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Abstract: Systematic kinetic modeling is required to predict frozen systems behavior in cold dynamic
conditions. A one-step procedure, where all data are used simultaneously in a non-linear algorithm,
is implemented to estimate the kinetic parameters of both primary and secondary models. Compared
to the traditional two-step methodology, more precise estimates are obtained, and the calculated
parameter uncertainty can be introduced in realistic shelf life predictions, as a tool for cold chain
optimization. Additionally, significant variability of the real distribution/storage conditions is
recorded, and must be also incorporated in a kinetic prediction scheme. The applicability of the
approach is theoretically demonstrated in an analysis of data on frozen green peas Vitamin C content,
for the calculation of joint confidence intervals of kinetic parameters. A stochastic algorithm is
implemented, through a double Monte Carlo scheme incorporating the temperature variability during
distribution, drawn from cold chain databases. Assuming a distribution scenario of 130 days in the
cold chain, 93 ± 110 days remaining shelf life was predicted compared to 180 days assumed based on
the use by date. Overall, through the theoretical case study investigated, the uncertainty of models’
parameters and cold chain dynamics were incorporated into shelf life assessment, leading to more
realistic predictions.

Keywords: cold chain; frozen foods; shelf life modeling; uncertainty; variability; joint confidence
intervals; Monte Carlo

1. Introduction

One of the principal goals in food science and industrial practice is to develop ways to improve
quality of foods, by means of controlling chemical, physical and microbiological changes during
processing and storage [1]. In most cases, food quality is gradually deteriorating, as food matrices
are physicochemically and biologically active systems [2]. Increased interest is focused on deriving
kinetic information for different food products, so as to calculate change rates, and thus be able to
estimate their shelf life. In order to be able to reliably assess product quality during processing and
storage, appropriate mathematical equations and kinetic parameters are necessary. Further to the
mean estimate of such parameters, complementary statistical evaluation methodology should also be
employed, to allow for reliable assessment of the uncertainty of calculations in the conditions of the
cold chain [3].

When reviewing literature on frozen food quality deterioration, most available experimental
data are provided at a reference temperature (e.g., −18 ◦C) [4] and single measurements at selected,
limited time points (e.g., after 6 and 12 months of storage) for different quality parameters of
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the food system [5–8]. Although practical for comparisons between different freezing processes,
this approach cannot be further used for a meaningful quantitative projection of the quality status at
other time-temperature regimes and most importantly at the dynamically variable conditions of the
different stages of the frozen distribution chain. A thorough experimental design and measurement of
quality and methodical application of kinetic principles leading to the development and validation of
mathematical models at a number of conditions covering the entire temperature domain of practical
application is required for accurate predictions on dynamic systems [9–11].

While not overlooking the complexity of phenomena including freeze concentration,
glass transition, ice crystallization, etc. [12,13] that influence the kinetics of quality loss during
storage of frozen matrices, in the majority of published works the “apparent kinetics” methodological
approach is used. This includes two main successive calculations. A primary kinetic model is developed
via best statistical fit to describe the selected quality parameter change as a function of processing time
or post-processing storage/distribution and a secondary model that reflects the effect of processing
factors and/or environmental conditions on primary model’s parameters [14]. Once validated, these
mathematical formulae can be a practical tool to predict post-processing quality status at any stage of
food storage.

Alternatively, the model parameters can be determined in a single step considering the same
isothermal dataset as a whole, by incorporating the secondary model equations into the primary model
and performing a non-linear regression [15]. Current publications have proposed and employed
one-step kinetic analysis [1,16–21]. Such approach circumvents the need for statistical estimation of
intermediate parameters by employing all the experimental data in a single non-linear algorithm [22],
with higher number of degrees of freedom, leading to more precise parameter calculation. The drawback
could be in the selection of the correct optimization algorithm and fitting criterion [1]. Authors in [23],
using a hypothetical isothermal inactivation data set, and applying first order kinetics, studied the effect
of the data regression technique for three least squares regression methods, based on the Arrhenius
model as the secondary model. It was concluded that non-linear least squares regression leads
to unbiased and precise estimation of the Arrhenius parameters, without performing unnecessary
intermediate calculations. In any case, this approach requires more sophisticated computational tools
and possibly the need to perform complicated iterative algorithms, a complexity that makes many
researchers prefer the much more convenient two-steps procedure.

Regardless of the applied methodology (2-step and 1-step), an often occurring problem in practical
applications is that the overall error of the primary and secondary kinetic equations is not accounted for.
By using the mean parameter values, the single estimates resulting from the models may encompass
serious uncertainty especially under variable and fluctuating conditions [24].

