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Abstract

Understanding why some wounds are hard to heal is important for improving care

and developing more effective treatments. The method of sample collection used is

an integral step in the research process and thus may affect the results obtained. The

primary objective of this study was to summarise and map the methods currently

used to sample wound fluid for protein profiling and analysis. Eligible studies were

those that used a sampling method to collect wound fluid from any human wound

for analysis of proteins. A search for eligible studies was performed using MEDLINE,

Embase and CINAHL Plus in May 2020. All references were screened for eligibility

by one reviewer, followed by discussion and consensus with a second reviewer.

Quantitative data were mapped and visualised using appropriate software and

summarised via a narrative summary. After screening, 280 studies were included in

this review. The most commonly used group of wound fluid collection methods were

vacuum, drainage or use of other external devices, with surgical wounds being the

most common sample source. Other frequently used collection methods were extrac-

tion from absorbent materials, collection beneath an occlusive dressing and direct

collection of wound fluid. This scoping review highlights the variety of methods used

for wound fluid collection. Many studies had small sample sizes and short sample col-

lection periods; these weaknesses have hampered the discovery and validation of

novel biomarkers. Future research should aim to assess the reproducibility and feasi-

bility of sampling and analytical methods for use in larger longitudinal studies.
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1 | INTRODUCTION

1.1 | Rationale

Wounds are disruptions to the integrity of the skin and may compro-

mise its structure and function, depending on wound severity.1
Abbreviations: BRC, Biomedical Research Centre; TIDieR, Template for Intervention

Description and Replication.
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Wounds can be classed as open or closed, with closed wounds having

their edges bought together and held (e.g. with stiches) and open, or

complex, wounds left to heal by secondary intention. Complex

wounds, which include leg, foot, and pressure ulcers, can take months

to heal and in some cases will not heal. The treatment of complex

wounds is typically time- and resource-intensive, and their chronicity

can be distressing for those directly affected.2–4 Biomarkers can give

an indication of a person's biological state and may be useful for

understanding, or predicting, the healing trajectory of a wound.5 Pro-

teomic profiling of the wound micro-environment is one avenue for

possible identification and validation of biomarkers6 as well as being

useful for uncovering the potential mechanism(s) of delayed healing.7

Therefore, investigating the proteomic profile of the wound environ-

ment has become an important focus in wound research.8–10

There are a number of sample types, which are collected for

investigations of the wound environment. Wound fluid is commonly

used for protein profiling and analysis11 and has many characteristics

that make it an ideal sample type for biomarker identification.12,13

Although there are multiple methods of collecting wound fluid for

research purposes, there has been no comprehensive overview, which

clearly presents their details and pattern of use. Furthermore, a large

dataset, which numerically summarises the collection methods used

for wound healing research, may be useful to ascertain whether more

stringent guidelines are required for standardisation of the current

methods.14 Therefore, a scoping review was performed to systemati-

cally map the methods used for wound fluid collection and analyses

and to identify whether any gaps in the research base existed.

1.2 | Objectives

The primary objective of the scoping review was to answer the

question:

1. Which sample collection methods have been used to collect

wound fluid for the analysis of protein expression or activity?

Three related sub-questions were further addressed as follows:

a. What study designs and sampling regimens have been used

(number of samples and frequency of sampling)?

b. How were wound fluid samples processed and stored before

proteomic analysis?

c. Which proteomic analysis methods have been used to analyse

wound fluid, and what is the relationship between collection and anal-

ysis methods?

2 | MATERIALS AND METHODS

A protocol was first developed outlining how the scoping review

would be carried out. This protocol was registered with the open sci-

ence framework on 27 May 2021 (https://osf.io/5qywx). The scoping

review was reported with reference to the PRISMA extension for

scoping reviews (PRISMA-ScR) checklist15 (Appendix S1).

