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Abstract: Circular RNAs (circRNAs) are extensively expressed in cells and tissues, and play crucial
roles in human diseases and biological processes. Recent studies have reported that circRNAs
could function as RNA binding protein (RBP) sponges, meanwhile RBPs can also be involved in
back-splicing. The interaction with RBPs is also considered an important factor for investigating the
function of circRNAs. Hence, it is necessary to understand the interaction mechanisms of circRNAs
and RBPs, especially in human cancers. Here, we present a novel method based on deep learning to
identify cancer-specific circRNA–RBP binding sites (CSCRSites), only using the nucleotide sequences
as the input. In CSCRSites, an architecture with multiple convolution layers is utilized to detect the
features of the raw circRNA sequence fragments, and further identify the binding sites through a fully
connected layer with the softmax output. The experimental results show that CSCRSites outperform
the conventional machine learning classifiers and some representative deep learning methods on the
benchmark data. In addition, the features learnt by CSCRSites are converted to sequence motifs, some
of which can match to human known RNA motifs involved in human diseases, especially cancer.
Therefore, as a deep learning-based tool, CSCRSites could significantly contribute to the function
analysis of cancer-associated circRNAs.
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1. Introduction

Circular RNAs (circRNAs) are non-coding RNAs that have covalent and closed loop structures;
thereby, they are more stable than most linear RNAs in cells [1]. Although circRNAs have been identified
over twenty years, the biological functions of circRNAs remain largely unknown. For a long time, they
have been generally thought to represent splicing errors and are expressed at low levels [2]. In recent
years, an abundance and diversity of circRNAs were discovered in tissue and organ development by
high-throughput sequencing [3,4], including many tissue-specific [5] and cell-specific [6] circRNAs,
which may play a role in various human disorders and biological processes [7]. More specific functions
were also discovered, such as regulating transcriptional initiation [8], affecting alternative splicing,
and functioning as microRNA (miRNA) [9] or RNA binding protein (RBP) sponges [10,11].

In addition, several databases of circRNAs have been built for studying circRNAs. For instance,
circBase collects and unifies data sets of circRNAs and provides scripts to identify circRNAs in
sequencing data [12]. circRNADb provides detailed annotations of human circRNAs, including
genomic information, exon splicing, genome sequence, internal ribosome entry site (IRES), open
reading frame (ORF), and references [13]. CircR2Disease curates a database for experimentally
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supported associations between circRNAs and diseases, and provides a platform for investigating
mechanism of the disease-related circRNAs [14]. CSCD (cancer-specific circRNAs database) is a
database developed for cancer-specific circRNAs (CS-circRNAs), provides miRNA target sites, RBP
binding sites, and potential open reading frames (ORFs) in CS-circRNAs [15].

With the deep understanding of circRNA regulatory functions, the control and function of
circRNAs seem to largely rely on the specificity of RBPs. They participate in almost every phase
of the circRNA life cycle, including formation [16], translation, post-transcriptional regulation [17],
and extracellular transport [18]. In order to identify the interactions between RNAs and RBPs at the
transcriptome-wide level, some CLIP (cross-linking and immunoprecipitation)-based experimental
technologies in vivo were designed. Among them, RNAcompete provides binding affinities of specific
RBPs to RNA probes [19]. Recently, CLIP-seq [20] has become the standard experimental procedure,
with several variants including HITS-CLIP [20], PAR-CLIP [21], and iCLIP [22]. Additionally, it can
also be applied to detect potential binding sites on unreported sequences.