When reviewing frozen food kinetic studies, one could observe that there are weak points, mainly
related to the uncertainty of the model parameters based on the determination of the exact confidence
intervals [25]. Even if calculated, these ±95% confidence intervals of model parameters are not taken
into account when estimating the quality retention, at any given conditions. This deterministic
approach to predict the remaining shelf life is useful as a practical tool but caution should be applied as
far as its real accuracy. A systematic approach fully accounting for the statistical uncertainty of model
parameters, and allowing for increased reliability in shelf life estimations could be based on Monte
Carlo simulation techniques. Based on the employment of such tools, the stochastic variability and
uncertainty associated with various quality attributes of different food matrices [16,18,26–29] has been
successfully described in current scientific publications.

Going a step further to this kinetic approach, accounting for the ±95% confidence intervals of the
parameters of the secondary models would require taking into account the interrelation between them,
usually considered as ‘independent’, parameters. This correlation between the kinetic parameters,
e.g., between the pre-exponential constant and the activation energy, Ea, of the Arrhenius equation,
means that the confidence interval of one parameter depends on the value of the other parameter [30].
Joint confidence contours can be used to account for this statistical interdependence. Such plots
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provide information on the combinations of model parameter values, that are encompassed by the joint
confidence ellipsoid. This would allow for the exemption of combinations that fall outside the ellipsoid
that denotes the joint confidence boundary [31–33]. In recent literature, there are scarce studies that have
estimated and plotted the joint confidence intervals of kinetic parameters [25,31,34–38]. Such approach
would be particularly appropriate in order to account for the real uncertainty of model parameters, and
thus proceed to realistic and reliable shelf life estimations, using Monte Carlo simulation. Although
Monte Carlo techniques have been applied in recent literature for the probabilistic assessment of
stochastic variability and uncertainty associated with various quality attributes of different food
systems [16,18,26–29], the statistical interrelation of the values applied in the iterative simulation
process has not been considered.

Besides overlooking model parameter uncertainty (best expressed by the ±95% joint confidence
plots), another problematic practice in shelf life determinations and predictions refers to assumed fixed
temperature conditions at different stages of the cold chain, despite the well-known deviations that
occur. Therefore, it would be important to also account for the real variability of cold chain conditions.

The objective of this work was to holistically approach shelf life calculations through a double
Monte Carlo technique applied to frozen food kinetics data, taking into account both kinetic parameter
uncertainty and temperature variability at all stages of the actual cold chain. This will be demonstrated
via case study computations encompassing the effect of different scenarios of cold chain control.
The ultimate goal of this holistic approach is to obtain realistic shelf life predictions, examine the main
factors affecting shelf life calculations through a sensitivity analysis and provide a tool for effective
management and optimization of frozen food cold chain.

2. Materials and Methods

2.1. Basic Principles

According to the two-steps kinetic approach to model food quality degradation, the most
representative quality attributes are carefully selected, their change is systematically assessed over
time under isothermal storage conditions and an appropriate mathematical equation (primary model)
is applied in order to describe this change. Subsequently, a secondary model is chosen to depict the
effect of the most important factors (e.g., temperature), on the rate of changes. An alternative approach
involves the implementation of a 1-step analysis, through a non linear fitting algorithm that uses an
integrated unique equation, deriving more precise estimations [39].

Primary models describe the rate of loss of one or more quality factors, such as a nutrient or a
pigment or the rate of the production of an undesirable compound, such as an off-flavor or discoloration
(Equation (1)):

rA = ±
d(A)

dt
= k·(A)n (1)

where the quality index (A), that may represent a chemical, physical, microbiological or sensory
attribute, is chosen to most representatively describe the quality degradation of the food system
studied. The constant k is the reaction rate constant and n is the apparent order of the respective
reactions. In order to calculate the values of k and n of Equation (1), the change of the experimentally
measured values of (A) should be appropriately fitted with time; a mathematical function, frequently
called “the Quality function” (Q(A)) vs. time is then derived [40], that allows for quality quantification.
This function incorporates the dependency of quality change on several intrinsic and extrinsic factors,
through their effect on the reaction rate constant, k (k = f (Ci, Ej), with Ci describing factors related to
food composition and Ej representing different environmental factors [41,42].