2.1 | Study inclusion criteria

Studies were eligible for inclusion in this review if they used a sam-

pling method to collect wound fluid from any human wound for analy-

sis of proteins or for proteomics (including endogenous protein

expression/activity and expression/activity of their inhibitors). No

restrictions were applied to study design, sample size, publication date

or participant characteristics. Studies of other tissue types, e.g., from

biopsy, were excluded. Only primary publications were accepted;

however, reviews identified by the initial search were screened for

potentially relevant studies. Finally, only full-text articles written in, or

available in, the English language were included in this review.

2.2 | Search strategy

Three separate databases: Ovid (MEDLINE), Ovid (Embase) and EBSCO

(CINAHL plus) were searched on 21 May 2020. The search strategy was

developed by an information specialist and the search terms selected

based on the above inclusion criteria. This strategy allowed for inclusion

of a broad range of studies that could then be screened for relevance.

The search was initially split into two separate categories: open wounds

and surgical wounds. The initial search strategy used for each database,

including all search terms, is outlined in the supplementary material along

with the relevant search results (Appendix S2).

2.3 | Screening

All articles were de-duplicated in Endnote X9 (Clarivate Analytics,

Philadelphia, PA, USA) and the resulting citations were uploaded to

review software (Covidence; Covidence, Melbourne, VIC, Australia).

Titles and abstracts were then screened for eligibility against the

inclusion criteria by one reviewer (J.H.). Potentially eligible studies

were obtained as full-text articles for further screening against the

inclusion criteria. A second researcher (KTM) screened 10% of the

articles at the title and abstract stage and again at the full-text stage

to ensure consistency. Any study selection disagreements were

resolved by discussion and consensus of both reviewers.

2.4 | Data extraction and presentation

Data were extracted by one reviewer and charted using a piloted data

charting form. This form was jointly developed by all reviewers (J.H.,

J.C.D., N.C. and R.E.B.W.), using Microsoft Access (Microsoft, Redmond,

WA, USA), and created with reference to The Template for Intervention

Description and Replication (TIDieR) checklist and guide.16 The variables

extracted include article information (paper title, authors, and year), study

information (number of participants, number of wounds, type of wounds,

dressings used), collection method data (collection setting, method(s)

used, volume (ml) and total protein concentration (mg/ml) of wound fluid

collected, duration and frequency of collection, etc.), sample processing
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characteristics (processing requirements and storage conditions) and anal-

ysis methods (number of unique proteins identified and assay methods

used). The study period was also calculated from the charted data, as the

time between the first and last sample collection.

The data from these variables were then organised into groups

based on their key characteristics. We subsequently produced

10 wound type, six collection method and 12 assay method umbrella

groupings to summarise the data (Tables S1–S3). All subsequent data

analysis was carried out using these groupings.

The findings were then mapped and visualised using RStudio

(RStudio, Boston, MA, USA) and a descriptive numerical summary of

the data given as recommended by Arksey and O'Malley.17 Further-

more, a narrative summary outlines the significance of the findings as

well as the impact that they may have on future studies in this area.18

3 | RESULTS

Duplicates (1075) were removed from the 2160 potentially eligible

articles, leaving 1085 records for initial screening by titles and

abstracts. After excluding a further 520 records, we screened the full

text of 565 articles, with 280 included and subjected to data extrac-

tion (Figure 1).8,19–297 All data relevant for answering the questions

set in the scoping review protocol were extracted and are presented

in the supplementary material (Table S4).

3.1 | Overall study characteristics

The key characteristics of the included studies are summarised in

Table 1. Of the 280 included studies, 203 (73%) were conducted in

the last 20 years and only eight were published in 1990 or before.

Hospitals were the most commonly reported setting for sample collec-

tion, although 91 studies did not report where collection took place.