Considering the cost-heavy and labor-intensive aspects of these biological experimental
technologies, some computational methods [23,24], in particular, deep learning-based approaches,
have been designed for identifying interactions between RNAs/DNAs and RBPs. Convolutional neural
networks (CNNs) have been proven to be very successful in solving sequence-based problems [25,26];
they are usually employed to learn comprehensive features from the raw input data, and especially,
the kernels in a CNN can be regarded as a motif scanner to detect the motifs in genomics. The recent
application of CNN-based methods in genomics indicates its effectiveness in computational biology.
For instance, DeepBind predicts the sequence specificities of DNA- and RNA-binding proteins based
on CNNs [27], and is enhancing the prediction of sequence specificities of DNA binding proteins [28].
Zeng et al. present a CNN-based deep learning architecture for predicting DNA sequence binding sites
using the ChIP-seq dataset [29]. iDeep [30], iDeepE [31], and iDeepS [32] were designed to identify RBP
binding preferences on RNA sequences using CNNs and RNNs (recurrent neural networks). In addition,
GraphProt is also a computational framework that can find RBP sequence- and structure-binding
preferences from the high-throughput experimental data [33]. However, there is still no computational
method for identifying the cancer-specific RBP binding sites on circRNAs.

In this study, we present a deep learning-based method to detect the cancer-specific RBP binding
sites on circRNAs utilizing the RBP binding sites on CS-circRNAs data, which is driven by a concatenate
convolutional neural network model. This method is compared with the conventional classifiers and
other representative deep learning-based methods using sequences alone, and the results show its better
prediction accuracy. In addition, the features learnt by CSCRSites are converted to sequence motifs
and are compared with known human RNA motifs involved in human cancer diseases. In conclusion,
CSCRSites is the first deep learning-based method for identifying cancer-specific RBP binding sites,
which could contribute to the function analysis of cancer-associated circRNAs.

2. Results

In this section, in order to evaluate the performance of CSCRSites, it was compared with
conventional machine learning classifiers and some existing representative deep learning-based
methods for detecting RBP binding sites using the benchmark dataset CSCRBS (cancer-specific
circRNA-RBP Binding sites).

2.1. Implementation of the Parameterized CSCRSites

CSCRSites was implemented in Python 3.7 using the Keras 2.2.4 library. Since the hyper-parameters
of a deep learning model have a significant impact on its performance, we studied the different
combinations of model settings and selected the model parameters with the best performance.
After testing different kernel numbers in the range 128–1024, and various kernel sizes in the range
from 8 to 50, we selected 1024 kernels with 8, 20, and 38 kernel sizes, respectively. In particular, test
results show that deploying more convolutional kernels was always beneficial while the computation



Molecules 2019, 24, 4035 3 of 13

load is also increasing. Interestingly, in the max-pooling layer, the simple global pooling was superior
than the local pooling strategy in each kernel.

In the training phase, the cross-entropy was used as the loss function, and the standard error
back-propagation algorithm and Adam [34] method were adopted during the model training with the
batch size of 512. Passing all training samples through the model and completing a back-propagation
process once is an epoch. We trained our model till convergence and validated it after each epoch.
In our tests, we found that 50 epochs were usually enough. Finally, the best model parameters were
obtained according to the accuracy on the validation dataset using an early stopping strategy.

2.2. Performance of Different Combinations of CSCRSites Settings

In this study, the area under the receiver operating characteristics curve (ROC_AUC) was used
as a metric for model evaluation and comparison [35]. Different kernels can capture the variant
features of sequences, such as motif variants in the motif discovery task. As shown in Figure 1,
the 1024 kernels have the higher AUC values by testing different kernel numbers with 10-fold cross
validation [36], indicating that more convolution kernels improve the performance of our model.
However, the performance improvement of the model seems to be close to saturation when more than
1024 kernels were employed, while the computation load was also increasing. Thus, 1024 kernels were
adopted in CSCRSites.
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As determined in Section 2.1, the kernel sizes of 8, 20, and 38 were employed through the
concatenate strategy. Among them, the kernel size of 20 achieves the highest AUC value, as shown in
Figure 2. Thus, in our model, the larger the convolution kernel size does not mean the better.
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In general, local max-pooling is a common strategy in the deep learning-based model [26,27,32].
Global max-pooling was adopted in this study because the higher AUC values are obtained this way.
As shown in Figure 2, the max-pooling sizes as Zeng’s method described [29] were experimented,
and the result shows that the local max-pooling strategy achieves the worst performance.
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2.3. Comparing CSCRSites with Conventional Machine Learning Methods

