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Lung carcinoma is one of the most deadly malignant tumors in mankind. With the rising
incidence of lung cancer, searching for the high effective cures become more and more
imperative. There has been sufficient research evidence that living habits and situations
such as smoking and air pollution are associated with an increased risk of lung cancer.
Simultaneously, the influence of individual genetic susceptibility on lung carcinoma
morbidity has been confirmed, and a growing body of evidence has been
accumulated on the relationship between various risk factors and the risk of different
pathological types of lung cancer. Additionally, the analyses from many large-scale cancer
registries have shown a degree of familial aggregation of lung cancer. To explore lung
cancer-related genetic factors, Genome-Wide Association Studies (GWAS) have been
used to identify several lung cancer susceptibility sites and have been widely validated.
However, the biological mechanism behind the impact of these site mutations on lung
cancer remains unclear. Therefore, this study applied the Summary data-based Mendelian
Randomization (SMR) model through the integration of two GWAS datasets and four
expression Quantitative Trait Loci (eQTL) datasets to identify susceptibility genes. Using
this strategy, we found ten of Single Nucleotide Polymorphisms (SNPs) sites that affect the
occurrence and development of lung tumors by regulating the expression of seven genes.
Further analysis of the signaling pathway about these genes not only provides important
clues to explain the pathogenesis of lung cancer but also has critical significance for the
diagnosis and treatment of lung cancer.

Keywords: lung cancer, susceptibility genes, GWAS, eQTL, SMR

INTRODUCTION

Pulmonary carcinoma is the leading cause of cancer deaths in the world. According to the Global Cancer
Statistics report, there were about 2 million newly detected lung cancer cases worldwide in 2018,
accounting for 11.6% of all tumors (Bray et al, 2018). Deaths from lung cancer worldwide were
roughly 1.7 million, accounting for 18.4% of tumor-related deaths. Lung cancer is a malignant disease
resulting from malignant changes of bronchial and alveolar epithelial cells. Lung cancer is divided into two
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categories: non-small cell lung cancer (NSCLC) and small cell lung
cancer (SCLC). Of all diagnosed cases of lung cancer, NSCLC
accounts for about 85% (Oser et al, 2015). Based on the
characteristics of lung carcinoma, non-small cell lung cancer is
also split into three: pulmonary adenocarcinoma, Lung squamous
cell carcinoma, and large cell lung cancer. Although SCLC is a small
proportion, it grows and spreads faster than NSCLC and tends to
metastasize early in the disease (Zakaria et al,, 2015). Bearing these
facts in mind, the therapy of lung cancer faces a serious challenge.

It is immediately unclear how pulmonary carcinoma develops.
As shown in many kinds of research, the occurrence of lung
cancer can be driven by multiple factors including genetic and
environmental factors. In particular, SCLC is generally related to
lifestyle and environment (Rudina et al., 2021). Besides external
environmental factors, genetic factors also play an important role
in the occurrence of lung cancer. For example, the incidence of
lung adenocarcinoma represents more than 55% of NSCLC, and
it is more appropriate to many women and non-smokers (Barr
Kumarakulasinghe et al., 2015). These people tend to carry gene
mutations. The common mutated genes contain EGFR, ALK,
ROSI gene, and so on (Lamberti et al., 2020). In a word, exploring
genetic factors has critical implications for understanding the
pathogenic mechanism of pulmonary cancer.

In recent decades, many genetic studies have been utilized to
determine the genetic factors of lung cancer. Genome-wide
association studies (GWAS) as a hot research tool at present
have been applied in lung cancer, and have successfully identified
many genetic susceptibility sites (Landi et al., 2009). GWAS
perform genotype on several hundreds of thousands of Single
Nucleotide Polymorphisms (SNPs) according to the comparison
of a large number of lung cancer cases and healthy controls, and
then bioinformatics techniques and statistical methods were
employed to compare the frequency diversities of each SNP
between the two groups (Ko and Urban, 2013). In the results
of GWAS analysis, most important SNPs are located in non-
coding regions, thus it is difficult to directly explore the regulatory
mechanism of these loci (Rojano et al., 2016). Therefore, although
we have identified many susceptibility sites associated with lung
tumors, it remains unknown about the role of lung cancer
pathogenesis-related genes or DNA elements.

