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Abstract
Simple elastic network models of DNA were developed to reveal the structure-dynamics

relationships for several nucleotide sequences. First, we propose a simple all-atom elastic

network model of DNA that can explain the profiles of temperature factors for several crystal

structures of DNA. Second, we propose a coarse-grained elastic network model of DNA,

where each nucleotide is described only by one node. This model could effectively repro-

duce the detailed dynamics obtained with the all-atom elastic network model according to

the sequence-dependent geometry. Through normal-mode analysis for the coarse-grained

elastic network model, we exhaustively analyzed the dynamic features of a large number of

long DNA sequences, approximately*150 bp in length. These analyses revealed positive

correlations between the nucleosome-forming abilities and the inter-strand fluctuation

strength of double-stranded DNA for several DNA sequences.

1 Introduction
Elastic network models of proteins, including all-atom models [1, 2] and coarse-grained mod-
els [3–9] represent some of the simplest and most powerful types of theoretical models that can
accurately reveal structure-dynamics relationships and the mechanisms underlying a protein’s
functional activities [10–14]. Such models have also been widely employed to accurately repro-
duce the temperature factors on the crystal structure of a protein via normal-mode analysis.
These models can thus demonstrate the large and slow deformations of proteins that are essen-
tial for protein functions, but remain difficult to demonstrate via all-atom molecular dynamics
simulations.

Along with proteins, DNA is the most important biomolecule for the activities of all living
organisms. Recent developments in molecular biology have revealed that DNA contains several
functional regions. Therefore DNA is no longer considered to have the sole function in the
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storage of genetic information, but is now known to be actively involved in gene regulation
[15–18], insulator activity [19–24], and in the construction of chromosomal architectures [25–
28] such as heterochromatins and topologically associated domains through nucleosome for-
mation and protein bindings [29–33]. The functional behavior of each strand of DNA is deter-
mined not only by chemical aspects of the nucleotides and base pairs but also by its physical
characteristics such as the structure and dynamics of the nucleotide sequences in each func-
tional region. However, comprehensive understanding of the physical properties of nucleotide
sequences lags far behind the knowledge accumulated of their biochemical aspects [15, 16, 26].

Since the last century, much progress has been made in revealing the physical aspects of
DNA using all-atom normal-mode analysis [34, 35] and molecular dynamics simulations [36–
42]. Several coarse-grained models of DNA (and RNA) have also been proposed. Some of these
describe the detailed shape of each nucleotide using three or more particles [43–49], whereas
others describe each base pair by simply one or two particles [50–54]. Molecular dynamics sim-
ulations and normal-mode analysis of these models have identified the flexibilities, nucleo-
some-forming abilities, and zip-unzip transitions of the double helices of some specific DNA
sequences from tens to a few hundred base pairs in length. Although these methods have
proven to be very powerful for the analysis of the physical aspects of DNA, molecular dynamics
simulations are not suitable for conducting exhaustive analyses of several sequences simulta-
neously owing to the high computational costs of such extensive simulations; for example,
analyses of whole genomic and whole possible sequences. Moreover, the normal-mode analysis
of all-atomic models of long DNA sequences is also computationally heavy.

Alternatively, data-driven methods have been proposed for determining the mechanical
properties of DNA with respect to the helical parameters and local flexibilities of base pairs
from X-ray crystal structure analysis and all-atom molecular dynamics [55–60]. These meth-
ods also seem to be powerful and can be applied to the analysis of the mechanical properties of
several DNA sequences simultaneously. However, the methods thus far proposed have focused
on static and local mechanical properties. Therefore, they are not particularly useful for the
study of the functional contribution of the dynamic and correlated motions of DNA.

The objective of this study was to construct a simple coarse-grained elastic network model
of DNA to allow for exhaustive analysis of the dynamic correlated motions of several long
DNA sequences. For this purpose, we first constructed a simple all-atom elastic network model
of short DNA sequences based on the method introduced by Tirion [1] for the modeling of
protein dynamics. We confirmed that this model could accurately reproduce the temperature
factors of some DNA fragments from data obtained with X-ray crystal structure analysis.

Second, we developed a simple coarse-grained elastic network model of long DNA
sequences, where each nucleotide is described by only one node. We confirmed that this sim-
plified model has lower computational costs but can nonetheless reproduce the nucleotide
sequence-dependent dynamics revealed by the all-atom elastic network model.

Finally, through the normal-mode analysis of this coarse-grained model, we conducted an
exhaustive analysis of the general features of the sequence-dependent structure-dynamics rela-
tionships among several DNA sequences. We specifically focused on the dynamic properties of
a large number of long DNA sequences, approximately*150 bp in length (with respect to the
length of the nucleosome-forming regions), for the genomes of some model organisms as well
as for random sequences with several A, T, C, G ratios. Through these analyses, we found that
the dynamic aspects of DNA are highly influenced by their sequences, and found positive cor-
relations between the nucleosome-forming abilities and inter-strand fluctuations of double-
stranded DNA.

In particular, we focus on the geometry dependencies of the dynamics of several DNA
sequences, since a recent study demonstrated that the geometry of DNA sequences has a
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dominant contribution to their mechanical features [47]. In the following arguments, for sim-
plicity, we use “sequence-dependent” to mean “dynamics that depend on sequence geometry”.

2 Models and Methods

2.1 Basic structures of Elastic Network Models of DNA
In order to construct elastic network models of DNA, the basic DNA structure first needs to be
determined. In the following arguments, we construct two types of models: i) a simple all-atom
elastic network model (AAENM) to reproduce the characteristics of the crystal structures of
DNA, and ii) a simple coarse-grain elastic network model (CGENM) to reproduce the charac-
teristics of the AAENM. We obtained the basic DNA structures in the following two ways for
the respective purposes of constructing each model.