To utilize the sequences information in the conventional machine learning models, such as MLP
(multilayer perception), SVM (support vector machine), and RF (random forest), k-mer compositional
features are usually employed to encode RNA sequences as the inputs of models, in which each feature
represents the normalized frequency of the corresponding k-mer appearing in an RNA sequence [37–40].
Here, the above-mentioned machine learning methods were implemented by adopting normalized
3-mer frequency representation of circRNA sequence fragments; it was a 4 × 4 × 4 or 64-dimensional
vector, which was tested for the best performance. They were compared with the CSCRSites on the
benchmark dataset CSCRBS.

As shown in Figure 3, CSCRSites obviously outperforms MLP, SVM, and RF according to the
ROC curves; the AUC of CSCRSites is 0.8326, which is nearly 10% higher than that of the MLP (0.7249),
which is the best performance in the conventional machine learning-based method, indicating the
advantages of our model against conventional learning methods on the benchmark dataset CSCRBS.
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2.4. Comparing CSCRSites with Existing Deep Learning Methods

In order to further verify the performance of CSCRSites, we compared it with some existing
representative deep learning-based methods on dataset CSCRBS with the same evaluation criteria
including accuracy (Acc.), precision (Prec.), and AUC. DeepBind [27] is the first deep learning based
method for predicting the sequence specificities of DNA- and RNA-binding proteins. Zeng et al. [29]
successfully apply the convolutional neural network architectures for predicting DNA-protein binding.
iDeepS [32] was also developed to predict RBP binding sites on RNAs and have better performance than
other existing methods, such as DeeperBind [28] and GraphProt [33]. Thus, we compared CSCRSites
with DeepBind, Zeng’s method, and iDeepS on the dataset CSCRBS. The result is shown in Table 1 and
Figure 4.
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As shown in Table 1 and Figure 4, all methods have higher AUCs than a random guess (0.5).
CSCRSites shows the best results, indicating its superior ability in predicting cancer-specific RBP
binding sites on circRNAs. Specifically, CSCRSites achieves the highest AUC of 0.832. The Acc. and
Prec. of CSCRSites are also higher than those of iDeepS, Zeng’s method, and DeepBind. In addition,
the reason for iDeepS’ poor performance may be the lack of circRNA secondary structure information.
These experimental results demonstrate that CSCRSites has superior ability in predicting cancer-specific
RBP binding sites.

Table 1. CSCRSites outperforms other deep learning-based models on the test dataset. Accuracy, Acc.;
precision, Prec.

Acc. Prec. AUC

CSCRSites 0.74 0.76 0.83
DeepBind 0.68 0.68 0.75

iDeepS 0.61 0.64 0.65
Zeng’s method 0.59 0.59 0.62

2.5. Performance of CSCRSites in Motif Discovery

As described in Section 4.4, the motifs learnt by CSCRSites were compared with the existing motifs
using TOMTOM with an E value ≤0.05. All Species [41] was selected as the alignment database, as it is
an RNA-binding motif database having 244 motifs between 7 and 8 in length, in which 102 motifs are
Homo sapiens RNA-binding motifs. CSCRSites can learn the motifs of different lengths of 8, 20, and 38.
Considering the length of motifs in the RNA-binding motifs database, the motifs with the length of
8 learnt by all kernels were aligned with the Homo sapiens RNA-binding motif database, and 65 motifs
were significantly matched with 29 known motifs involving 23 genes. Some of the alignment results
are shown in Table 2.

Table 2. Some motifs learnt by CSCRSites are aligned with the known motifs and the associated genes.