As far as secondary models are concerned, the Arrhenius equation (Equation (2)) is mostly applied
to describe temperature dependence of quality changes of frozen foods [25]. Nonetheless, there
have been serious arguments highlighting its restrictions in describing frozen matrix behavior in the
temperature range near the glass transition temperature [43–45]. In [46,47], the pros and cons of the
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alternative secondary models often used for frozen foods, namely Arrhenius and WLF, are presented
in detail, underlying their cautious applicability at the lower boundary of the temperature range
investigated, since their logarithmic functions render them sensitive to rates.

k = kref

[
−Ea

R

(
1
T
−

1
Tref

)]
(2)

where kref is the rate constant at the reference temperature Tref (K), R: the universal gas constant and
Ea: the activation energy (J/mol or cal/mol).

In the case of frozen foods, the time of experimental measurements for a full kinetic study is often
times impracticably long. In order to expedite the experimental procedure, without jeopardizing the
accuracy of the results, the two-step kinetic methodology is implemented via the Accelerated Shelf
Life Testing (ASLT) approach [48,49]. The value of the Q(At) quality function at time t, defined by
Equation (1) in the case of isothermal conditions, is calculated, with T(t) describing the change of
temperature as a function of time:

Q(At) =

∫ ttot

0
k[T(t)]·dt = keff·ttot (3)

where keff is the value of the rate of the quality loss reaction at the effective temperature Teff. The Teff term
represents the constant temperature that results in the same quality value as the variable temperature
function over the same time period, which equals ttot.

If the T(t) distribution is discretized in small time increments ti of constant temperature Ti (with∑
ti = ttot), and applying the Arrhenius equation as the secondary model, then Equation (3) can be

alternatively written as Equation (4):

kref·
∑

i

[
exp

[
−

Ea

R
·

(
1
Ti
−

1
Tref

)]
·ti

]
= keff·ttot (4)

From Equation (4), the value of keff can be estimated and subsequently, from the Arrhenius model,
the effective temperature Teff can be calculated.

2.2. Model Development and Determination of the Uncertainty of Kinetic Parameters

As a case study to test the proposed methodology, data from literature on the shelf life of
frozen green peas was used [50], where Vitamin C loss was systematically measured at five constant
temperatures. A first-order reaction order (primary model) was established for this chemical reaction
(Equation (5)) and the Arrhenius equation was applied to efficiently quantify the temperature effect
(secondary model), (Equation (2)):

C = C0e−kvitCt (5)

where C0 the initial Vitamin C concentration (mg/100 g of food), kVitC is the reaction rate of the
Vitamin C oxidation at a fixed temperature and at Equation (2) Tref for frozen foods equals to −20 ◦C.

If a one step analysis is performed, a single equation (Equation (6)) that integrates both primary and
secondary models (Equations (2) and (5)) is used and a non-linear regression is applied (SYSTAT 8.0).

C
C0

= exp
((
−kref· exp

(
−Ea

R
·

(
1
T
−

1
Tref

)))
·t
)

(6)

then, one can estimate the mean value, as well as the 95% Confidence Intervals (C.I.) of the kinetic
parameters, namely Ea (in kJ/mol) and kref (at −20 ◦C, in days−1).

In order to estimate the Confidence Intervals of Equation (6) one needs to calculate the first
derivative of the dependent variables. A model is linear in a parameter if the derivative with respect
to that parameter is not a function of that parameter [25]. In the studied case, our model is non
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linear (since both
ϑ

(
C

C0

)
ϑkref

= f(kref) and
ϑ

(
C

C0

)
ϑEa

= f(Ea)); then the parameter cannot be solved for directly,
but only through a non linear regression. The estimation of such non symmetric confidence intervals is
not straightforward and the extent of their asymmetry depends on the nonlinearity of the function and
the number of data [38]. As stressed out in [30], it is essential to describe the methodology used for
confidence intervals calculation, in order to be able to interpret their meaning. In this work, MATLAB®

was used and appropriate code was written, in order to derive the asymptotic standard errors (SE),
calculated by Equation (7) based on the t-parameter for a confidence level (±SE·t(1–0.5a),n) ([1,51]). SE2

kref
SEkref,Ea

SEkref,Ea SE2
Ea

 = (
JT
·J
)
·

SSE
n− p

(7)

where J is the Jacobian matrix (Equation (8)), which is calculated by the partial derivatives of the model
output with respect to the model parameters estimated at each measurement point, p is the number of
estimated parameters (p = 2, in this work), n is the number of observations, the superscript T denotes
the matrix/vector transpose operator and SSE represents the sum of standard errors.