F IGURE 1 PRISMA flow diagram outlining how sources of
evidence were selected

TABLE 1 Summary of the key characteristics of all included studies

Study characteristics (N = 280) n

Publication year

1990 and earlier 8

1991–1995 24

1996–2000 45

2001–2005 34

2006–2010 50

2011–2015 67

2016–2020 52

Total 280

Setting

Burn centre 10

Community clinic 14

Hospital 115

Medical centre 32

Nursing facility 6

Other settingsa 3

Unknown setting 91

Wound healing centre 16

Total 287b

Number of participants

1–20 139

21–40 92

41–60 24

61–80 6

81–100 4

Over 100 5

Unknown 10

Total 280

Wound group(s) studied

Amputation or traumatic wound 15

Arterial ulcer 5

Artificial wound 13

Burn wound 34

Dental wound 11

Foot ulcer 37

Mixed vessel disease ulcer 9

Other woundsc 17

Pressure ulcer 34

Surgical wound 130

Unknown wound 8

Venous leg ulcer 96

Total 409d

a‘Other settings’ were defined as those that could not be classed in
any of the other setting groups.
bSome studies utilised multiple settings for collection. Therefore, the
total number of settings (n = 287) exceeds the total number of
studies (n = 280).
c‘Other wounds’ were defined as those that could not be classed in
any of the other wound groups.
dSome studies investigated multiple wound groups. Therefore, the
total number of wound groups studied (n = 409) exceeds the total
number of studies (n = 280).
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Of the 270 studies that reported sample size, over half had 20 par-

ticipants or fewer and only five studies reported recruitment of

100 participants or more. There was large variety in the wound types

studied, with a total of 409 wound groups reported across all

280 studies. There were eight instances where the type of wound

was not reported, leaving 401 wound groups which could be identi-

fied. The most commonly studied groups were surgical wounds and

venous leg ulcers, making up 32% (130/401) and 24% (96/401) of the

identified wound groups, respectively.

3.2 | Review questions

3.2.1 | Which sample collection methods have been
used to collect wound fluid for the analysis of protein
expression or activity?

Six distinct types of collection were identified (Figure 2A). Four stud-

ies used methods that could not be categorised into any of the six

groups19–22 and a further six studies did not report the collection

method used for a specific wound.23–28

Vacuum, drainage, or other external devices were used in 124 of the

280 (44%) studies and thus were the most frequently used methods of

sample collection22–27,29–146; the vast majority of sample collections using

this method (75%, 103/138), were from surgical wounds (Figure 2B).

Three other frequently used methods were extraction from absor-

bent material (31%, 86/280),8,20,37,81,89,136,138,144,146–223 collection

beneath occlusive dressing (23%, 65/280)22,24,27,29,33,36,41,43,53,62,64,66–

68,72,77,80,86,88,95,107,111,114,116,129,145,146,169,174,224–259 and direct collection

(12%, 34/280).23,26,42,53,99,113,198,225,242,245,248,251,260–281 The wound

groups most frequently sampled using extraction from absorbent

material or collection beneath occlusive dressing were ulcers:

either pressure, foot, or most commonly, venous leg ulcers,

whereas direct collection was more often used to sample

burns. The two other defined methods, swab technique

(4%, 12/280)129,214,227,282–290 and collection of wound washout

(3%, 8/280)273,291–297 were used in only a small proportion of all

included studies.

F IGURE 2 The number of studies
that utilised each collection method for all
included studies and all investigated
wound groups. Counts were carried out
for (A) the number of studies, which
utilised each collection method and
(B) the number and type of investigated
wound groups, which utilised each
collection method. Collection methods