Associated Genes Known Motifs ID Known Sequence Learnt Motifs ID Learnt Sequence Overlap E-Value

DAZAP1 RNCMPT00013 UAGGUAG KER_29 UAGGUAGG 7 0.0031
FMR1 RNCMPT00016 GGACAAG KER_632 GGCACAGG 7 0.0290

HNRNPK RNCMPT00026 CCAACCC KER_959 CAACCAGU 6 0.0429
HNRNPL RNCMPT00027 ACACACA KER_793 ACACACAG 7 0.0019
HNRPLL RNCMPT00178 ACACACA KER_793 ACACACAG 7 0.0030

HuR

RNCMPT00032 UUAUUUU KER_78 UUUAUUUU 7 0.0054
RNCMPT00112 UUUGUUU KER_900 UUUCUUUC 7 0.0098
RNCMPT00117 UUUGUUU KER_900 UUUCUUUC 7 0.0070
RNCMPT00136 UUGGUUU KER_395 AUUGAUUU 7 0.0202

IGF2BP2 RNCMPT00033 ACAAACA KER_512 AAACACAG 7 0.0401
IGF2BP3 RNCMPT00172 ACAAACA KER_793 ACACACAG 7 0.0110

KHDRBS1 RNCMPT00169 AUAAAAG KER_837 UAUUAAAG 7 0.0254
MATR3 RNCMPT00037 AAUCUUG KER_801 GAAUCUUG 7 0.0021
PABPC5 RNCMPT00171 AGAAAAU KER_113 AGAAAGUG 7 0.0060
PABPN1 RNCMPT00157 AGAAGAC KER_183 AGAAAACA 7 0.0109
PCBP1 RNCMPT00186 CCUUUCC KER_577 CCUUCCCU 7 0.0055
PCBP2 RNCMPT00044 CCUUCCC KER_577 CCUUCCCU 7 0.0021

PTBP1
RNCMPT00268 CUUUUCU KER_366 UUUUCUUU 6 0.0208
RNCMPT00269 ACUUUCU KER_269 UACUUCCC 7 0.0051

RBM46 RNCMPT00054 AAUCAAU KER_153 GAAUCAAU 7 0.0208
SAMD4A RNCMPT00063 GCUGGAC KER_608 UGCUGGCC 7 0.0347
SNRNP70 RNCMPT00070 GAUCAAG KER_197 GAAUCAAG 7 0.0065

SRSF1 RNCMPT00107 GGAGGAA KER_37 GGGAGGAA 7 0.0391

SRSF10
RNCMPT00019 AGAGAAA KER_824 AGAGAAAA 7 0.0373
RNCMPT00089 AGAGAAA KER_824 AGAGAAAA 7 0.0299

TIA1 RNCMPT00165 UUUUUUC KER_842 UUCCUUCU 7 0.0122
U2AF2 RNCMPT00079 UUUUUUC KER_842 UUCCUUCU 7 0.0036

ZC3H14 RNCMPT00086 UUUGUUU KER_900 UUUCUUUC 7 0.0111
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According to records in the database DisGeNET [42], some associated genes in Table 2 are encoding
RNA-binding proteins that affect human diseases, especially human cancer. As shown in Figure 5, some
sequence logos of matched motifs are associated with genes involving human cancer. For instance,
HNRNPK overexpression is related to tumorigenesis in several cancers [43], whose binding motif
RNCMPT00026 is matched with KER_959 learnt by CSCRSites. Similarly, in cutaneous melanoma,
brain metastasis is predetermined by CD44 splicing variant 6 (CD44v6), whose expression correlates
with PTBP1 and U2AF2 splicing factors, and especially, PTBP1 knockdown significantly decreases
CD44v6 expression in advanced melanomas [44]; their binding motifs match to KER_269 and KER_842,
respectively. TIA1, whose binding motif matched with KER_842, has an isoform expression that is
measured in colorectal cancers [45]. RNA-binding protein HNRNPL has been previously shown to
associate with tumorigenesis in liver and lung cancer [46], and results show that KER_793 matches
with its binding motif RNCMPT00027. Splicing factor SRSF1 is an associated gene binding motif that
matches with KER_37, which is upregulated in human breast tumors, and its overexpression promotes
transformation of mammary cells [47].
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from Homo sapiens database by TOMTOM. The gene name associated with the known motif is shown in
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3. Discussion