Accordingly, this research adopted the method of multi-omics
analysis to consolidate various sources of data in an attempt to
identify genes related to lung cancer incidence. With the development
of high-throughput omics platforms, multi-omics analysis is one of
the most important and widely used in biomedical research (Tanaka
et al,, 2020; Tarwadi et al,, 2020; Zhao et al,, 2021; Zhao, 2021). As
these are kind of hard to describe diseases with complex etiologies by
a single omics analysis, the multi-omics research method is developed
to provide more evidence for the disease pathogenesis and dig out
candidate key factors in depth. Data from different omics sources
such as genomics, transcriptomics, and proteomics can be integrated
through machine learning or statistical methods for purpose of
underlying biological mechanisms (Zhao et al., 2020; Reel, 2021).
In this study, Summary data-based Mendelian Randomization
(SMR) was used as a statistical method for multi-omics analysis.

SMR was conducted to investigate the pathogenic genes of
lung cancer. SMR analysis is an improved model based on
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Mendelian randomization study that uses genetic variation as
atool to predict the effects of simulated exposure factor on disease
using gene-disease causal inference (Zhu et al., 2016). Compared
with the general instrumental variable models, the MR model can
significantly reduce the estimation bias caused by measuring
error. In the MR model, genetic variants as an instrumental
variable have to satisfy three core assumptions. The three core
assumptions consist of the relevance assumption, the
independence assumption, and the exclusion restriction
assumption (Hartwig and Davies, 2016). The relevance refers
to a robust correlation between genetic variants and exposure
factors. The independence assumption represents the
independence of genetic variation and confounding factors
affecting the expose-outcome relationship (Zhao et al., 2019).
The exclusion restriction states that genetic variation can affect
outcomes only through exposure factors and not through other
pathways. The violation of any of the core assumptions may
distort the statistical inference results of MR analysis, leading to
incorrect inferences of causality.

However, the existence of linkage disequilibrium (LD) or
pleiotropy of instrumental variables can be contrary to the
exclusion restriction. Once two genes are not completely
independent, they will show some degree of linkage, which is
called linkage imbalance. Pleiotropy is the phenomenon that one
gene can affect more than one trait. Due to the coordinate
positions in the genome between SNPs and the complicated
biological effects between genetic variants and traits, LD and
pleiotropy are often unavoidable (Wang, 2021). Therefore, to
soften the influence of the exclusivity hypothesis, a variety of
modified MR methods, such as Mendelian Randomization-Egger
regression (MR-Egger), Inverse Variance Weighted (IVW),
Mode-Based Estimate (MBE) method, have been proposed in
recent years. These methods only consider the analytical error
because of pleiotropy. SMR method also takes into account the
LD between instrumental variables to decrease the false positive
rate. In addition, there are fewer requirements for the summary
data of GWAS and eQTL, and the sample size in SMR analysis. As
a result, we adopted this approach because of its wide applicability
and high accuracy.

In this research, we integrated lung cancer GWAS data and
eQTL data to recognize functional genes and regulatory elements
in pulmonary carcinoma. Statistical analysis of the relationship
between a single SNP and gene expression is referred to as eQTL
analysis (Shabalin, 2012). Namely, the expression of a gene is
affected by a single SNP, this variable site is considered to be an
eQTL locus. Since the subjects of both GWAS and eQTL were
SNPs, SMR analysis of overlapping mutants presented in GWAS
and eQTL data could reveal lung cancer related-genes. The
discovery of these genes could effectively support the design of
targeted drugs and precise treatment of lung cancer.

MATERIALS AND METHODS

Acquisition of GWAS Summary Data
We downloaded two available GWAS summary data of lung
cancer from the GWAS Catalog website. One of the GWAS
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FIGURE 1 | The process of GWAS and eQTL conjoint analysis. GWAS
analysis and eQTL analysis are two different types of omics analysis. Using
SMR method can discover the biological mechanism behind lung cancer by
combining these two different omics data.

datasets was obtained from the meta-analysis of the
United Kingdom Biobank (UKB) and the Kaiser Permanente
Genetic Epidemiology Research on Adult Health and
Aging (GERA) (Rashkin et al, 2020). The UKB study was
composed of 502,611 British people aged 40 to 69 at the time
of recruitment. Study participants provided biological samples as
well as detailed information on lifestyle and health-related
factors. GERA participants were members of the Adult Kaiser
Permanente Northern California (KPNC) Health Plan. The
subjects of this study included 102,979 participants selected for
their genotyping. Cancer cases in the UKB were identified on the
basis of information provided by various national cancer
registries that gathered data from hospitals, nursing homes,
and so on. GERA cancer cases group were classified by using
diagnoses from the KPNC cancer registry. The control group for
the UKB and GERA studies was limited to individuals in the
study who did not have any history of lung cancer in the relevant
registries.