and wound types were grouped into
classes as mentioned previously
(Tables S1 and S2) based on description
similarities. The total number of times a
collection method was used in
combination with all different wound
groups was calculated, as well as the total
number of times a wound group was used
in combination with all different collection
methods. As some of these studies used
multiple collection methods and multiple
wound groups, the totals for (A) (n = 339)
and (B) (n = 432) may exceed the total
number of studies (n = 280). AW, artificial
wound; AU, arterial ulcer; ATW,
amputation or traumatic wound;
BW, burn wound; CBOD, collection
beneath an occlusive dressing; CWW,
collection of wound washout; DW, dental
wound; DC, direct collection; EAM,
extraction from absorbent materials;
FU, foot ulcer; MVDU, mixed vessel
disease ulcer; OW, other wounds;
OCM, other collection methods; PU,
pressure ulcer; ST, swab technique; SW,
surgical wound; UW, unknown wound;
UCM, unknown collection method;
VDOED, vacuum, drainage or other
external device; VLU, venous leg ulcer
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What study designs and sampling regiments have been used (number

of samples and frequency of wound sampling)?

Tables 2 and 3 summarise the sampling regimens of all investigated

wound groups (n = 409) from the included studies. Of these wound

groups, 17 did not record the number of samples collected per

wound and 26 did not clearly report the time between each sample

collection, leaving a total of 392 and 383 investigated wound groups

with reported sampling details for the data presented in Tables 2

and 3, respectively. Most of the studies were cross-sectional and

took only one sample per wound. Where studies took multiple sam-

ples from each wound over time, the number of samples collected

was usually small, typically 2–3. Collecting over 10 samples per

wound was uncommon and only occurred in nine of the investigated

wound groups. The time between each collection, for longitudinal

designs, was typically 1–3 days accounting for 21% (82/383) of the

wound groups with reported sampling details. Consequently, most

TABLE 2 Number of samples collected per wound, for each wound type in all included studies, grouped by collection method

No. of samples
collected
(per wound)

Collection beneath
occlusive dressing

Collection of
wound washout

Direct
collection

Extraction from
absorbent
materials

Swab
technique

Vacuum, drainage or
other external device

Other
collection
methods

Unknown
collection
method

All
studiesa

% (nb) % (n) % (n) % (n) % (n) % (n) % (n) % (n) % (n)

1 54 (46) 58 (7) 83 (39) 49 (50) 78 (29) 41 (57) 60 (3) 83 (5) 53 (215)

2–3 18 (15) 33 (4) 2 (1) 10 (10) 19 (7) 16 (22) 20 (1) 0 (0) 14 (59)

4–5 6 (5) 0 (0) 11 (5) 15 (15) 0 (0) 9 (13) 0 (0) 0 (0) 9 (38)

6–10 6 (5) 0 (0) 0 (0) 11 (11) 0 (0) 8 (11) 0 (0) 0 (0) 7 (27)

>10 0 (0) 0 (0) 0 (0) 5 (5) 3 (1) 1 (2) 20 (1) 0 (0) 2 (9)

Variedc 5 (4) 8 (1) 2 (1) 8 (8) 0 (0) 17 (24) 0 (0) 17 (1) 11 (44)

Unknown 12 (10) 0 (0) 2 (1) 3 (3) 0 (0) 7 (9) 0 (0) 0 (0) 4 (17)

Total 100 (85) 100 (12) 100 (47) 100 (102) 100 (37) 100 (138) 100 (5) 100 (6) 100 (409d)

a‘All studies’ refers to the number of wound groups studied regardless of collection method used.
bn = number of wound groups studied.
c‘Varied’ refers to the collection of different numbers of samples for different wounds in a group.
dSome studies used multiple collection methods. Therefore, the sum total of wound groups studied for all collection methods (n = 432) is higher than the

total number of wound groups for all studies (n = 409), as some wound groups have been counted multiple times.