The experimental results show that CSCRSites, as the first model to predict cancer-specific RBP
binding sites on circRNAs, is an effective computation method that outperforms the other methods for
identifying the cancer-specific RBP binding sites on circRNAs. The application, merit, and demerits
etc. of comparative methods are listed in Table 3. The better performance of CSCRSites is mainly
attributed to the following aspects. Firstly, the application of a CNN provides the basic guarantee for
the effectiveness of CSCRSites. A CNN can automatically obtain high-level features from nucleotide
sequences and succeed in identifying RBP binding sites. Secondly, the reliable benchmark datasets
of cancer-specific RBP binding sites on circRNAs are constructed while the circRNAs sequences
are encoded to one-hot vectors that are order-preserving, which is more suitable for the motif
discovery task compared with traditional k-mer feature extraction. Furthermore, employing multiple
convolutional neural networks enhances the performance of our model, and is beneficial to various
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motif discovery tasks. Hence, CSCRSites is a flexible method of identifying cancer-specific RBP binding
sites on circRNAs.

Table 3. Application, merit, and demerit of comparative methods.

Methods Application Motifs Merit Demerit

CSCRSites circRNA
binding sites YES Discovery of various length motifs

High prediction accuracy
The rate of convergence

is relatively slow

DeepBind DNA/RNA
binding sites YES Scales well to ChIP-seq and

HT-SELEX data sets
Low prediction accuracy

on circRNA data sets

iDeepS RNA
binding sites YES Integrates RNA secondary

structure
Predict binding targets

for specific RBP

Zeng’s method DNA
binding sites YES Motif occupancy task Motif length is fixed

Recent studies have reported that circRNAs could play their regulatory functions via sponging
RBPs, therefore, it is necessary to understand the interaction mechanisms of circRNAs and RBPs,
especially in human cancers. We trained the CSCRSites model to identify whether a given circRNA
fragment was a cancer-specific RBP binding sites by using abundant binding sites data. Moreover, our
model can detect the various length binding site motifs on circRNAs and provide reference for further
researching on circRNA regulatory functions.

Despite the effectiveness of the CSCRSites model, it should be noted that CSCRSites still has
some limitations. The model requires fixed-length binding sites as input data, as the binding sites
are extended to 100 nt by centering at the point called for each peak, which may cause possible bias
by abandoning length information. In future works, we plan to solve the problem of variable length
input, try to collect more binding sites data, and integrate more circRNA information to improve the
prediction accuracy of the model. Finally, we will develop a web tool for identifying the cancer-specific
RBP binding sites.

4. Materials and Methods

In this study, CSCRSites, a method based on the CNN architecture, was constructed to identify
the cancer-specific RBP binding sites on circRNAs. As shown in Figure 6, given a sequence fragment
on circRNAs, and after converting it into a vector as the input, CSCRSites identifies whether the
fragment is a cancer-specific RBP binding site. For this purpose, the cancer-specific RBP binding sites
are collected from CSCD, which form the dataset for training and testing CSCRSites, respectively.
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4.1. Datasets

