15 favored human Th1 T cell differentiation in vitro
[22]. Here we investigated the frequencies of Th1 cells in these IL-15 KO and Tg mice. It was
surprising to see that the frequencies of Th1 cells were not significantly different in the small
intestinal LP among these mice (Fig 1C), in contrast to the finding for Th17 cells above.

The same was true, surprisingly, for Tregs as well, despite the fact that we found fewer Th17
cells in the small intestine LP of IL-15 Tg mice, and published evidence indicated reciprocal
Th17 and Treg cell differentiation in the gut [55]. In addition, IL-15 has been shown to be a
potent inducer of CD4+CD25high cells expressing Foxp3 in humans and governs the CD4+-

Foxp3+ Treg cell development [56, 57]. Moreover, the common γ chain cytokine IL-2, which is
a growth factor for Tregs, inhibits the generation of Th17 cells and promotes the generation of
Tregs [58]. Il2−/- mice exhibit reduced numbers of Tregs, and have an increased frequency of
Th17 cells in the peripheral repertoire. Therefore, it was surprising that no significant differ-
ence was observed in the frequencies of CD4+Foxp3+ Treg cells in the LP between IL-15 KO
mice and WTmice or between IL-15 Tg mice and their WT littermates (Fig 1D). This may
reflect differences between in vitromodels and in vivo situations. In vitro, there is a true reci-
procity between the Th17 and Treg developmental programs on the single-cell level [50]. How-
ever, this reciprocal developmental decision in vivo at the single-cell level is more complicated
and could be interfered with by various factors [50]. Our current data do not support a critical
role of IL-15 in Treg cell differentiation in the gut in vivo. A representative FACS plot for each
cell type is shown S1 Fig.

Phenotypic characterization of MPs in IL-15 deficient mice and IL-15
transgenic mice
The influence of IL-15 could be direct or indirect, for example, through an effect on MP sub-
sets. Published reports show that different MP subsets promote (e.g. CD11c+CD11b+ MPs) or
inhibit (e.g. CD103+ CD11b- MPs) differentiation of Th17 cells [38, 39, 59]. MPs expressing
both CD11b and CD103 can also induce Th17 cells [25, 27, 40–42]. Thus, a common feature of
the IL-17-inducing MPs is expression of CD11b, although not all CD11b+ MPs induce IL-17.
Furthermore, in vitro, IL-15 has been shown to skew the development of MPs from monocytes
to produce fewer of the CD11b+ MP subset [60]. Therefore, we asked whether the presence or
absence of IL-15 affected MP subsets in the LP that could affect Th17 differentiation. We char-
acterized MPs based on co-expression of CD11c and MHC II initially by gating (S3A–S3E Fig)
and then, based on those results, in more detail using MPs purified with a Miltenyi MP isola-
tion kit (Fig 2) (see S2 Fig). It is likely that CD11c+CD11b+CD103- MPs contain some CD11c+

macrophages as well as DCs, although the macrophages tend to be less CD11c bright and are
more prevalent in the colon [40]. Levels of CD11c and MHC II in our MP populations were
heterogeneous but the majority were bright for both markers (S2 Fig). Nevertheless, the litera-
ture suggests that most CD11c+CD11b+CD103-MHCII+ MPs in the small intestine are macro-
phages, and only a minority are DCs [25]. Because we were not able to use additional markers
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Fig 2. Characterization of MP subsets from intestinal LP and spleen.MPs were purified from small intestinal LP and spleen and then stained for surface
markers CD103, CD11b, CD8, and MHCII. A. Purified MPs from intestinal LP were analyzed for CD11b and CD103 expression. One representative mouse
was shown.B. Purified MPs from the spleen were analyzed for CD11b and CD103 expression. Far fewer CD103+ MPs were found in the spleen, as
expected, but CD103 expression was higher in IL-15 Tg compared to WTmice. Conversely, CD11b expression was slightly lower in IL-15 Tg compared to
WT, but slightly higher in the IL-15 KO vsWT. C. MPs purified from LP were analyzed for CD8α and CD103 expression. FACS plots are representative of five
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to clearly distinguish the DC and macrophage subpopulations within this category, we refer to
them as MPs throughout. Much of the earlier literature on the role of CD11b+ MPs in inducing
Th17 cells also predated this distinction. Future work will be required to further define which
newly described subsets within this category are involved.