TABLE 3 Time taken between each sample collection, for each wound type in all included studies, grouped by collection method

Time between

sample
collections

Collection beneath
occlusive dressing

Collection of
wound
washout

Direct
collection

Extraction from
absorbent
materials

Swab
technique

Vacuum, drainage
or other external
device

Other
collection
methods

Unknown
collection
method

All
studiesa

% (nb) % (n) % (n) % (n) % (n) % (n) % (n) % (n) % (n)

<1 day 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 9 (12) 0 (0) 0 (0) 3 (12)

1–3 days 14 (12) 0 (0) 4 (2) 11 (11) 0 (0) 41 (57) 0 (0) 17 (1) 20 (82)

4–6 days 0 (0) 0 (0) 0 (0) 1 (1) 0 (0) 1 (1) 0 (0) 0 (0) 0 (2)

1–2 weeks 6 (5) 33 (4) 9 (4) 14 (14) 5 (2) 1 (2) 0 (0) 0 (0) 8 (31)

2–4 weeks 13 (11) 0 (0) 2 (1) 2 (2) 0 (0) 0 (0) 0 (0) 0 (0) 3 (14)

>1 month 5 (4) 0 (0) 0 (0) 3 (3) 0 (0) 0 (0) 0 (0) 0 (0) 2 (7)

Variedc 1 (1) 0 (0) 0 (0) 9 (9) 0 (0) 2 (3) 20 (1) 0 (0) 3 (13)

All at onced 0 (0) 0 (0) 0 (0) 6 (6) 0 (0) 0 (0) 20 (1) 0 (0) 2 (7)

N/Ae 54 (46) 58 (7) 83 (39) 49 (50) 78 (29) 41 (57) 60 (3) 83 (5) 53 (215)

Unknown 7 (6) 8 (1) 2 (1) 6 (6) 16 (6) 4 (6) 0 (0) 0 (0) 6 (26)

Total 100 (85) 100 (12) 100 (47) 100 (102) 100 (37) 100 (138) 100 (5) 100 (6) 100 (409f)

a‘All studies’ refers to the number of wound groups studied regardless of collection method used.
bn = number of wound groups studied.
cIf there was not a specific time between each collection which made up the majority, then the time was charted as ‘Varied’.
d‘All at once’ refers to all instances where multiple samples were collected at the same time.
e‘N/A' refers to all instances where only one sample was collected.
fSome studies used multiple collection methods. Therefore, the sum total of studied wound groups for all collection methods (n = 432) is higher than the

total number of wound groups for all studies (n = 409), as some wound groups have been counted multiple times.
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longitudinal studies had short study durations and small sample

sizes.

How are wound fluid samples processed and stored before proteomic

analysis?

Sixteen studies did not report how samples were processed and four

did not report storage conditions (Tables 4 and 5) leaving a total of

264 and 276 studies with reported sample conditions, respectively.

The majority of studies which reported these conditions processed

samples immediately (71%, 188/264) and used ultra-low freezer tem-

peratures of �70�C or �80�C for sample storage (68%, 189/276). A

further 16% (43/276) stored samples at �20�C and only four studies

kept samples at over 0�C. Finally, only 14% (38/276) of studies

processed and analysed samples immediately with no storage of sam-

ples before the initial analysis.

Which proteomic analysis methods are used on the collected samples

and does this influence the method of collection used?

Immunoassays were the most frequently used method of analysis for

all collection methods (Figure 3A). Other commonly used assay methods

included absorbance or enzyme activity assays, immunoblot and

zymography. Some of the assay methods were only utilised by studies

using specific collection methods. For example, immunoelectrophoresis

was only utilised for sample analysis when either direct collection or vac-

uum, drainage or other external devices were used to obtain samples.

The majority of studies used collection – assay combinations which, on

TABLE 4 The sample processing characteristics of all studies, grouped by collection method

Immediate

processing?