For construction of the AAENM, we employed the atom coordinate sets of several naked
DNA crystal structures included in the Protein Data Bank (PDB) as the given basic structures
of the model. We used 9 DNA crystal structures containing only DNA and water molecules
under different conditions of crystallization, where all temperature factors are given as positive
values (Table 1). The suitability of the model was evaluated by comparisons of the temperature
factors obtained between the model and those obtained from X-ray crystal structure analysis.

The objective of our constructed arguments was to unveil the sequence-dependent dynamic
features of several long DNA sequences simultaneously. In recent crystal structure analysis,
only shorter DNA sequences (i.e., less than 12 bp in length) were studied. On the other hand,
several types of helical parameter sets, base pair parameters, and base step parameter sets have
been proposed through experiments or molecular dynamics simulations [36, 61–66](Table 2,
S1 Table). Here, we used the application X3DNA [67] to obtain the coordinates of each atom
for any sequence from these helical parameters, and used these parameters to construct the
AAENMs and CGENMs of longer DNA sequences (for detailed methods of the generation of
the atom coordinates, see Lu and Olson [67]). In the following arguments, we compare the
characteristics of the AAENM and CGENM constructed by X3DNA from three different heli-
cal parameter sets: i) a parameter set obtained by an in vitro experiment and X-ray crystal
structure analysis [48, 61–63] (Table 2), ii) a parameter set obtained only by the X-ray crystal
structure analysis, and iii) a parameter set obtained by all-atom molecular dynamics simula-
tions [58, 65, 66] (S1 Table).

Table 1. Information of the analyzed DNA segments. PDB ID, sequences of X-ray crystal structure analysis of DNA fragments, parameter sets of the
AAENM for each DNA structure, and correlation coefficients of TFi andMATFi between the AAENM and X-ray crystal structure.

PDB ID Sequence T [K] Ca ½kJ=ðÅ2molÞ� BB Bw ρ (all atom) ρ (MATF)

1BNA 5’-CGCGAATTCGCG-3’ 290 2.91 0.018 0.002 0.6775 0.8463

7BNA 5’-CGCGAATTCGCG-3’ 290 13.30 0.010 0.002 0.6349 0.7038

9BNA 5’-CGCGAATTCGCG-3’ 290 5.90 0.007 0.002 0.6764 0.7475

1D91 5’-GGGGTCCC-3’ 277 0.89 0.632 0.252 0.5750 0.6925

1DC0 5’-CATGGGCCCATG-3’ 277 1.18 0.380 1.192 0.5910 0.7038

122D 5’-CCAGGCCTGG-3’ 277 2.85 0.002 0.050 0.8219 0.8744

123D 5’-CCAGGCCTGG-3’ 277 6.87 0.003 0.007 0.7804 0.8230

181D 5’-CACGCG-3’ 296 0.94 1.522 0.332 0.4217 0.5788

330D 5’-ACCGCCGGCGCC-3’ 277 4.53 0.013 0.002 0.5418 0.5568

doi:10.1371/journal.pone.0143760.t001
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2.2 All-atom Elastic Network Model of DNA
A simple all-atom elastic network model of double-stranded DNA was constructed based on
the model proposed by Tirion [1]. In this model, we regard all of the atoms of given DNA
sequences as the nodes comprising the elastic network. For the analysis of the crystal structures
of DNA involving water molecules, we also regard the oxygen atoms of water around DNA as
the nodes of the elastic network. We define the mass and position of atom i asmi and ri
(ri ¼ ðxi; yi; ziÞ), respectively. The potential V of all atoms is given as

V ¼
X
i;j

Ca

2
ðjri � rjj � jr0i � r0j jÞ2yðRi þ Rj þ Rc � jr0i � r0j jÞ þ

X
boundary

BiCa

2
ðri � r0i Þ2: ð1Þ

Here, r0i is the position of atom i of the basic DNA structure, as described above.
The first term indicates the interaction potential among atoms that are spatially closed in

the basic DNA structure (Fig 1(a)). Here, Ri refers to the Van der Waals radius of atom i, Rc is
an arbitrary cut-off parameter that models the decay of interactions with distance, and θ indi-

cates the Heaviside function, where θ(z) = 1 (θ(z) = 0) for z� 0 (z< 0). We assume Rc ¼ 2:0Å,
which is empirically considered to be an appropriate range for biomolecules, at least for pro-
teins [1]. The results of the arguments presented in this paper were qualitatively unchanged for
the appropriate range of Rc. In the crystal structures of DNA, the motions of water molecules
are also restricted by the crystal packing. Thus, for all atoms, we assume that spatially closed

Table 2. Helical parameter sets (i). Helical parameter sets (i) obtained by in vitro experiments and X-ray
crystal structure analysis [48, 61–63].