Phenotypic characterization of MPs in IL-15 KO and IL-15 Tg mice was carried out based
on the expression of surface markers CD11b, CD8, and CD103. According to the literature, the
tissue environment has a major impact on MP phenotypic and functional properties. Accord-
ingly, no effects were seen in the spleen (data not shown). As shown in S3A Fig, when we first
compared IL-15 Tg mice with their littermates by gating on MP subsets, a significant increase
of CD103+ single positive MPs was found in the LP of IL-15 Tg mice (P<0.001) (S3B Fig).
Although no significant difference in CD103+ MPs was observed in the LP of IL-15 KO mice
compared to their WT counterpart, the trend was toward lower proportions in the KO,
p = 0.16). In contrast, significantly lower proportions of CD11b+ single positive MPs (S3C Fig)
and CD103+CD11b+ double positive MPs (S3A Fig) were found in LP of IL-15 Tg mice, and a
correspondingly greater number of CD11b+ MPs in the IL-15 KO mice (S3A and S3C Fig,
p<0.05). To facilitate this comparison, we examined the ratios of CD11b+ single positive MPs
/ CD103+ single positive MPs and of double positive MPs/CD103+ single positive MPs in the
LP of individual mice (that is paired comparisons) among the gated CD11c+MHCII+ LP MPs
studied in S3A–S3C Fig (ratio shown in S3D and S3E Fig, respectively). These ratios were cho-
sen as ratios of each population known to contain Th17-inducing MPs over CD103 single posi-
tive MPs known not to induce Th17 cells. The ratios were substantially higher in IL-15 KO
mice vsWT and significantly lower in IL-15 Tg vs IL-15 Tg WT littermates (S3D and S3E Fig),
paralleling the Th17 distribution.

To examine these MP differences in more detail, we also purified the CD11c+MHCII+ MPs
to characterize LP MPs and splenic MPs. As shown in Fig 2A, 2B, 2D, 2E and 2F, we noted
the presence of CD11b+ CD103+ double positive MPs in the LP (Fig 2A and 2D) but not in the
spleen (Fig 2B), as expected. In the LP of IL-15 Tg vsWT littermate (Fig 2A, left two panels),
the proportion of CD103+CD11b+ double positive (Fig 2D), and CD11b+CD103- MPs (Fig
2F) were significantly lower than in the WT littermate. Indeed, Fig 2D and 2F show extremely
similar patterns, even though the overall frequencies are higher for the CD11b single positive
cells in Fig 2F. In contrast, CD103+CD11b- MPs were significantly higher in the LP of the Tg
than that of the WT littermates (Fig 2E). The reverse was true in the LP of the IL-15 KO vs its
WT control (Fig 2A, 2D, 2E and 2F). However, the phenotypic difference is more evident in
the IL-15 Tg than IL-15 KO mice, which might be related to the high level of IL-15 in IL-15 Tg
mice. Thus, both the CD11b+CD103+ double positive population and the CD11b+ CD103- sin-
gle positive population of MPs that contain the two major inducers of Th17 cells showed simi-
lar patterns with higher levels in LP of the IL-15 KO mice and lower in that of the IL-15
transgenic mice (Fig 2D & 2F), distinct from the relative ratios between strains of the CD103+

single positive population (Fig 2E). Moreover, the ratios of CD103+CD11b+ double positive
cells and of CD103-CD11b+ single positive cells to the CD103+ single positive cells both show
the same relative pattern (Fig 2G and 2H). These exactly parallel the ratios found in gated
CD11c+ MHCII+ LP MPs (S3D and S3E Fig). In all cases, the ratio was substantially higher
in IL-15 KO mice vsWT and significantly lower in IL-15 Tg vs IL-15 Tg WT littermates

independent experiments of two mice pooled in each. The pooled data are shown in D, E and F. D. Percent of double positive CD11b and CD103 MP in the
LP. E. Percent of single positive CD103 MPs. F. Percent of single positive CD11b MPs. The ratios of CD11b+CD103+/ CD103+ MPs (G) and CD11b+CD103-/
CD103+ MPs (H) based on purified LP cell preparations are shown in G and H. Paired Student t-tests were used for comparing different CD11b, CD103
subset MPs.