Collection beneath
occlusive dressing

Collection of

wound
washout

Direct
collection

Extraction from

absorbent
materials

Swab
technique

Vacuum, drainage

or other
external device

Other

collection
methods

Unknown

collection
method All studiesa

% (nb) % (n) % (n) % (n) % (n) % (n) % (n) % (n) % (n)

No 14 (9) 12 (1) 26 (9) 37 (32) 42 (5) 17 (21) 25 (1) 0 (0) 26 (73)

Yes 83 (54) 88 (7) 56 (19) 58 (50) 42 (5) 76 (94) 50 (2) 100 (6) 67 (188)

If possiblec 2 (1) 0 (0) 6 (2) 1 (1) 0 (0) 1 (1) 0 (0) 0 (0) 1 (3)

Unknown 2 (1) 0 (0) 12 (4) 3 (3) 17 (2) 6 (8) 25 (1) 0 (0) 6 (16)

Total 100 (65) 100 (8) 100 (34) 100 (86) 100 (12) 100 (124) 100 (4) 100 (6) 100 (280d)

a‘All studies’ refers to the number of wound groups studied regardless of collection method used.
bn = Number of studies.
c‘If possible’ refers to studies which attempted immediate processing but where it may not have been possible for all samples.
dSome studies used multiple collection methods. Therefore, the sum total of studies for all collection methods (n = 339) is higher than the total number of

studies (n = 280), as some studies have been counted multiple times.

TABLE 5 The sample storage conditions of all studies, grouped by collection method

Sample storage

conditions

Collection

beneath occlusive
dressing

Collection of

wound
washout

Direct
collection

Extraction from

absorbent
materials

Swab
technique

Vacuum, drainage

or other
external device

Other

collection
methods

Unknown

collection
method All studiesa

% (nb) % (n) % (n) % (n) % (n) % (n) % (n) % (n) % (n)

�80�C 43 (28) 75 (6) 24 (8) 59 (51) 42 (5) 44 (54) 25 (1) 33 (2) 48 (134)

�70�C 26 (17) 0 (0) 32 (11) 13 (11) 8 (1) 23 (28) 25 (1) 33 (2) 20 (55)

�20�C 20 (13) 0 (0) 21 (7) 15 (13) 17 (2) 16 (20) 25 (1) 17 (1) 15 (43)

4�C 2 (1) 0 (0) 0 (0) 1 (1) 8 (1) 1 (1) 0 (0) 0 (0) 1 (3)

16�C 0 (0) 0 (0) 3 (1) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (1)

Otherc 0 (0) 0 (0) 0 (0) 0 (0) 8 (1) 1 (1) 0 (0) 0 (0) 1 (2)

N/Ad 8 (5) 12 (1) 18 (6) 12 (10) 17 (2) 15 (19) 25 (1) 17 (1) 14 (38)

Unknown 2 (1) 12 (1) 3 (1) 0 (0) 0 (0) 1 (1) 0 (0) 0 (0) 1 (4)

Total 100 (65) 100 (8) 100 (34) 100 (86) 100 (12) 100 (124) 100 (4) 100 (6) 100 (280e)

a‘All studies’ refers to the number of wound groups studied regardless of collection method used.
bn = Number of studies.
c‘Other’ sample storage conditions were those that could not be defined by any of the other charted categories.
d‘N/A’ refers to studies which did not store their samples before processing or initial analysis.
eSome studies used multiple collection methods. Therefore, the sum total of studies for all collection methods (n = 339) is higher than the total number of

studies (n = 280), as some studies have been counted multiple times.
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average, identified relatively few unique proteins (Figure 3B). Whilst tech-

niques such as mass spectrometry, which when used in an untargeted

workflow aim for complete proteome coverage, were utilised by relatively

few studies.298 When it was used, mass spectrometry was most fre-

quently combined with collection via extraction from absorbent materials

and the average number of unique protein identifications was highest

when using this collection – assay approach. The number of unique pro-

teins identified in each study did not correlate with either volume (ml) or

total protein concentration (mg/ml) of wound fluid collected (Figures S1

and S2). Although these details of collection were only recorded for

100 and 41 of the 280 included studies, respectively.

4 | DISCUSSION

4.1 | Summary and implication of findings

We included 280 eligible studies, which collected wound fluid samples

from human participants. Mapping of the data has highlighted the

considerable heterogeneity present in wound fluid sampling, with at

least six methodologically distinct collection methods being used.