Base-step parameters

Shift ½Å� Slide ½Å� Rise ½Å� Tilt [°] Roll [°] Twist [°]

AA −0.05 −0.21 3.27 −1.84 0.76 35.31

AT 0.00 −0.56 3.39 0.00 −1.39 31.21

AC 0.21 −0.54 3.39 −0.64 −1.39 31.52

AG 0.12 −0.27 3.38 −1.48 3.15 33.05

TA 0.00 0.03 3.34 0.00 5.25 36.20

TT 0.05 −0.21 3.27 1.84 0.76 35.31

TC 0.27 −0.03 3.35 1.52 3.87 34.80

TG 0.16 0.18 3.38 0.05 5.95 35.02

CA −0.27 −0.03 3.35 −1.52 3.87 34.80

CT −0.12 −0.27 3.38 1.48 3.15 33.05

CC 0.02 −0.47 3.28 0.40 3.86 33.17

CG 0.00 0.57 3.49 0.00 4.29 35.30

GA −0.27 −0.03 3.35 −1.52 3.87 34.80

GT −0.21 −0.54 3.39 0.64 0.91 31.52

GC 0.00 −0.07 3.38 0.00 0.67 34.38

GG −0.02 −0.47 3.28 −0.40 3.86 33.17

Base pair parameters

Shear ½Å� Stretch ½Å� Stagger ½Å� Buckle [°] Propeller [°] Opening [°]

A-T 0.07 −0.19 0.07 1.80 −15.00 1.50

T-A −0.07 −0.19 0.07 −1.80 −15.00 1.50

C-G 0.16 −0.17 0.15 −4.90 −8.70 −0.60

G-C −0.16 −0.17 0.15 4.90 −8.70 −0.60

doi:10.1371/journal.pone.0143760.t002
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Fig 1. Illustrations of (a) all-atom elastic network models (AAENMs) from the crystal structures, and the
coarse-grained elastic network models (CGENMs) from the AAENMs; (b) detailed interactions among the
nucleotides (nodes) of the CGENMwhere nucleotide i interacts with all nucleotides connected by the 11 bold
curves; and (c) bi; si, and ti.

doi:10.1371/journal.pone.0143760.g001
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pairs of atoms are connected by linear springs with their respective natural lengths. The elastic

coefficient Ca (½kJ=ðÅ2
molÞ�) is a phenomenological constant, which is assumed to be the same

for all interacting pairs.
The second term indicates the boundary effects of each DNA and water molecule in each

DNA crystal structure. This term plays a crucial role for the analysis of the fluctuations of the
crystal structure of DNA, such as temperature factors, since the fluctuations of the nucleotides
at the edges of DNA and water molecules are restricted due to the following facts.

In the crystal of DNA, the motion of edges at upper and lower streams of each DNA seg-
ment (left and right edges in Fig 1(a)) is influenced by atoms of other adjacent segments in the
long-axis direction of DNA segments. Moreover, the motions of water molecules around each
DNA segment are influenced by atoms of other adjacent water molecules or DNA segments in
the direction perpendicular to the longitudinal axis of the DNA segment. Thus, we need to con-
sider the second term of Eq (1) to implement such effects, where Bj indicates the strength of
such effects for atoms in the edge nucleotides of each DNA and water molecule, respectively.

Remarkably, as shown in the Results section, the distributions of the temperature factor of
atoms exhibited various patterns from the same sequence of crystallized DNA (S1 and S2 Figs)
owing to the dependency on the conditions of crystallization. Therefore, in order to compare
the characteristics of the present DNA model to those of the crystal structure of DNA, appro-
priate values of Bj need to be assigned to the atom j that belongs to the edge base pairs and
water molecules. For simplicity, we assign Bj = BB and Bw to the atoms j at the edge base pairs
and the water molecules, respectively, and Bj = 0 otherwise.

It is noted that the internal structure of the crystal of DNA is spatially anisotropic. Thus, it
is reasonable to assume that the interactions among local parts of the crystal of DNA exhibit
different strengths in different directions. Accordingly, in general, the strengths of the restric-
tions of atoms belonging to the edge of DNA differ from those of water molecules. Thus, we
assume that BB and Bw are different values (Table 1).

For simplicity, the mass of each atom is assumed as a constant value (mi =m = 10−3/NA[kg],
NA = 6.02214129 × 1023[/mol] is Avogadro’s number). However, we confirmed that the results
were almost identical when using the precise masses of the atoms.

2.3 Coarse-grained Elastic Network Model of DNA
A simple coarse-grained elastic network model of double-stranded DNA, where each nucleo-
tide is described as one node, was constructed as follows (Fig 1(a)). We define the coordinate of
the C1’ carbon of nucleotide i, xi (xi ¼ ðxi; yi; ziÞ), as the position of nucleotide i, and regard
the motion of the C1’ carbon as that of the nucleotide. Here, we assume that the mass of the
C1’ carbon obeysmi = 10−3/NA[kg]. The potential V of all nucleotides is given as

V ¼
X
i;j

Cg

2
ðjxi � xjj � jx0

i � x0
j jÞ2: ð2Þ

Here, x0
i is the position of nucleotide i of the basic structure of DNA, as defined above. We

assume that nucleotides i and i0 belong to the same base pair. For nucleotide i, the sum is
restricted to the pair of nucleotides in the same base pair (j = i0), in the neighboring base pairs
(j = i + 1, i0 + 1, i − 1, i0 − 1), in the next neighboring bases pairs (j = i + 2, i0 + 2, i − 2, i0 − 2),
and in the next-next neighboring bases in another strand (j = i0 + 3, i0 − 3) (Fig 1(b)). The elastic

coefficient Cg (½kJ=ðÅ2
molÞ�) is a phenomenological constant that is assumed to be the same

for all interacting pairs. This model is considered as a simplified version of previously proposed
one-site-per-nucleotide models [50, 53].
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2.4 Normal-mode Analysis
An overview of the theory of normal-mode analysis is provided in several recent studies [1–7,
10–13]. Thus, we here briefly show the results of this analysis. For this analysis, we define qðtÞ
(q ¼ ðq1;q2; :::qNÞ, qi ¼ ðxi; yi; ziÞ) as a 3N-dimensional position vector, and q0 as the posi-
tion vector of the basic structure. Here, q ¼ ðr1; r2; :::rNÞ for the AAENM and q ¼
ðx1;x2; :::xNÞ for the CGENM. The motions of small deviations of qðtÞ from q0, dqðtÞ ¼
q� q0 obey