The other GWAS summary data was collected from the
analysis of the BioBank Japan Project (BBJ) data (Sakaue,
2021). BBJ is a prospective biobank that collaboratively collects
the DNA and serum samples of 200,000 Japanese participants
from 12 medical institutions in Japan. All study participants were
diagnosed with one or more of 47 target diseases by doctors. In
this study, 178,726 participants of Japanese ancestry were selected
from all participants. The researchers used a sample of the cohort
without a given lung cancer diagnosis as a control group.

Collection of eQTL Summary Data

Four eQTL data containing three blood eQTL data and one lung
eQTL data were applied in our research. Two of eQTL data were
obtained by sequencing whole peripheral blood mRNA of 2,116
healthy adults from four Dutch cohorts (Zhernakova et al., 2017).
The difference between the two datasets was that one described
23,060 eQTL effects of gene level, the other included 21,888 eQTL
effects of exon level. The remaining two of eQTL data were
downloaded from the GTEx website. Since eQTL varies in
different tissues or cells, we selected one lung eQTL dataset
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and one blood eQTL dataset to perform the analysis. Lung
and blood eQTL datasets stored eQTL information about
25,245 genes and 20,049 genes, respectively.

SMR Analysis Through Lung Cancer GWAS

and eQTL Summary Data

The research adopted the SMR analysis method to perform the
conjoint analysis of eQTL and GWAS (Figure 1). Prior to
compute SMR, we first need to find overlapped SNPs of
GWAS and eQTL and generate a new dataset containing all
overlapping SNPs information. Then the GWAS and eQTL data
of new datasets were standardized by Z Score. We can calculate
the Z value based on the Beta (OR) value and one of the p values
or the SE value. The core algorithms of eQTL and GWAS are
based on linear regression. Therefore, the Beta/OR value of
GWAS and eQTL represents the value of the regression
coefficient. SE value refers to the standard error of regression
coefficient. The p value means the value of whether the
association is significant. We listed two calculation formulas of
the Z value below (Eq. 1; Eq. 2).

The Z values of GWAS and eQTL were used to calculate the
Tsmr values according to Eq. 3 based on the Delta algorithm
(Figure 2). The Tgyg values were output as Pgyg values by chi-
square test. As False Discovery Rate (FDR) method can control
false positive events by correcting the p values, we used FDR to
adjust the Pgyg values, resulting in obtaining the P_q4; values. The
P.gj value of 0.05 was taken as the threshold of statistical
significance, which means that the genes corresponding to P,g;
less than 0.05 could be regarded as lung cancer-related pathogenic
genes found in this study.

¢ = qnorm (1 — p+2); Beta>0, ¢ = Z Score, Beta < 0; ¢

= —Z Score (1)
Z Score = Beta+SE 2)
SMR ~ Zgwas®*Zeqr1? (3)

ZGwas>+Zeqr1?

Lung Cancer GWASI (Meta)
Lung Cancer GWAS2 (BJJ)

TSMR
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[ false discovery rate
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FIGURE 2 | The process of GWAS and eQTL conjoint analysis. The two
GWAS datasets of lung cancer were cross-analyzed with four groups of eQTL

datasets. Significance of gene expression was found after Tgyr calculation,
chi-square test, and FDR correction.

Frontiers in Cell and Developmental Biology | www.frontiersin.org

December 2021 | Volume 9 | Article 800756


https://www.frontiersin.org/journals/cell-and-developmental-biology
www.frontiersin.org
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles

Cheng et al.

Lung Cancer Susceptibility Genes

TABLE 1 | The new dataset list for SMR analysis. Eight SMR datasets were created for this analysis.