There was further variation within each of these groups with the

details of collection differing between studies. This heterogeneity of

activity and reporting impacts on confident comparisons between

studies: various sampling methods are likely to influence the recovery

of individual analytes, especially if processing and storage methods

were also disparate.129,299 Comparisons may only be possible

between studies using similar sampling, processing and storage

methods and could limit the value of the body of evidence.14

Some sample collection methods are more commonly used than

others. Rationales to support choice of collection method are not clear

but may be primarily driven by wound type. The most commonly used

collection methods – vacuum, drainage or other external devices – are

primarily used for collection of wound fluid from surgical wounds (the

most commonly chosen wound type). Drainage of fluid from surgical

wounds is already common clinical practise,300 where large volumes

of exudate can be produced thus providing readily available samples

for non-invasive collection.14 Exudate volume may also influence the

F IGURE 3 The number of studies
that utilised each combination of assay
and collection methods and the average
number of unique proteins identified by
each of these combinations. All studies
from which data was extracted were
included here (n = 280). (A) Counts were
carried out for the number of studies
which utilised each collection—assay

combination. Some studies may have used
multiple collection and/or assay methods.
Therefore, the total for all combinations
used (n = 561) may exceed the total
number of studies (n = 280). (B) The
average number of unique proteins
identified in studies which used each
collection—assay combination were
calculated. Mean averages for each
combination were rounded to the nearest
integer value. Combinations which were
not utilised by any studies, or where no
unique protein identifications were
reported, are denoted by a blank space.
AEAA, absorbance or enzyme activity
assay; BA, bioassay, CBA, cell-based
assay; C, chromatography; CBOD,
collection beneath an occlusive dressing;
CWW, collection of wound washout;
DC, direct collection; EAM, extraction
from absorbent materials; GE, gel
electrophoresis; IA, immunoassay;
IB, immunoblot; IE, immunoelectrophoresis;
MS, mass spectrometry; OAM, other assay
methods; OCM, other collection methods;
RBA, radiation-based assay; ST, swab
technique; UAM, unknown assay method;
UCM, unknown collection method;
VDOED, vacuum, drainage or other external
device; Z, zymography
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collection method used for other wound types. For example, direct

collection of wound fluid will typically require a larger volume than

other methods, which may explain its use in sampling from burns or

venous leg ulcers, which generally produce higher exudate volumes

than some other non-surgical wound types.301

Many of the included studies utilised a cross-sectional design,

with samples taken at a single time point.302 Studies designed in this

manner are usually easy and inexpensive to set up but are not an

appropriate design for assessing associations between potentially

prognostic factors (such as biomarkers) and clinical outcomes,303 nor

wound healing research more broadly. Timing of sample collection is

crucial, particularly as wounds will be in one of several possible

healing phases,304 with protein concentrations fluctuating accord-

ingly.222 Taking samples during only one of these phases will thus miss

the complexity inherent in the healing process and may provide mis-

leading results. Longitudinal follow-up is also crucial to enable mean-

ingful clinical endpoints such as complete wound healing to be

assessed.

Although some of the included studies160,164,231,237,290 did embed

sample collection in a longitudinal design, the number of samples col-

lected was typically low and the study periods short. This means

although the evidence base we have identified is large, it does not

identify an obvious wound fluid sampling approach for longer studies.

Therefore, further work could focus on exploring optimal wound fluid

sampling methods to be used in longitudinal studies in terms of being

valid and operationally feasible in clinical settings.

For untargeted proteomics and biomarker discovery studies, tech-

niques that allow for identification and measurement of large protein

numbers simultaneously, such as mass spectrometry or multiplex

immunoassays, are often favoured.305 The relatively low number of

studies which utilised such techniques therefore suggests that these

study types are in the minority for wound fluid investigations. As mea-

sured wound fluid characteristics (wound fluid volume and total pro-

tein concentration) did not affect the number of proteins identified by

a study, the choice of collection method may be due to other factors,

such as the type of wound sampled.