dqðtÞ ¼
X
ok 6¼0

Akvke
iokt ð3Þ

where −(ωk)
2 and vk ¼ ðvk

1;v
k
2; :::;v

k
NÞ (vk

i ¼ ðvkxi ; vkyi ; vkziÞ) are the k-th largest eigenvalue and

its eigenvector of the 3N × 3NHessian matrixH as

Hij ¼ � @2V
@qi@qj

 !
q¼q0

: ð4Þ

We assume that the system is in thermodynamic equilibrium with temperature T. Thus, the
amplitude Ak is given as

ðAkÞ2 ¼
kBT

ðokÞ2m
ð5Þ

with Boltzmann constant kB = 1.3806488 × 10−23[m2 kg/s2 K]. Using this solution, the mean
square fluctuation of the i-th atom in the AAENM (dqi ¼ dri) is obtained as

AFi ¼< jdrij2 >¼
X
ok 6¼0

kBT

ðokÞ2m
jvk

i j2 ð6Þ

with Boltzmann constant, and the temperature factor is displayed as TFi ¼
8

3
p2AFi. Here,

<. . .> represents the temporal average.
For the CGENM, we define the mean square fluctuation of the n-th nucleotide (dqn ¼ dxn)

as CFn ¼< jdxnj2 >. To consider the motion of the n-th nucleotide in the AAENM, we define
the average nucleotide motions as dRn ¼< drj>n�th nucleotide. Using this vector, we define the

mean square fluctuation of the n-th nucleotide as NFi ¼< jdRnj2 >. For the motifmo of the n-
th nucleotide (mo = sugar, base, and phosphoric acid), the average temperature factor of the
motif (MATF(mo in n–th nucleotide)) is defined as the average of TFj belonging to each motif of

each nucleotide,< TFj>ðmo in n�th nucleotideÞ ¼
8

3
p2 < AFj>ðmo in n�th nucleotideÞ.

2.5 Treatment of the Temperature Factor in X-ray crystal Structure
Analysis
In order to evaluate the validity of the AAENM, we measured the correlation coefficient
between the profile of the temperature factor obtained from PDB data (via X-ray crystal struc-
ture analysis) and that obtained from the AAENM based on this crystal structure. It is noted
that the temperature factor profiles for some of the PDB data often include unnaturally large or
small values. Thus, the correlation coefficients were estimated using data excluding such outli-
ers. In the present evaluations, the value gi was considered as an outlier if |gi − μ|> sσ, where μ

Simple Elastic Network Models of Long Double-Stranded DNA Dynamics with Sequence Geometry Dependence

PLOS ONE | DOI:10.1371/journal.pone.0143760 December 1, 2015 7 / 22



and σ are the average and standard deviation of {gi}, respectively, and s = 2.5 is used based on
the standard arguments of statistics.

2.6 Evaluations of Anisotropic Fluctuations of DNA
We also focused on the relationships between the fluctuations of each nucleotide in the
AAENMs and CGENMs in the directions parallel to the base pair axis, parallel to the helix axis,
and vertical to both the base pair and helix axes.

Here, we name the nucleotides in one and the other strand constructing the i-th base pair as
the i-th and i0-th nucleotide. We define the position vectors of the C1’ atoms belonging to the
i-th and i0-th nucleotides as ci and ci0 , and consider

bi ¼
c0
i � c0

i0

jc0
i � c0

i0 j
; ð7Þ

si ¼
ðc0

iþ1 þ c0
i0þ1Þ � ðc0

i þ c0
i0 Þ

jðc0
iþ1 þ c0

i0þ1Þ � ðc0
i þ c0

i0 Þj
; ð8Þ

and

ti ¼
bi � si
jbi � sij

ð9Þ

(Fig 1(c)). It is noted that bi and si are not orthogonal in general; however, we confirmed that
the angles of these vectors were always sufficiently close to π/2 rad for each i.

Using these vectors, the mean square fluctuations of the i-th and i0-th nucleotides of the

AAENM in the directions parallel to the base pair axis are defined as NFb
i ¼< jdRibij2 > and

NFb
i0 ¼< jdRi0bij2 >, those parallel to the helix axis are defined as NFs

i ¼< jdRisij2 > and

NFs
i0 ¼< jdRi0sij2 >, and those in the torsional direction are defined as NFt

i ¼< jdRitij2 >
and NFt

i0 ¼< jdRi0tij2 >, respectively. The mean square fluctuations of the i-th and i0-th nucle-

otides of the CGENM in these same directions are obtained by CFb
i ¼< jdxibij2 > and

CFb
i0 ¼< jdxi0bij2 >, CFs

i ¼< jdxisij2 > and CFs
i0 ¼< jdxi0sij2 >, and CFt

i ¼< jdxitij2 > and

CFt
i0 ¼< jdxi0tij2 >, respectively. Moreover, we consider the mean square fluctuation of the rel-

ative base position of each base pair of the CGENM in the three directions listed above given

by DFb
i ¼< jðdxi � dxi0 Þbij2 >, DFs

i ¼< jðdxi � dxi0 Þsij2 >, and DFt
i ¼< jðdxi � dxi0 Þtij2 >,

respectively.