doi:10.1371/journal.pone.0143001.g002
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(S3D and S3E Fig, Fig 2G and 2H), which correlated nicely with the Th17 distribution in the
LP of these strains. Although the absolute values of the means of these ratios was consistently
higher in the purified single positive MP populations (Fig 2H vs S3E Fig), there was no signifi-
cant difference between the ratios of any mouse strain between the gated and the purified pop-
ulations, indicating the same conclusion. It is possible that the CD11b+CD103- subset that is
responsible for most of the effect is the newly described CCR2+ bone fide DCs, not macro-
phages, that express these markers but lack CD64 and F4/80 [33].

We included another surface markers CD8α for MP characterization. Interestingly, CD8α+

MPs were greatly increased in both LP (Fig 2C) and spleen (not shown) of IL-15 Tg mice.
Moreover, double positive CD103+CD8α+MPs were higher in IL-15 Tg mice thanWT mice,
but no population of CD8α+CD11b+ MPs was found in either spleen or LP (i.e. these markers
are not co-expressed in the same MPs and this population is not believed to exist). Together,
these results suggest IL-15 could condition the phenotype of MPs in the intestinal LP.

LP MPs from IL-15 Tg have lower capacity to induce antigen specific
Th17 differentiation in vitro
As mentioned before, according to the literature, the CD103+ MP subset helps the generation
of Treg cells (but under inflammatory conditions can induce Th17), whereas the CD11b+ single
positive and CD11b+CD103+ double positive MP subsets promote Th17 cell differentiation
[25, 27, 38–42] [33]. Since we have noted distinct differences in the ratio of subsets of LP MPs
from the IL-15 Tg mice and littermates, we next assessed the ability of the LP MPs to induce
antigen specific Th17 differentiation in OVA-specific OTII CD4+ T cells in vitro. Purified MPs
from small intestinal LP were pulsed with CD4 epitope OVA323–339 and used for antigen spe-
cific Th17 induction of OTII CD4+ T cells in vitro under Th17 polarizing conditions (TGF-β,
IL-6, and anti-IFNγ). Purified LP MPs cultured together with OTII CD4+ T cells without polar-
izing conditions were used as a control. As shown in the Fig 3A and 3B, LP MPs from IL-15
Tg mice have lower capacity to induce antigen specific Th17 differentiation in vitro compared
to those fromWTmice, even under Th17-promoting conditions. Of note, OTII CD4+ T cells
have a tendency to generate Th1 cells in vitro (as shown in the control). Among 5 such pairs of
mice tested, the frequency of Th17 cells induced was almost 2.8-fold lower in the transgenic
than the WT littermates (p = 0.0075) (Fig 3B) Consistent with these data, LP MPs from IL-15
KO mice conversely have higher capacity to induce antigen specific Th17 differentiation in
vitro compared to those fromWTmice (Fig 3C and 3D). Among 9 such pairs of mice tested,
the frequency of Th17 cells induced was 1.8-fold higher in the IL-15 KO than the matched WT
controls (p = 0.038 by MannWhitney) (Fig 3D). (Unlike the case of IL-15 Tg mouse MPs,
there was no apparent affect of the IL-15KOMPs on induction of Th1 cells producing IFNγ,
data not shown.) Thus, the reciprocal pattern between IL-15 Tg and KO that was seen in vivo
was recapitulated in vitro when the only cells from the Tg or KO LP were the MPs, and the OT
II T cells were WT.

