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Sulfate-reducing bacteria are important players in the global sulfur cycle and of considerable commercial interest. The draft ge-
nome sequence of a sulfate-reducing bacterium of the family Desulfobacteraceae, assembled from a sulfate-reducing bioreactor
metagenome, indicates that heavy-metal– and acid-resistance traits of this organism may be of importance for its application in
acid mine drainage mitigation.
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Sulfate-reducing bacteria (SRB) are widespread and abun-
dant in nature and of considerable commercial importance,

ranging from their role in corrosion (1) to their application in
sulfate-reducing bioreactors (SRBRs) for treatment of mining-
influenced waters (2). With few exceptions (3, 4), most char-
acterized SRB are not tolerant to acidic conditions typical of
acid mine drainage and require circumneutral pH (5) in order
to efficiently reduce sulfate and promote metal immobiliza-
tion in SRBRs. Here, we present a draft genome of a sulfate-
reducing bacterium of the family Desulfobacteraceae, which
was assembled from a sulfate-reducing bioreactor metage-
nome. Based on phylogenetic analyses using 16 ribosomal pro-
teins (6), the genome of this organism clustered with Desulfat-
irhabdium butyrativorans, a butyrate-oxidizing SRB isolated
from an anaerobic sludge blanket reactor treating industrial
wastewater (7).

SRBR DNA was extracted using the Power Soil DNA isola-
tion kit (MoBio Laboratories, Carlsbad, CA, USA). The
genomic DNA library was prepared using an Illumina TruSEQ
DNA library kit and sequenced on an Illumina HiSEQ 2500
paired-end flow cell (2 � 125-bp read length) using V4 Chem-
istry at the Genomics and Microarray Core, University of Col-
orado, Denver. IDBA-UD version 1.1.1 (8) was used to assem-
ble the reads along with four additional samples. The resulting
scaffolds were binned using CONCOCT (9), followed by ex-
traction of mapped reads and reassembly using IDBA-UD. Fol-
lowing reassembly, contigs less than 1 kb and any contigs show-
ing breaks in coverage profile were removed. The resulting
genome bin contained 193 contigs with a genome size of
6.09Mbp (N50 � 33,167 bp) and a GC content of ~50%.
CheckM (10) indicated a genome completeness of 97.8% with
likely contamination of 0.64% and no strain heterogeneity.
Comparison of the draft genome to complete reference ge-
nomes of Desulfatibacillum alkenivorans AK-01, Desulfobacula

toluolica Tol2, Desulfobacterium autotrophicum HRM2, and
Desulfococcus oleovorans Hxd3 using the Genome-to-Genome
Distance Calculator (http://ggdc.dsmz.de) indicated an average
nucleotide identity of 70.7 � 0.4% to the reference genomes. Gene
calling was performed using Prodigal (11), and the genes were
annotated against the KEGG database (12) using RAPSearch2
(13). The genome consisted of 3,694 coding regions with 3,463
matches to the KEGG database.

The assembled Desulfobacteraceae genome appears capable
of nitrogen fixation and urea-utilization, containing a urea
transport system not encountered in the reference genomes.
Similar to the reference genomes, this draft contains a two-
component system (HydH-HydG), previously implicated in
bacterial metal tolerance (14, 15). A unique feature of this draft
genome when compared to other Desulfobacteraceae members
is a �-aminobutyrate (GABA) shunt involved in microbial acid
resistance (16), raising the possibility that this genome repre-
sents a more acid-tolerant member of the family Desulfobacte-
raceae with potential interest for the mitigation of metal-laden,
acidic waters.

Nucleotide sequence accession numbers. This whole-genome
shotgun project has been deposited in GenBank under the acces-
sion number LKPX00000000. The version described in this paper
is the first version, LKPX01000000.
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