In order to build the CSCRSites model for the RBP binding site prediction, we constructed a
dataset of cancer-specific RBP binding sites on circRNAs. The RBP binding site information was
extracted from the cancer-specific circRNAs database (CSCD, http://gb.whu.edu.cn/CSCD). It contains
15,719,824 RBP binding sites in cancer-specific circRNAs, 66,182,210 in normal circRNAs, and 22,025,003
in common circRNAs [15]. In the first place, cancer-specific RBP binding sites on circRNAs were
downloaded from CSCD and treated as positive samples. Here, to obtain the determined RBP binding
sites, 3026 cancer-specific circRNAs recorded by circBase [12] were selected, and 486,060 RBP binding
sites were preserved after removing the redundant sites. Secondly, note that our model identifies
the binding sites only based on circRNAs sequences. For the shorter sequences whose lengths
were less than 50 nt, the features for distinguishing sequences were difficult to extract, and thus the
sequences with lengths more than 50 nt and less than 100 nt were retained. In fact, for the longer
sequences, nearly 80% of the binding sites were in this range. Finally, the sequences were extended
to 100 nt by centering at the point called for each peak, and 43,118 cancer-specific RBP binding sites
on circRNAs were obtained. The negative samples were obtained by shuffling positive sequences
with matching dinucleotide composition [29]. The same strategy for creating negative samples is used
in DeepBind [27]. The shuffling was implemented using the ‘fasta-dinucleotide-shuffle’ package in
MEME [48]. The whole dataset was randomly divided into training and testing sets in the ratio of 4:1.
The dataset was named CSCRBS.

In addition, the RBP binding sites sequences were collected according to the human GRCH37
genome from the UCSC Genome at https://genome.ucsc.edu.

4.2. Sequence Encoding

On the numerical descriptor of the sequences, k-mer compositional features were widely used,
in which each sequence was encoded using a 4K-dimensional vector, and each feature represents the
normalized frequency of the corresponding k-mer appearing in an RNA sequence [37]. This type
of feature has difficultly in capturing the sequence order information, especially in the task of
detecting motifs.

In this study, each sequence of the RBP binding sites on circRNAs was denoted as a
numerical sparse matrix, and is an order-preserving transformation. Suppose that a circRNA
sequence fragment S = ′s1s2s3 · · · s′L, where L is the length of a circRNA sequence fragment,
s j ∈ {A, U, C, G}, j = 1, 2, 3, · · · , L, which are denoted as one-hot vectors [1,0,0,0], [0,1,0,0], [0,0,1,0],
and [0,0,0,1], respectively. Then, the circRNA sequence fragment S can be represented as follows:

M = (mi, j)4×L, mi, j =

{
1, s j = h(i)
0, otherwise

i = 1, 2, 3, 4; j = 1, 2, 3, · · · L , h(i) = [A, U, C, G]. (1)

Finally, through the one-hot encoding, the circRNA sequence fragment S is characterized by a
4 × L numerical sparse matrix M.

In our study, all RBP binding sites on circRNAs were encoded to a corresponding 4× L matrix M
as the input of the model. This encoding strategy can not only obtain low dimension data, but also
maximize the retention of the sequence original information, and thus it is conducive to extract features
using the deep learning-based method. Especially, it is beneficial to the task for motif discovery.

4.3. Model Construction

A CNN is a neural network that uses convolution in place of general matrix multiplication in
at least one of its layers [49]. In recent years, the CNN was applied to model sentences [50] to detect
features of the raw input data by the convolution operation. By this inspiration, a CNN was applied
to extract the features of genomic sequences, and the kernels or filters in a CNN were used for motif
discovery [27,51]. In this study, we constructed our parameterized model based on a CNN to learn the

http://gb.whu.edu.cn/CSCD
https://genome.ucsc.edu
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sequence features of cancer-specific RBP binding sites on circRNAs, and to further identify whether a
new circRNA sequence fragment was a cancer-specific RBP binding site.