GWAS eQTL SMR GWAS eQTL SMR
Meta GTEx_Blood Meta_GTEXx_Blood BBJ GTEx_Blood BBJ_GTEx_Blood
GTEx_Lung Meta_GTEx_Lung GTEx_Lung BBJ_GTEx_Lung
GENE_Blood Meta_GENE_Blood GENE_Blood BBJ_GENE_Blood
EXON_Blood Meta_EXON_Blood EXON_Blood BBJ_EXON_Blood
A Meta_GTEx_Blood B Meta GTEx Lung
166
121
> /
’ ¢ ¢
7’ 7/
’ /
2439 16097 i 3051 20282 i
BBJ_GTEx_Lung
BBJ_GTEx_Blood = =
Cc D
Meta GENE_Blood Meta_EXON_Blood
1764 6668
i 41852 ' b 161301 '
1 1l
\ - §
1 1
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FIGURE 3| The overlapping genes between two different SMR datasets. (A) The overlap genes of Meta_GTEx_Blood and BBJ_GTEXx_Blood. 16,097 genes were
overlapped. (B) The overlap genes of the Meta_GTEx_Lung and BBJ_GTEXx_Lung. There were 20,282 overlapped genes. (C) The overlap genes of Meta_GENE_Blood
and BBJ_GENE_Blood. These two datasets have 41,852 identical genes. (D) the overlap genes of Meta_EXON_Blood and BBJ_EXON_BIlood. These two datasets
have 161,301 identical genes.

RESULTS

Discovery of the Overlapping SNPs

Between GWAS and eQTL

In this SMR analysis, the first step was to find the same SNPs
between one of the GWAS datasets and one of the eQTL
datasets and generate a new SMR dataset containing the
details of all the overlapping SNPs (Table 1). We
performed four SMR analyses by using GWAS summary
data from a large meta-analysis to examine the association
between lung cancer and gene expression probes from four
eQTL data. The number of SNPs found in Meta_Blood_Exon
data was higher than the other three data, with nearly a
hundred thousand SNPs and more than twenty thousand
genes found (Figure 3). The remaining three SMR datasets
contained 10,000-20,000 SNPs and gene overlaps. In addition,
GWAS data collected from the Japanese populations was also
conducted four SMR analyses with different eQTL data. The
overlap analysis results show that both BB]_GTEx_Blood and
BBJ_GTEx_Lung contained about 20,000 SNPs and genes.
BBJ_GENE_Blood and BBJ_EXON_Blood included over

20,000 genes and thirty thousand SNPs and a hundred
thousand SNPs, respectively.

Identification of Genes Associated With

Lung Carcinoma

The Z values of GWAS and eQTL were calculated by the Tsyr
formula. After the Chi-squared test, Ty values were transferred
to Pgyr (Figure 4). Then we performed FDR on Pgyp to obtain
P.gj values. Finally, we filtered P,4; values not less than 5%. As a
result, two Padj values corresponding to different SNP
susceptibility loci (rs8042849 and rs931794) were screened out
(Table 2). These two SNP loci might regulate gene expression and
hence cause the occurrence and development of cancer. Both loci
were relevant to the expression of PSMA4 gene.

The analysis of four SMR datasets from Asian populations
identified a total of 10 SNP significant sites, most of which were
repeatedly identified in these SMR analyses. The expression of
seven genes was influenced by these 10 SNPs. The seven genes
were comprised of HLA-DQB1, CLPTM1L, RAD52, IREB2,
PSMA4, HLA-DRBY, and HLA-DQB2. According to the
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FIGURE 4 | The Manhattan diagram of these eight SMR analysis results. (A) the SMR analysis results of Meta_GTEx_Blood. (B) the SMR analysis results of
BBJ_GTEX_Blood. (C) the SMR analysis results of Meta_GTEx_Lung. (D) the SMR analysis results of BBJ_GTEx_Lung. (E) the SMR analysis results of
Meta_GENE_Blood. (F) the SMR analysis results of BBJ_GENE_Blood. (G) the SMR analysis results of Meta_EXON_Blood. (H) the SMR analysis results of
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TABLE 2 | The list of discovered lung cancer causative genes by the SMR analysis. This list showed the significant SNPs and genes found in different datasets, and the

corresponding value of Pgyvr and Py calculated.
SMR datasets Significant SNPs

Meta_GENE_Blood
Meta_EXON_Blood

rs8042849
rs931794
rs8042849
rs9274510
rs147560086
rs8042849
rs31487
rs147560086
rs12592111
rs8042849
rs12822733
rs931794
rs402710
rs9274564
rs9274564
rs28755305