2.7 Evaluations of the Overall Geometry of DNA
The overall geometry of each modeled DNA molecule is characterized by the ratios among the

square root of the three principal components of the populations of atoms,
ffiffiffiffiffi
l1

p
,
ffiffiffiffiffi
l2

p
, andffiffiffiffiffi

l3

p
(λ1 > λ2 > λ3 > 0). Here, λ1, λ2, and λ3 are obtained as eigenvalues of the covariant

matrix

I ¼
< ðDxiÞ2>i < DxiDyi>i < DxiDzi>i

< DyiDxi>i < ðDyiÞ2>i < DyiDzi>i

< DziDxi>i < DziDyi>i < ðDziÞ2>i

0
BBB@

1
CCCA; ð10Þ

where (Δxi, Δyi, Δzi) = (xi − xCM, yi − yCM, zi − zCM), (xi, yi, zi) is the position of i-th atom, (xCM,
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yCM, zCM) is the position of the center of mass of a given DNA molecule, and<. . .>i indicates
the average for all is. We evaluate the overall geometry of a given DNAmolecule using the lin-

earity s1 ¼
ffiffiffiffiffi
l1

p
=
ffiffiffiffiffi
l2

p
and the line symmetry with respect to the λ1-axis s2 ¼

ffiffiffiffiffi
l3

p
=
ffiffiffiffiffi
l2

p
.

Here, σ1 is large when the DNA is straightened, and σ2 is large (small) when the DNA forms a
three (two)-dimensional curve with wide (flat) envelope.

2.8 Evaluations of Correlations Among the Results of AAENM, CGENM,
and Experiments
We employ Pearson’s correlation coefficients, ρ, to evaluate the correlations among the profiles
of temperature factors and several anisotropic fluctuations of atoms obtained by AAENM,
CGENM, and experiments.

3 Results and Discussion

3.1 Comparisons of Fluctuations between the AAENM and the Crystal
Structure of DNA
The fluctuations of atoms of the AAENMs of several short DNA sequences were measured
with normal-mode analysis. Here, the basic structures of the DNAs are given by the crystal
structures of the naked DNAs with the following PDB IDs: 1BNA, 7BNA, 9BNA, 1D91, 1DC0,
122D, 123D, 181D, and 330D (Table 1 [68–75]). To confirm the validities of the AAENMs, the
correlations between the distribution profiles of the temperature factor of atoms (TFi) and the
average temperature factor of the motifs (MATFi) in the crystal structures and those in the cor-
responding AAENMs were measured. In the following arguments, we employ the optimal val-
ues of Ca, BB, and Bw for each crystal structure (Table 1), which were manually found to
maximize ρ of TFi between the results of the crystal structure analysis and those of the
AAENM.

By choosing the appropriate conditions for the atoms of the two edge base pairs and water
molecules (BB and BW) for each PDB ID, TFi of each AAENM exhibited a similar profile to
that of the crystal structure with a significant correlation coefficient ρ (Fig 2(a), Table 1, and S1
Fig). Therefore, the AAENM seemed to reproduce the overall structure of the temperature fac-
tor profile of each crystal structure well, although the detailed profiles among atoms showed
some deviations.

Furthermore, we focused on the average temperature factor for the motifs,MATFi, as
recently discussed [35]. We found that theMATFi obtained with the AAENMs could accu-
rately reproduce those of the corresponding crystal structures with high correlation coefficients
ρ, where ρ>*0.7 was obtained for most cases (Fig 2(b), Table 1, and S2 Fig). These results
demonstrate that the AAENM is a suitable model for describing the sequence-dependent fluc-
tuations of the nucleotide motifs of several double-stranded DNA sequences, despite the sim-
plicity of model construction and its easy implementation. Moreover, these results show that
the sequence-dependent forms of DNA have a dominant contribution to their overall flexibili-
ties and fluctuations.

Nevertheless, the present AAENM could not accurately reproduceMATFi well for some
crystal structures. These deviations are considered to have arisen from the following primary
assumption: we only considered the effects of the restrictions by the packing of DNAs in crystal
form for two edge base pairs and water, whereas such effects have an influence on all atoms.
Therefore, obtaining and incorporating more detailed knowledge of the restrictions of bulk
sequences caused by crystal packing should help to achieve a more accurate reproduction of
the molecular fluctuations for all cases.
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PLOS ONE | DOI:10.1371/journal.pone.0143760 December 1, 2015 9 / 22



Fig 2. Temperature factors obtained with the AAENMs and crystal structure analysis. (a) Temperature factor of each atom (TFi) and (b) average
temperature factor of the motifs (MATFi) obtained by the AAENMs (black curve) and crystal structure analysis (CSA, gray (red) curve) of typical double-

stranded DNA (PDB ID: 1BNA). Here,Ca ¼ 2:91½kJ=ðÅ2
molÞ�, BB = 0.018, and BW = 0.02. Atom and motif indices in (a) and (b) are given in the same order as

shown for (c). ρ indicates the Pearson correlation coefficient of the profiles between the two curves.

doi:10.1371/journal.pone.0143760.g002
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3.2 Comparison between the AAENMs and CGENMs of DNA
The main objective of this study was to unveil the sequence-dependent dynamic correlated
motions of several long DNA sequences. We next describe these dynamics of DNA sequences
with longer lengths than considered in the previous subsection. For this purpose, we also con-
structed a coarse-grained model, which is often useful for focusing on the slow and large-scale
dynamics of molecules that essentially influence their function. Thus, to propose a coarse-
grained model of long double-stranded DNA, we evaluated whether the CGENM proposed
provides an appropriate coarse-grained model of the present AAENM.