J =


ϑY1
ϑkref

ϑY1
ϑEa

...
...

ϑYn
ϑkref

ϑYn
ϑEa

 (8)

where Y = C
Co

The 95% C.I. are calculated based on Equations (7) and (8) [38], and the relative MATLAB command
nlparci([kref,ea],res,j), where the res term, representing the Residuals, is calculated using Equation (9)
at each experimental point, i:

Residuali =
( C

Co

)
obS,i
−

( C
Co

)
pred,i

(9)

The confidence level selected actually expresses the probability that the confidence interval
produced will contain the true parameter value. For example, a 95% confidence interval covers 95% of
the normal curve and the probability of obtaining a value outside of this area is less than 5%. Therefore,
it is assumed that the Arrhenius parameters Ea and kref can be described by a normal distribution
curve, rather than a single value. Implementing this assumption, the variability calculated by the
model of Equation (6) is incorporated within calculations of the shelf life of frozen green peas.

The next step in this analysis of the 1-step non-linear regression on the isothermal data, is to
investigate the covariance of the simultaneously estimated parameters, by constructing the, joint
confidence regions, according to the expression [52] (Equation (10)):

SSE ≤ SSE(θ)
{

1 +
p

n− p
F(p, n− p, 1− a)

}
(10)

where SSE(θ) is the least sum of squared differences, at optimal parameter values, and F is the upper
1 − a quantile for an F-distribution with p and n − p degrees of freedom.

All combinations of kinetic parameters with sum of squares less than or equal to the calculated
SSE(θ) values will be inside the joint confidence region. The confidence regions obtained with this
method (Equation (9), called likelihood confidence regions, can be disjoint and unbounded [32]. All of
our calculations were based on the iterative method of [53], which is described in [38].

2.3. Determination of the Variability of Temperature Conditions in the Cold Chain

When addressing the issue of shelf life determination, most studies on frozen foods refer to an
average temperature throughout product handling in the cold chain. This oversimplistic assumption,
besides being false, could possibly lead to unrealistic predictions of quality change and remaining
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shelf life, at any point of the cold chain. Consequently, it is crucial to account for the real temperature
history of the product in the cold chain (including fluctuations and abusive conditions), in order to
be able to predict in a more accurate way quality changes, at any point of the cold chain (at storage
or distribution). Based on field studies of the real handling of frozen foods in the cold chain [54–56],
a variable temperature environment was recorded, which often included stages of abusive storage
or transport/transfer conditions. In order to estimate in a realistic way the loss of quality parameters
at each stage, and predict accurately the remaining shelf life at the end of the cold chain, it is
important to fully account for the effect of temperature history by incorporating the fluctuations
occurring in the real cold, post-processing chain, and the conditions’ variability within the model
prediction algorithm. A very useful tool that provides plenty of data concerning frozen foods
handling, in all distinct stages of storage/transport/distribution is the FRISBEE project cold chain
database (www.frisbee-project.eu/coldchaindb, [55]) 1841 records of production warehouse, 53 records
of distribution warehouse, 636 records of retail display and 354 records of domestic freezers were
retrieved and statistically analyzed, in order to incorporate temperature variability within shelf life
predictions, at any point of the cold chain. In Figure 1, temperature distribution of the three main
stages of frozen food handling is depicted, based on the aforementioned statistical treatment of the
database records.
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Figure 1. Temperature distribution during (a) production/distribution warehouse, (b) retail display
and (c) domestic storage for frozen foods handling (FRISBEE database).

2.4. Shelf Life Assessment and Uncertainty Determination

The next step in the proposed methodology involves a Monte Carlo scheme. applied through a
FORTRAN algorithm. This iterative algorithm is applied based on the previous assumption that Ea

and kref variability are effectively represented by a normal distribution [14,25,57]. At each iteration,
a random number is generated through an appropriate FORTRAN routine function, and a value is
assigned to Ea and kref (independently the one from the other). The exact parameter value assigned
is based on the discretization of the corresponding normal distribution curve (Figure 2a), and thus
the corresponding value frequency. The construction of such Gaussian distributions is based on the
estimate of the mean value, and the ±95% C.I. of the kinetic parameters of Equation (6).
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Figure 2. (a) Normal distribution of Ea and kref values, based on the mean value and the standard
deviation estimated by the one-step non linear analysis and (b) Shelf Life estimated at −18 ◦C.