This finding directly implicates the source of MPs in determining the proportion of Th17
cells. However, the mechanism could depend on the ability or inability of the MPs to make IL-
15 in the culture, or could be due to an indirect effect of the MP phenotypes we observed, espe-
cially the proportion of CD11b+ MPs. To distinguish these possibilities and test whether IL-15
was directly involved in Th17 differentiation, we directly added IL-15 or blocked it with anti-
IL-15 antibodies in culture in the in vitro differentiation system, using all WT LP MPs and WT
OTII cells. Addition or blockade of IL-15 failed to change antigen specific Th17 cell differentia-
tion in vitro (Fig 3E). These data indicate that IL-15 does not directly affect Th17 differentia-
tion at least in vitro, and the difference between the MPs from IL-15 KO or Tg mice is not just
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Fig 3. Flow cytometry of intracellular production of IL-17 by LP MPs from IL-15 Tg (A and B) or IL-15 KO (C and D) cocultured for 4 days with OTII T
cells under Th17 conditions and re-stimulated for 4h with PMA and ionomycin. Data are representative of one of three independent experiments with
comparable results. A, B. LP MPs from IL-15 Tg have lower capacity thanWT to induce antigen specific Th17 differentiation in vitro (p = 0.0075 fromMann-
Whitney test of 5 mice per group shown in B). C, D. LPMPs from IL-15 KO have higher capacity to induce antigen specific Th17 differentiation in vitro
(p = 0.038 fromMann-Whitney test of 9 mice per group shown in D). B, D. The fold change of the induction of antigen specific Th17 relative to WTMPs is
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their ability to make IL-15. By exclusion, we conclude that the most likely scenario is that IL-15
is not acting directly on the CD4+ T cell but affects Th17 differentiation indirectly by affecting
the proportion of CD11b+ and CD11b+CD103+ double positive MPs in the LP in vivo, which
in turn promotes Th17 differentiation.

Discussion
In contrast to CD8+ T cells, the effect of IL-15 on subsets of CD4+ T cells is not well under-
stood. In our present study, significantly reduced frequencies of Th17 cells were observed in
the small intestinal LP of IL-15 Tg mice, whereas these were increased in the LP of IL-15 KO
mice. No differences in Th1 cells in the small intestinal LP were observed in these mice. The
splenic results agree with an earlier report showing significantly increased IFNγ levels in the
serum and increased CD8+ T cells expressing IFNγ in IL-15 Tg mice after infection with myco-
bacterium bovis bacillus Calmette-Guérin [61]. These results suggest that IL-15 plays an
important role in type-1 cytokine development especially for CD8+ T cells. Although a recipro-
cal relationship between Tregs and Th17 cells is observed in vitro and in spleen cells in some
knock out mice such as IL-6 KO [50], the frequencies of Tregs were found to be not signifi-
cantly different in the small intestinal LP of IL-15 Tg mice compared to WT mice. Thus, this
reciprocal developmental decision in vivo at the single-cell level must be more complicated and
could be influenced by various local environmental factors [50].

The fact that the difference in Th17 frequency was found in the small intestinal LP and not
in the spleens of IL-15 Tg or KO mice raised the question whether the difference could be due
to differences in the intestinal microbiome in these mice. To exclude this possibility, we first
used matched wild-type controls from the same colony as the Tg or KO mice, using wild-type
littermates for the Tg animals, and second, co-housed the mice in the same cage with their WT
controls to be sure that their intestinal flora were equilibrated among the strains. The co-hous-
ing (in the same cage) had no effect on the Th17 polarization observed, indicating that this was
not the explanation of the findings. However, we expect that the lack of Th17 cells in the spleen
compared to the intestine despite the greater ratio of CD11b+/CD103+ MPs in the spleen is
probably due to the fact that commensal bacteria present in the intestine are needed to induce
Th17, in addition to the effect any MP subsets. Indeed, it has been shown that most Th17 cells
in the LP are specific for or induced by bacteria in the intestinal lumen, such as segmented fila-
mentous bacteria [62, 63]. Thus, the appropriate MP subsets may be necessary (or more effec-
tive) but not sufficient to induce Th17 without other signals from bacteria [44]. In addition, the
different MP subsets appear to have different growth factor, chemokine, and genetic require-
ments in different tissues that may also contribute to this difference [25–27, 43, 64, 65]. Also,
vitamin A (retinol) from diet or from bile can imprint MPs in the intestinal mucosa [45].