We performed normal-mode analysis of the AAENM and corresponding CGENM for 500
randomly chosen 50-bp sequences, and compared the mean square fluctuations of the i-th
nucleotide (NFi and CFi) in the directions parallel to the base pair axis (NFb

i and CF
b
i ), parallel

to the helix axis (NFs
i and CF

s
i ), and in the torsional direction (NFt

i and CF
t
i ). Here, Ca ¼

1:29kJ=ðÅ2
molÞ is employed, as in the previous study [1], and Cg ¼ 7:7kJ=ðÅ2molÞ is assumed,

which was manually found to provide the best fit of fluctuation profiles between AAENM and
CGENM. Here, the overall fluctuation profiles of CGENM are independent of the value of Cg

since Cg influences only on the absolute values of fluctuations. Independent of the sequences
and employed helical parameters, we found that the fluctuations of each nucleotide in several
directions were very similar between the AAENMs and CGENMs when these models are con-
structed with the same helical parameters, with average correlation coefficients ρ> 0.98 (Fig 3,
Table 3, S2 Table, S3 and S4 Figs).

It is noted that the present CGENM contains only one node per nucleotide, whereas the
AAENM contains 19* 22 nodes (atoms) per nucleotide. This fact demonstrates that the
computational costs of the CGENMs are much lower than those of the AAENMs, although the
accuracies of the obtained statistical aspects are almost identical between these two models.
Thus, this CGENM could be used for exhaustive analysis and comparisons of the dynamic fea-
tures of several sequence-dependent DNAs related to protein binding affinities, functions of
transcription regulation sequences, and nucleosome positioning [16–26, 46, 55–60]. In the
next subsection, we provide an example of such an analysis to determine the relationships
between the nucleosome-forming abilities of several double-stranded DNA sequences and
their inter-strand dynamic features.

3.3 Exhaustive Analysis of the Sequence-dependent Behaviors of
150-bp DNAs with the CGENM
Nucleosome positioning is important not only for compacting DNA but also for appropriate
gene regulation. Several recent studies have been performed for genome-wide nucleosome
mapping and the identifications and predictions of nucleosome-forming and -inhibiting
sequences for some model organisms [57, 59, 76–80].

As an example of the applications of the CGENM to an exhaustive analysis of the sequence-
dependent behavior of DNA, we compared the dynamic features of DNA sequences of*150
bp that were predicted as nucleosome-forming or nucleosome-inhibiting sequences in the
genome of budding yeast Saccharomyces cerevisiae (5000 forming sequences and 5000 inhibit-
ing sequences of 150 bp) [57], nematode Caenorhabditis elegans (2567 forming sequences and
2608 inhibiting sequences of 147 bp), Drosophila melanogaster (2900 forming sequences and
2850 inhibiting sequences of 147 bp), and Homo sapiens (2273 forming sequences and 2300
inhibiting sequences of 147 bp) [59]. The histograms of the average relative fluctuations of
DNAs for the three directions< CFi>i,< CFb

i >i,< CFs
i >i,< CFt

i >i,< DFi>i,< DFb
i >i,

< DFs
i >i, and< DFt

i >i (<. . .>i indicates the average for all is.) for the nucleosome-forming
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Fig 3. Comparisons between the AAENM and CGENM.Comparisons of the fluctuations between each nucleotide in the AAENM (black curves) and
CGENM (gray (Red) curves) for a typical 50-bp random DNA sequence (5’—
GAGGCTAAAGTCTATTTAGACCGGAGTTGACGTGGAAGCCCGGCTAGTCT—3’). (a)NFi andCFi, (b) NFb

i andCFb
i , (c) NF

s
i andCFs

i , and (d)NFt
i and

CFt
i . Helical parameter set (i) (Table 2) was used for both models. The nucleotide indices in (a) to (d) are given in the same order shown for (e). ρ indicates the

Pearson correlation coefficient of the profiles between the two curves.

doi:10.1371/journal.pone.0143760.g003

Table 3. Comparisons between the AAENM and CGENM. Average and standard deviation of the correla-
tion coefficients of 500 random samples of 50-bp sequences betweenNFi andCFi, NFb

i andCFb
i , NF

s
i and

CFs
i , andNFt

i andCFt
i . Helical parameter set (i) (Table 2) was used in all cases.

Ave. correlation STD

NFi − CFi 0.9987737779 0.0005488169

NFb
i �CFb

i 0.9966993676 0.0020356817

NFs
i �CFs

i 0.9899659572 0.0029525582

NFt
i �CFt

i 0.9977074526 0.0007460563

doi:10.1371/journal.pone.0143760.t003
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sequences and the nucleosome-inhibiting sequences are shown in Fig 4 and S5 Fig* S7 Fig.
Here, we employed the helical parameter set (i) (Table 2) that was used in the coarse-grained
molecular dynamics simulations by Freeman et al., which exhibited consistent results to some
experiments [48, 61–63].

The histograms for budding yeast showed that that nucleosome-forming sequences tend to
exhibit larger fluctuations in several directions compared to the inhibiting sequences. In partic-
ular, the histogram of< DFb

i >i for the nucleosome-forming sequences showed a clear shift in
the direction toward larger values compared to that for the nucleosome-inhibiting sequences
(Fig 4). For the other organisms, most of the histograms showed few differences between the
nucleosome- forming and -inhibiting sequences. However, similar to the case of yeast, the dis-
tribution of< DFb

i >i for the nucleosome-forming sequences shifted largely in the direction of
larger values compared to that for the nucleosome-inhibiting sequences in these organisms (S5
Fig* S7 Fig). These results indicate that the nucleosome-forming ability is highly correlated
to the fluctuations of the inter-strand distances of DNAs, in which sequences with larger fluctu-
ations tend to form the nucleosome.