The structure of our model is shown in Figure 6; it is a slight variant of the TextCNN [52],
and contains an input layer, a convolution layer, a pooling layer, and a fully connected layer.
Suppose that xi is the 4-dimensional binary vector corresponding to the i-th nucleotide Si on a circRNA
sequence fragment as described in Section 4.2, and a circRNA sequence fragment of length L is
expressed as follows:

M = x1 ⊕ x2 ⊕ · · · ⊕ xL (2)

where ⊕ is the concatenation operator.
The convolution layer is used to learn the features of different levels. Considering ci is a new

feature generated by the convolution operation on matrix M, it can be described as follows:

ci = f (w ∗ xi:i+h−1 + b) (3)

where f (x) denotes a non-linear activation function, such as the rectified linear unit (ReLU), operator ∗
represents the convolution operation, b is a bias term, w is the weight matrix of the convolution kernel,
and xi:i+h−1 refers to the concatenation of nucleotide xi, xi+1, · · · , xi+h−1. Here, h is the kernel size (the
width of matrix w). The kernel is applied to different fragments of a sequence with a fixed window
h
{
x1:h, x2:h+1, · · · , xL−h+1:L

}
in turn, then produces a feature map:

c = [c1, c2, · · · , cL−h+1]. (4)

In this study, our model employs multiple convolution layers with different kernel sizes to
extract diverse features. In addition, multiple kernels were employed to extract the features in each
convolution layer. As shown in Figure 6, three different kernel sizes were applied to detect diverse
features of circRNA sequence fragments, while 1024 kernels were employed with each kernel size by
testing for the best performance.

The pooling layer is used to compress data and reduce over-fitting. To obtain the most important
feature on a feature map c, a max-pooling operation is applied to each feature map [53]:

ĉ = max{c}. (5)

That is, the maximum value of a feature map denotes the feature of the corresponding kernel, in
this study, as shown in Equation (5), a simple global max-pooling strategy is adopted. Then, outputs
are concatenated together to form a single feature vector and are fed into a fully connected layer.

The fully connected layer with the non-linear softmax activation function is used to classify
the extracted features, and the outputs are the probability distribution over labels. Deserving to be
mentioned, to avoid over-fitting, a dropout layer was implemented before this layer. The CSCRSites
can be summarized as follows:

Out = f Fc_so f tmax f Concatenate f GlobalMaxPool f Conv2_ReLU(M) (6)

where the M is the input sparse matrix in Section 4.2, and the Out is the probability whether a sequence
fragment is a cancer-specific RBP binding site.

4.4. Motifs Discovery

As described in the previous study [54,55], the convolution layers of CSCRSites are akin to motif
scanners. As described in Section 4.3, given an input sequence, a feature map c could be produced for
each kernel via the convolution layer with the non-linear ReLU function. Here, the position of the
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maximum value ci in the feature map c is regarded as the start position of a motif. The motif position
information matrix is calculated using the Python API (keras.K.function), which is defined as follows:

f _matrix = K. f unction(M, [K.argmax(c), K.max(c)]) (7)

where the matrix M is the model input, c is the feature map in each kernel, that is, the output of the
convolution layer. The function K.argmax and K.max are keras backend functions returned the position
and value of maximum value ci, respectively. Finally, matrix f _matrix is converted to motifs with
the MEME motif format, and afterwards, compared with the existing motifs by submitting to the
TOMTOM [56] webserver.

5. Conclusions

In this study, we have developed CSCRSites as the first model to identify cancer-specific RBP
binding sites on circRNAs based on convolutional neural network architecture. To obtain the
initial sequence information for the motif discovery task, circRNA sequences were represented by
one-hot encoding, then relevant features were automatically extracted from nucleotide sequences by
concatenating multiple convolutional neural networks. The achieved high-level features were fed to a
fully connected layer with a non-linear softmax activation function for the classification. In addition,
CSCRSites also can be used as a motif discovery tool to discover three kinds of different motifs using
the features learnt by CNN layers. The goal of using multiple convolutional neural networks is to
obtain various high-level features for the softmax classifier and identify the different length motifs in
the motif discovery task. Compared with existing deep learning-based models and the conventional
machine learning methods, our model has an advantage in identifying cancer-specific RBP binding
sites. In addition, it can be extended to identify the tissue-specific and cell-specific circRNA expression
patterns. We hope that our method presented in this study can contribute to further models and
understanding of the functions of circRNAs.
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