BBJ_GTEx_Blood
BBJ_GENE_Blood

BBJ_EXON_Blood

Psmr value

9.17 x 1079
1.06 x 1077
2.44 x 1078
570x 1077
2.26x 1078
7.81x 1078
1.96x 1078
2.77x 1078
2.40x 107
1.66 x 1077
1.74x 107
2.70x 10710
9.79x 1070
515x 1077
514 x 107
9.50x 1077

P,gj value Gene name
0.0004 PSMA4
0.0029 PSMA4
0.0013 PSMA4
0.0106 HLA-DQB1
0.0010 RAD52
0.0017 PSMA4
0.0011 CLPTM1L
0.0012 RAD52
0.0288 IREB2
0.0040 PSMA4
0.0037 RAD52

4.53x107° PSMA4
0.0008 CLPTM1L
0.0072 HLA-DQB1
0.0079 HLA-DRB9
0.0123 HLA-DQB2
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results, PSMA4 was recognized again. Furthermore, no
significant susceptibility sites were found in the association
analysis of GWAS data and lung eQTL data.

Gene Function Analysis

To further explain the potential regulatory mechanism of gene
expression on lung cancer susceptibility, we conducted the
analysis of gene function and involved biological pathways on
these seven genes on the Kyoto Encyclopedia of Genes and
Genomes (KEGG) database. According to the analysis results,
PSMA4 is an essential subunit of the proteasome protein. The
proteasome is a large protein complex and is the key to regulating
cell function cellular functions, such as cell differentiation, cell
cycle (Voutsadakis, 2017). Many studies have shown that the
proteasome plays an important role in the development and
progression of various tumors, including lung cancer. In addition,
three of the seven genes were the members of the Major
Histocompatibility Complex (MHC) gene family. Human
Leukocyte Antigen (HLA) stands for human MHC, The HLA
gene family is divided into three subgroups, which encode three
types of molecules: MHC class I molecules, MHC class II
molecules, and MHC class III molecules. These three genes
were of the MHC class II. When the external invaders are
engulfed and processed by lysosome to be fragmented, the
MHC class II molecules bind to these fragments and present
them on the cell surface for T cells to recognize. The study
indicates that HLA class II genes on tumor cells impact tumor
immunogenicity (Chen et al., 2019).

Moreover, the CLPTMI1L gene can encode cleft lip and palate
transmembrane protein 1-Like protein. Recent research shows
that the SNPs of CLPTMI1L were associated with many human
malignancies, especially in some highly aggressive and metastatic
cancers (Shete et al, 2020). RAD52 function on the
recombination repair of double strand breaks (DSB) is
important for maintaining chromosome integrity. Based on
the cause of cell death by DSB unrepair, cancer cells have a
higher DSB burden, and hence the relationship between DSB and
RADS52 can be exploited for cancer treatment (Trenner and
Sartori, 2019). IREB2 gene can encode an iron-responsive
element-binding protein that is an RNA-binding protein and
can bind to iron response elements (IRES) for the regulation of
the translation and stability of mRNAs in cells. Variants in the
gene have been linked to lung cancer and chronic obstructive
pulmonary disease (COPD). These results further proved this
inference of our analysis. Accordingly, the analysis of the
relationship between these genes and lung cancer can provide
an important theoretical basis for revealing the genetic
mechanism behind lung cancer.

DISCUSSION

We applied multi-omics analysis to integrate two of the GWAS
datasets and four of eQTL datasets based on the SMR method,
resulting in the functionally important genes related-lung cancer
being found. SMR research can facilitate more accurate and
effective identification of the potential causal relationship

Lung Cancer Susceptibility Genes

between exposure and outcome, for disease risk factors had a
further understanding. Once risk factors have been successfully
discovered, they can be prevented or targeted for cancer
treatment. By analyzing the causal genes associated with lung
cancer, we recognized seven genes associated with lung cancer,
suggesting a possible mechanism for the development of lung
cancer by altering the expression of risk genes.