Similar to the previous arguments, we compared the dynamical features among the random
150-bp DNA sequences varying in average GC-contents; the histograms, averages, and stan-
dard deviations of< CFi >i,< DFi >i,< DFb

i >i,< DFs
i >i, and< DFt

i >i were measured
from 10,000 random sequences for each GC content (Fig 5 and S8 Fig). In this case,< CFi >i

exhibited a minimum at a GC content of*0.2, which indicates that the AT-rich sequences
tend to be more rigid than the GC-rich sequences. However, the fluctuations of sequences con-
sisting of only A or T were as large as those of the GC-rich sequences. Moreover, the GC con-
tent dependencies of< DFi >i,< DFb

i >i,< DFs
i >i, and< DFt

i >i showed different
characteristics for GC contents larger or smaller than 0.6* 0.7. In particular, the results for
< DFb

i >i were similar for cases with a large GC content (0.7* 1) but monotonically
decreased with a GC content with little variance. A recent experimental study showed that the
probability of nucleosome formation tends to increase with increases in the GC content ratio
[81]. Thus, the present results indicate that sequences with larger fluctuations of inter-strand
distances tend to form the nucleosome, which is consistent with the results described above
from the analysis of the genomes of the four model organisms.

Finally, we focus on the relationships between the overall geometries and fluctuations of the
considered DNA sequences. The overall geometries of several DNA sequences, the nucleo-
some-forming and -inhibiting DNA sequences for four model organisms and random DNA
sequences with different GC contents, were evaluated using scatter plots of σ1 (linearity) and σ2
(line symmetry) (Fig 6 and S9 Fig). It is noted that σ1 and σ2 are highly correlated. The average,
standard deviation, and distributions of σ1 and σ2 exhibited slight but not significant deviations
between the nucleosome-forming and -inhibiting sequences.

For the random sequences, the average value of σ1 exhibited similar variations to< CFi>i

with an increase in GC content. In particular, both values decreased with increases in GC con-
tent for GC contents�0.2, whereas they increased with increases in GC content for GC con-
tents�0.3 (Figs 5(c) and 6(c)). In fact, σ1 and< CFi > were highly correlated for random
DNA sequences, regardless of their CG content. The Pearson correlation coefficient for the
110,000 sequences analyzed above with GC contents = 0.0* 1.0 was 0.9433. It is noted that σ1
showed large dispersion for each GC content, and there were significant overlaps among σ1 dis-
tributions with different GC contents (Fig 6(b) and 6(c)). This fact indicates that different
DNA sequences can often show similar geometries, and such sequences also tend to show simi-
lar overall fluctuations. On the other hand, the fluctuations of inter-strand distances< DFb

i >

that may correlate to the nucleosome-forming ability did not correlate significantly to either σ1
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Fig 4. Fluctuations of the CGENM of long DNA sequences. Histograms of the average fluctuations, (a) < CFi >i and < DFi >i, (b)< CFb
i >i and< DFb

i >i,
(c)< CFs

i >i and< DFs
i >i, and (d)< CFt

i >i, and< DFt
i >i, for nucleosome-forming and -inhibiting sequences of budding yeast Saccharomyces cerevisiae

(150 bp). Helical parameter set (i) (Table 2) was used.

doi:10.1371/journal.pone.0143760.g004
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Fig 5. Fluctuations of the CGENM of long DNA sequences. Histograms of (a) < CFi >i and (b)< DFb
i >i,

and (c) averages and standard deviations of < CFi >i, < DFi> i,< DFb
i >i,< DFs

i >i, and< DFt
i >i for 10,000

samples of random 150-bp sequences with an average GC content = 0, 0.1, 0.2, � � �, and 1. Helical parameter
set (i) (Table 2) was used.

doi:10.1371/journal.pone.0143760.g005
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Fig 6. Overall geometries of long DNA sequences. Scatter plots of σ1 and σ2 for (a) nucleosome-forming and -inhibiting sequences of budding yeast
Saccharomyces cerevisiae (150 bp), and for (b) random sequences with several GC contents (150 bp). (c) Averages and standard deviations of σ1 for 10000
samples of random 150-bp sequences with an average GC content = 0, 0.1, 0.2, � � �, and 1. Helical parameter set (i) (Table 2) was used.

doi:10.1371/journal.pone.0143760.g006
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or σ2, with Pearson correlation coefficients of 0.2250 and 0.1967. This fact indicates that the
nucleosome-forming ability of DNA sequences are not only determined by the overall DNA
geometries but also by their dynamic properties.

4 Summary and Conclusion
In this study, simple elastic network models of double-stranded DNAs were developed in order
to perform an exhaustive analysis of several sequence-dependent dynamical features. First, we
constructed a simple all-atom elastic network model that could reproduce the fluctuations of
the motifs of each nucleotide (sugar, phosphoric acid, and bases) of several crystal structures of
short DNA sequences. Second, we proposed a simple coarse-grained elastic network model
that could reproduce the dynamic features of the long DNA sequences obtained by the all-
atom elastic network model. Through exhaustive analysis of the dynamic features of several
DNA sequences with normal-mode analysis of the presented coarse-grained elastic network
model, we found that the dynamic aspects of DNA are highly influenced by the properties of
nucleotide sequence such as GC content. We also found that the nucleosome-forming abilities
of double-stranded DNA exhibited positive correlations with their sequence-dependent inter-
strand fluctuations.