MPs are thought to play a key role in maintaining the balance between tolerance and active
immunity by discriminating between commensal microorganisms and potentially harmful
pathogens. MPs in the intestine are abundant both in organized lymphoid organs such as the
Peyer’s patches and the LP, where they act as sentinels [66]. MPs comprise several subsets,
defined by expression of surface markers such as CD11b, CD8α, CD103, CD64, F4/80, CCR2,
XCR1, SIRPα, and CD4, and these have distinct roles in the initiation of immunity to specific
pathogens [25, 30, 33, 67, 68]. In our present study, the different MP subsets were characterized

shown. For normalization, the induction of antigen specific of Th17 by LP MPs fromWT was considered as 1 (*P<0.05 for N�5). E. Effect of adding or
blocking IL-15 in the culture of OT II CD4+ T cells with WT LPMPs to induce Th17 cells. See Methods. Both anti-mouse IL-15 and anti-human IL-15, which
react with mouse IL-15, were tested and are shown in the lower panels.

doi:10.1371/journal.pone.0143001.g003
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in IL-15 Tg mice and IL-15 KO mice according to the expression of surface markers, CD11b,
CD8 and CD103.

Comparing the LP MPs with the splenic MPs, we observed that CD8α+CD11b+ double posi-
tive MPs were not found in either the spleen or the small intestinal LP, implying that these
markers are mutually exclusive in MPs, consistent with the established literature. Moreover, a
distinct CD11b+ CD103+ double positive MP population was found in the small intestinal LP
but not in the spleen, most likely due to the fact that only a tiny number of CD103+ MPs were
observed in the spleen. The different distribution of MP subsets in the spleen and LP indicated
the importance of the local tissue microenvironment and opens the possibility that their bal-
ance could influence the outcome of T-cell priming.

CD103+ MPs in the LP could migrate to the mesenteric LNs in a CCR7 dependent manner
and induce regulatory T cells via the dietary metabolite retinoic acid [34, 69]. Recently CD103+

MPs in the small intestinal LP were divided in to a small subset of CD103+ CD8α+ MPs and a
large subset of CD103+ CD8α- MPs. CD103+CD8 α+ LP MPs did not express the gene encod-
ing retinoic acid-converting enzyme retinaldehyde dehydrogenase 2 (Raldh2) and were not
involved in Foxp3+ Treg induction. CD103+CD8α+ LP MPs mainly induced antigen specific
Th1 responses, and CTL activity in vivo, but not Th17 differentiation in vitro [70]. In our pres-
ent study, CD103+CD8α+MPs, which were equivalent to CD11chiCD11blo subset, were signifi-
cantly higher in IL-15 Tg mice than WTmice. Consistent with this finding, we found lower
frequencies of Th17 in the LP of IL-15 Tg mice.

In the LP, the CD11b+ MPs have been identified, some of which appeared to express tight
junction proteins and could extend dendrites to sample luminal microbes in vitro [71]. These
CX3CR1+ CD11b+ MPs that were originally thought to be DCs are now believed to be sessile
macrophages deriving from Ly6C+ monocytes [25–27]. On the other hand, several subsets of
MPs expressing CD11b in the LP can promote the induction of Th17 cell differentiation [25–
28, 33, 37–42]. In our present study, significantly reduced CD11b+CD103- MPs and CD11b+-

CD103+ MPs (that together contain the major Th17-inducing MPs) were observed in the LP of
IL-15 Tg mice, whereas these MPs are conversely increased in the LP of IL-15 KO mice that
have more Th17 cells. Moreover, the ratio of CD11b+ MPs / CD103+ MPs is higher in IL-15
KO mice vsWT and lower in IL-15 Tg vs their WT littermate mice, and this ratio is correlated
with the higher frequencies of Th17 distribution in the LP. Thus, the distinct MP subset distri-
bution in these mice could provide a possible mechanism for the higher frequency of Th17 in
the LP in vivo.