With the analysis of these SMR datasets, the PSMA4 gene was
repeatedly identified. It has been reported that down-regulation
of proteasome subunit encoding gene PSMA4 reduces
proteasome activity (Wang et al., 2007). The proteasome is a
large protein complex that can degrade various cellular proteins
rapidly and timely. The proteasome is responsible for regulating
many cellular processes, including transcription, cell cycle
progression, and apoptosis (Cardoso et al.,, 2004). Proteasome
dysfunction leads to many diseases including cancer. Drugs that
inhibit proteasome activity directly affect the susceptibility of
lung cancer by regulating cell proliferation and apoptosis.
Additionally, PSMA4 is involved in cancer cell proliferation,
also its polymorphisms have been shown to increase the risk
of lung cancer in the Chinese Han population (Wang et al., 2015).
Based on the above information, we predicted that PSMA4 may
govern cell proliferation and apoptosis, and hence can promote
the proliferation of lung cancer cells.

Additionally, HLA-DQBI1, HLA-DRB9, and HLA-DQB2 are
all homologs of HLA class II molecules, which are essential for
immune response. HLA plays a key role in the interaction
between tumor cells and the human immune system. HLA 1II
molecules are involved in anti-tumor immunity and exogenous
antigen presentation by CD4" T cells. There is evidence that HLA
II on tumor cells affects tumor migration and invasion, cancer
progression, immune response and prognosis of a variety of
malignancies in vitro and in vivo. For example, some studies
have shown that tumor HLA-DQBI1 level is associated with the
recurrence free survival (RFS) of early Lung Adenocarcinoma,
and the mechanism may be related to anti-tumor immunity
(Zhang et al., 2019). Currently, there is no definitive study on
the relationship between HLA-DRB9, HLA-DQB2 and lung
cancer, and further verification will be needed.

CLPTMIL is a mitochondrial protein and is thought to be
involved in lung cancer. Some studies have found that the
expression of CLPTMIL is significantly increased in lung
cancer tissues compared with normal tissues by
immunohistochemistry, especially in lung adenocarcinoma (Ni
et al, 2012). Also, the researchers found that increased copy
number in the CLPTMIL region is the most common genetic
event in the early stages of NSCLC (James et al., 2012). Some
GWAS data illustrate that the region of CLPTMIL gene is
associated with lung cancer. Therefore, the gene expression of
CLPTMIL is closely related to lung tumor susceptibility.

Moreover, according to the GWAS results, the SNPs of RAD52
gene were associated with increased risk of lung cancer,
particularly the development of lung squamous cell carcinoma
(Shi et al., 2012). As the development of lung squamous cell
carcinoma is closely associated with smoking, DNA repair is
increased in the lung tissue of smokers (Lieberman et al., 2017).
RADS52 encoded gene product can bind to the single stranded
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DNA terminal and can be involved in homologous
recombination and DNA repair in mammals. To sum up, the
relationship between RAD52 gene expression and the occurrence
of lung cancer may be due to its DNA repair function in lung
tissue.

The iron-binding protein encoded by IREB2 is involved in
maintaining iron homeostasis in human cells. IREB2 is located in
the susceptibility locus of lung cancer. A previous study showed
that iron levels in the lungs increase with age, with higher
concentrations in the lungs of smokers. Therefore, abnormal
IREB2 expression or function may lead to iron metabolism
disorder. Iron load leads to cell proliferation in cancer cell
lines, and cancer cell lines have a poor ability to regulate
IREB2 expression (Khiroya et al., 2017). In addition, GWAS
results illustrate that IREB2 has been shown to be associated
COPD and the expression of its protein product IRP2 is altered in
lung cancer patients carrying lung cancer (Fehringer et al., 2012).
The role of IRP2 is to control iron levels in cells by regulating the
input, output and storage of various iron proteins. Therefore, the
misexpression of IREB2 gene may alter intracellular iron levels
and hence lead to the occurrence of malignant tumors. If IRP2
gene can be targeted therapeutically, it may provide a new
approach for lung cancer treatment.

In summary, our study integrated genomic and transcriptome
information and found seven genes associated with lung cancer
by the SMR method, revealing possible regulatory mechanisms
that alter the expression of these genes and further pathogenicity.
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