Future work in this area should focus on identification of valid

sampling approaches for wound proteomic studies ensuring that

research waste is minimised by learning from studies that have

already been conducted and reported. Whilst the 280 included stud-

ies in this scoping review represent large investment of time and other

resources, the heterogeneity and size and scope of the evidence limits

the value of the existing evidence for guiding sampling approaches for

future work, thus perpetuating these issues. To support the conduct

of rigorous biomarker identification and validation studies, sampling

and analytical processes need to be proven accurate, reproducible and

feasible for use in larger cohorts.306 There is also a lack of recognised

guidelines for the collection of wound fluid, using the included

methods. Therefore, the development of a set of sampling standards

may benefit further work in this area. Future studies that aim to link

wound fluid sampling analysis to clinical outcomes should also draw

on epidemiological as well as biological methodologies to ensure

application of rigorous prognostic research methodology.307

4.2 | Strengths and limitations

This review is the first of its kind to summarise the methods used to

sample, process, store and analyse fluid from human wounds. We

followed a systematic, pre-determined approach to the review, docu-

mented in a protocol, and ensured consistency by, for example, devel-

oping and piloting a data extraction form to best capture all data

relevant for addressing the review questions.

Some deviations were made from the original protocol on

commencement of data collection, extraction, and charting but

none of these were considered to introduce bias into the process.

Firstly, it was decided that related evidence that has supported

development or use of the method would not be included, as this

was outside the scope of the review; however, the data may be

useful for research in this area. Furthermore, animal studies that

used wound fluid for proteomics research were omitted, as data

from these were deemed not relevant in answering the questions

posed. As stated in the protocol, all articles not written in English

and those not accessible as full texts were removed during the

screening stage. These articles may include information relevant to

this scoping review but were removed due to time and resource

constraints.

Additionally, screening was carried out by one reviewer which

increases the risk of missing relevant studies308,309 and the possibility

of selection bias.310 To minimise the likelihood of this, a second

reviewer screened 10% of the articles at the abstract and full-text

stages. Disagreements were uncommon, but where these occurred

consensus between both reviewers was required before moving on

and these decisions influenced the rest of the screening process. Fur-

thermore, a single screening system was time intensive. To streamline

the process in future scoping reviews, it may be preferable to use

screening software, which employs a text-mining tool to prioritise

potentially eligible studies.311,312

As the amount of data extracted was relatively large, groupings

were created for some of the charted variables. Groups were created

to clarify and summarise the key elements and allow clear visualisa-

tion of the extracted data, although grouping of some of these vari-

ables may be viewed as subjective. To minimise the risk of bias, all

groupings were created by one researcher before consultation and

acceptance by two other researchers. However, grouping the data in

this way masks any variations within a group that may have been of

interest.

5 | CONCLUSIONS

This scoping review successfully mapped and numerically summarised

the methods used for collection of wound fluid samples for protein

analysis. This demonstrated that a large variety of collection methods

have been employed, with some methods being used far more fre-

quently than others. The use of specific methods may be dictated by

the type of wound under study and the clinical characteristics of that

wound. The majority of studies used small sample sizes and had short
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study periods, with many opting for a cross-sectional design. Many

proteomics studies, such as those for the identification and validation

of biomarkers, require larger longitudinal designs to yield useful

results. This review therefore highlights the requirement for progres-

sion in wound healing research to focus on larger cohort sizes over

extended study periods, to acquire robust data for wound proteomics

investigations. The data presented herein should reduce research

waste by allowing researchers to learn from past studies and to

address knowledge gaps in our existing understanding of complex

wounds. Future work should aim to rigorously assess sampling

methods and associated analytical techniques for use in large progno-

sis studies, with the possibility to create a set of sampling standards

to ensure consistency between studies.
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