To test this hypothesis, we asked whether IL-15 indirectly via an effect on MP subsets or
directly constrains antigen specific Th17 differentiation in vitro. Here we used MPs purified
from LP of IL-15 Tg mice, since marked MPs differences were found in these mice. Our data
showed that LP MPs from IL-15 Tg mice were less effective at inducing antigen specific Th17
differentiation compared to those fromWTmice. The converse was true for LP MPs purified
from IL-15 KO mice. This result could be due to either the subset distribution of MPs in the LP
of IL-15 Tg or KO mice that resulted from the higher or lower levels of IL-15 in vivo, or to a
direct effect of more IL-15 in the culture made by the IL-15 Tg MPs, or lack thereof in the KO
MPs. To distinguish these possibilities, we examined the direct effects of addition of IL-15 or
blockade of IL-15 in WTMP-T cell co-cultures, and found that neither of these manipulations
directly affected the induction of antigen specific Th17 cells in vitro. This result rules out one of
the alternatives, the direct effect of IL-15 excess or deficiency on Th subsets. Moreover, the
high frequencies of Th17 cells in small intestinal LP are correlated with the higher frequencies
of CD11b+ MPs in vivo and the ratio of CD11b+ to CD103+ MPs. Taken together, these results
suggest the interpretation that IL-15 might indirectly regulate Th17 polarization in the LP via
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its effect on MP subset differentiation in the LP, rather than through a direct effect of IL-15 on
Th cell differentiation.

IL-15 and IL-2, as members of the common γ chain cytokine family, share many activities,
but also have their own distinct functions. Similar to Il2−/- mice, IL-15 KO mice also have an
increased frequency of Th17 cells in small intestinal LP. Moreover, addition or blockade of IL-
2 in vitro could constrain or promote differentiation of IL-17, respectively [58]. However, in
our present study, addition of IL-15 or blockade of IL-15 in vitro did not show any direct effect
on the differentiation of antigen specific Th17 cells in vitro, although some effect of IL-15 on
levels of IL-17A production by CD4+ T cells has been recently reported [72].

Increased expression of IL-15 has been reported in celiac disease and inflammatory bowel
disease, which is critical in disease pathogenesis to induce proinflammatory cytokines, initiate
epithelial apoptosis and trigger an anti-apoptotic pathway in human intraepithelial lympho-
cytes [73, 74]. Moreover, several distinct subpopulations of MPs in the human duodenal
mucosa have been defined from celiac disease [75]. It might be interesting to further investigate
the role of IL-15 in Th17 induction in the gut LP in a celiac disease model.

In conclusion, our data demonstrate that IL-15 plays a novel role in skewing the proportion
of Th17 cells in the gut LP without affecting their proportion in other tissues tested, and with-
out affecting the proportion of other major subsets of CD4+ T cells in the LP. This in vivo effect
was mimicked in vitro when only MPs from the LP of these mice were used to differentiate WT
Ova-specific CD4+ OTII cells in the presence of antigen and Th17-skewing conditions. Thus,
LP MPs were implicated in this skewing. Because we could not find any direct effect of adding
or blocking IL-15 in these cultures, we suggest that the in vivo effect is not likely due to the pro-
duction or lack thereof of IL-15 by the LP MPs themselves, but more likely an indirect effect of
variation in MP subset distribution in IL-15 Tg mice and IL-15 KO mice, consistent with the
subset distribution we observed. We note that in vitro, IL-15 has been shown to skew the devel-
opment of MPs from human monocytes to produce fewer of the CD11b+ cells [60], but we
have not found a clear mechanism by which IL-15 causes this skewing. We hypothesize that
involves differential sensitivity of these MP subsets or their precursors to either growth or inhi-
bition by IL-15, perhaps due to receptor expression levels, during their maturation or recruit-
ment to the tissue, but working out that mechanism is beyond the scope of this study. As IL-
17-producing Th17 cells play an important role in the gut mucosal protection against bacteria,
these studies may help to more effectively manipulate mucosal immunity for improving muco-
sal vaccination regimens, and may also explain certain disease pathologies.
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