Going further with analyzing kinetic data, one cannot overlook the potential correlation between
the kinetic parameters (Ea and kref), which means that the confidence interval of one parameter depends
on the value of the other parameter. Therefore, joint confidence regions were derived using MATLAB
and Equation (9); this information was used in order to exclude some of the pairs of values of Ea-kref,

obtained by the random algorithm of Monte Carlo.
A final step for improving shelf life assessment is based on the incorporation of temperature

variability, as depicted in Figure 1, within the Monte Carlo scheme. Applying this nested iterative
algorithm by means of a FORTAN code, at each iteration, a double scheme is applied: (1) as already
discussed, a random number is generated and a value is assigned to Ea and kref based on the
discretization of the corresponding normal distribution curves (2) pairs of Ea and kref that do not fall
within the estimated joint confidence intervals are excluded from further analysis and (3) a nested
Monte Carlo algorithm is applied, where temperatures at each of the three stages are randomly
selected based on the discretization of the distribution curves of Figure 1. With all parameter value
assigned, Vitamin C retention is then calculated, based on Equation (6), and the shelf life can be
accordingly estimated.

3. Results

3.1. Application of the Holistic Approach to Shelf Life Prediction in the Frozen Green Peas Cold Chain

In order to test and validate the abovementioned methodology, results from an isothermal study
(storage at 5 sub-zero temperatures) of frozen green peas [45] were used and a global 1-step procedure
was implemented, using Equation (6). Based on 50% Vitamin C loss, green peas shelf life can be predicted
at any arbitrary reference temperature, using Equations (2) and (5). Considering the single value
estimates of the Arrhenius parameters, Ea = 102.31 ± 17.91 kJ/mol and kref = 0.00196 ± 0.000795 days−1

(as calculated out of a two step procedure and a linear regression analysis), the frozen green peas
shelf life is estimated at −20 ◦C at 390 days (and 248 days at −18 ◦C). Results from a one step analysis,
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namely Ea = 104.24 ± 11.34 kJ/mol and kref = 0.00177 ± 0.000494 days−1, are slightly different from
those estimated via the 2-step analysis. Using a one step analysis, frozen green peas shelf life is also
estimated at −18 ◦C at approximately 250 days. It can be also observed that when applying the two-step
approach, the 95% C.I., (calculated via regression analysis) are usually wider than those calculated
with a global-one step approach [22].

As discussed earlier, the next step involves the application of a Monte Carlo simulation scheme,
assuming that Ea and kref variabilities are described by a normal distribution (Figure 2a). The Gaussian
distributions illustrated in Figure 2a were constructed based on the estimate of the mean value,
(for example Ea = 104.24 kJ/mol) and its standard deviation, (in the case of Ea, σ = 5.8 kJ/mol). The
same procedure was followed to construct the corresponding distribution curve for kref.

The Monte Carlo algorithm aimed at ascribing specific values to the Ea and kref parameters, based
on their normal distribution curve, in order to estimate the shelf life (Equation (6)) at an arbitrarily
chosen temperature of −18 ◦C, using the 50% Vitamin C loss as the acceptability limit. Results for Shelf
Life (SL) calculation, including its uncertainty, are depicted in Figure 2b, expressed as a frequency curve
with a mean value (SL estimate) ± 95% C.I., equal to 254.2 ± 29.9 days, giving a more realistic prediction
than the single value estimation of 250 days, based on Arrhenius parameters’ mean estimated values.
The necessary number of Monte Carlo simulations for a specific kinetic model is not clearly defined in
literature (ranging from some hundreds to few thousands), since there are other factors, such as the
degrees of freedom, the range of inputs, possible parameter interactions, etc., that affect algorithm
performance [58]. However, the number of 104 (applied in this study) seems to be a frequently used
number of iterations [59,60] and an acceptable compromise between computing power/time and
result accuracy.

The aforementioned procedure is in agreement with the approach described in [29], where the
confidence intervals of Ea and kref parameters of the Arrhenius equation were estimated for degradation
of cyanidins under dynamic conditions, by generating artificial data of the initial measurements,
superimposing the experimental error. The use of a Gaussian distribution is a common practice in
food engineering [18,61]; however, the same methodology can be implemented in case a different
probability distribution describes better data variability [28,62–66].