In the present study, we demonstrated the sequence-dependent dynamic features for several
*150-bp DNA sequences to evaluate the relationships between the nucleosome-forming abili-
ties and DNA dynamics. Of course, DNA sequences longer than*150 bp can also be analyzed
using the presented coarse-grained model. Moreover, coarse-grained molecular dynamics sim-
ulations can be performed to consider the large deformations of DNA, such as formation of a
super helix and nucleosome that are the basic structures of higher-order chromosome architec-
tures, using the presented elastic network models with the excluded effect of the volume of
each atom or each nucleotide. We are currently conducting these molecular dynamics simula-
tions, and the results will be reported in the future. We did not consider the effects of solvents
such as temperature and salt concentrations in the present elastic network models. Therefore,
we are also planning to attempt modifications of the models so that several solvent conditions
can be incorporated in future work.

Supporting Information
S1 Table. Helical parameter sets. (a) Helical parameter sets (ii) obtained by X-ray crystal
structure analysis, [61, 62], and (b) helical parameter sets (iii) obtained by all-atom molecular
dynamics simulations. [58, 65, 66].
(EPS)

S2 Table. Comparisons between CGENM and AAENM. Average and standard deviation of
the correlation coefficients of 500 samples of random 50-bp sequences between NFi and CFi,
NFb

i and CF
b
i , NF

s
i , and CF

s
i , and NF

t
i and CF

t
i . Helical parameter sets (ii) and (iii) (S1 Table)

were used.
(EPS)

S1 Fig. Temperature factor of each atom. The temperature factor of each atom obtained by
the AAENMs (black curve) and X-ray crystal structure analysis (gray (red) curve) of typical
double-stranded DNAs obtained from PDB ID (a) 7BNA, (b) 9BNA, (c) 1D91, (d) 1DC0, (e)
122D, (f) 123D, (g) 181D, and (h) 330D. Parameters Ca, BB, and BW are given in Table 1.
(EPS)
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S2 Fig. Average temperature factor of motifs. Average temperature factor of motifs obtained
by the AAENMs (black curve) and X-ray crystal structure analysis (gray (red) curve) of typical
double-stranded DNAs obtained from PDB ID (a) 7BNA, (b) 9BNA, (c) 1D91, (d) 1DC0, (e)
122D, (f) 123D, (g) 181D, and (h) 330D. Parameters Ca, BB, and BW are given in Table 1.
(EPS)

S3 Fig. Comparisons between AAENM and CGENM. Comparisons of the fluctuations
between each nucleotide in the AAENM (black curves) and CGENM (gray (red) curves) for a
typical random 50-bp DNA sequence (5’—AGTGGTAAGGCATGGTTCTC-
GAATCTCGGTTTATTTACACTGCTGCTCCA—3’). (a) NFi and CFi, (b) NFb

i and CF
b
i , (c)

NFs
i and CF

s
i , and (d) NF

t
i and CF

t
i using helical parameter set (ii) S1 Table.

(EPS)

S4 Fig. Comparisons between AAENM and CGENM. Comparisons of the fluctuations
between each nucleotide in the AAENM (black curves) and CGENM (gray (red) curves) for a
typical random 50-bp DNA sequence (5’—ATATGCTGTA-
GAGCGTCCCGTCCGCGCGTTGTGGTTTTTTCGGTGCTCTA—3’). (a) NFi and CFi, (b)
NFb

i and CF
b
i , (c) NF

s
i and CF

s
i , and (d) NF

t
i and CF

t
i using helical parameter set (iii) S1 Table.

(EPS)

S5 Fig. Histograms of the average fluctuations in Caenorhabditis elegans.Histograms of the
average fluctuations of (a)<CFi>i and<DFi>i, (b)< CFb

i >i and< DFb
i >i, (c)< CFs

i >i

and< DFs
i >i, and (d)< CFt

i >i and< DFt
i >i for nucleosome-forming and nucleosome-

inhibiting sequences of the nematode Caenorhabditis elegans (147 bp). Helical parameter set
(i) (Table 2) was used.
(EPS)

S6 Fig. Histograms of the average fluctuations in Drosophila melanogaster.Histograms of
the average fluctuations of (a)< CFi >i and< DFi >i, (b)< CFb

i >i and< DFb
i >i,

(c)< CFs
i >i and< DFs

i >i, and (d)< CFt
i >i and< DFt

i >i for nucleosome-forming and
nucleosome-inhibiting sequences of Drosophila melanogaster (147 bp). Helical parameter set
(i) (Table 2) was used.
(EPS)

S7 Fig. Histograms of the average fluctuations inHomo sapiens.Histograms of the average
fluctuations of (a)< CFi >i and< DFi >i, (b)< CFb

i >i and< DFb
i >i, (c)< CFs

i >i and
< DFs

i >i, and (d)< CFt
i >i and< DFt

i >i for nucleosome-forming and nucleosome-inhibit-
ing sequences ofHomo sapiens (147 bp). Helical parameter set (i) (Table 2) was used.
(EPS)

S8 Fig. Histograms of the average fluctuations with different GC contents.Histograms of
(a)< DFi >i, (b)< DFs

i >i, and (c)< DFt
i >i for 10,000 samples of random 150-bp sequences

with different average GC contents. Helical parameter set (i) (Table 2) was used.
(EPS)

S9 Fig. Overall geometries of long DNA sequences in model organisms. Scatter plots of σ1
and σ2 for nucleosome-forming and -inhibiting sequences of (a) Caenorhabditis elegans
(147 bp), (b) Drosophila melanogaster (147 bp), and (c)Homo sapiens (147 bp). Helical param-
eter set (i) (Table 2) was used.
(EPS)
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