As a next step, the joint confidence intervals estimated by MATLAB and Equation (9) (Figure 3a),
were also considered and, consequently, some pairs of Ea-kref, values obtained by the random algorithm
of Monte Carlo, were excluded. Given these pairs of Ea and kref, the shelf life at −18 ◦C (arbitrarily
chosen) is calculated, which is described by a distribution even narrower than the one of Figure 2b.
(Figure 3b, blue line), deriving a shelf life of 248.5 ± 21.3 days (95% C.I.).Foods 2020, 9, x FOR PEER REVIEW 9 of 16 
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Figure 3. (a) Joint Confidence Intervals, depicting the correlation between parameters Ea and kref and
(b) Shelf Life estimated at −18 ◦C, taking into account the correlation of the two kinetic parameters ().
Black line represents the SL distribution without considering Ea-kref correlation, blue line after excluding
the Ea-kref pairs of Figure 3a.
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In order to implement this methodology in the real cold chain, and make an attempt to expand it
by introducing the recorded temperature variability, a 130-days distribution scenario of frozen green
peas is assumed, including 60 days at the warehouse (Figure 1a), 40 days at the retail level (Figure 1b)
and 30 days at the domestic freezer (Figure 1c). The main goal is to predict the remaining shelf life of
such a product prior to consumption, taking into account not only the estimated uncertainty of kinetic
parameters, but also temperature variability at each stage of the cold chain (Figure 1). When only
average temperatures are introduced in Equation (6), and mean estimates of kinetic parameters Ea-kref

are considered, the remaining Shelf Life after 130 days of handling is estimated at 106 days (at a
‘reference’ temperature of −18 ◦C), (black line, Figure 4a).
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Figure 4. (a) Vitamin C degradation, for different temperature scenarios of the cold chain of frozen
green peas (black line represent the C/Co value for the average temperatures of all stages) and (b)
Remaining Shelf Life estimated at a reference temperature of −18 ◦C, for the 2000 different distribution
scenarios through Monte Carlo technique (kinetic parameters Ea-kref in Equation (6) assumed fixed).

In Figure 4a, the degradation of Vitamin C is depicted vs. time, for different handling scenarios,
throughout the frozen green peas cold chain, based on temperature data retrieved from Figure 1a–c.
Applying a Monte Carlo iterative scheme, 104 different temperature cases (3 of the random scenarios
are depicted in Figure 4a, using different colours) were ran and the remaining shelf life at the end of
the 130 days cycle was calculated (Figure 4b). In this approach, it is important to bear in mind that
kinetic parameters Ea-kref in Equation (6) were assumed constant, with fixed values equal to the mean
estimates of regression analysis (Figure 2a).

Finally, in a further attempt to improve quality change predictions, and therefore obtain more
realistic estimations of the remaining shelf life, kinetic parameter uncertainty was also incorporated
in a double Monte Carlo scheme throughout the 130 days cycle (Figure 5), and thus all sources of
‘error’ (parameter uncertainty and temperature variability) were integrated in a holistic approach of
kinetic data analysis. In this case, temperature variability is taken into account (by a Monte Carlo
iterative algorithm using the temperature distributions of Figure 1a–c), and a second, ‘nested’ Monte
Carlo scheme is used during each of the three distinct stages where a random pair of Ea-kref is selected
considering not merely the distributions depicted in Figure 2a, but also the intercorrelation between
these parameters, as depicted in the Joint Confidence Intervals (Figure 3a). Having incorporated within
the model both temperature variability and parameter uncertainty, remaining shelf life predictions
become significantly broader, as it is clearly depicted in Figure 6, where results deriving from different
approaches are comparatively depicted. When all possible sources of error are incorporated, remaining
shelf life is estimated at 93.4 ± 110.5 (days), vs. 106.0 ± 71.3 (days) when only temperature variability
is considered, vs. 112.4 ± 26.0 when temperatures are assumed constant during the three stages (and
equal to the mean estimate of each distribution of Figure 1), accounting only for parameter uncertainty.
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All these predictions can also be compared to the mean value predicted (106 days) without considering
any source of error.
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3.2. Effect of Parameter Uncertainty

In this case, it can also be observed that the prevailing source of error is mainly attributed to the
temperature variability, and less to the kinetic parameter uncertainty; this could be justified by the
relatively narrow ±95% confidence intervals of the kinetic parameters, Ea-kref, as obtained by the 1-step
non linear regression, based on the Vitamin C measurements. If an artificial error is introduced in raw
data, and the derived ±95% confidence intervals (using MATLAB) are assumed broader (as depicted in
the joint confidence region within Figure 7a), it can be observed that the contribution of parameter
uncertainty becomes more pronounced, than that depicted in Figure 6. Similarly, if initial measurements
are improved so as to provide much narrower ±95% confidence intervals (as depicted in the joint
confidence region within Figure 7b), one could conclude that parameter uncertainty introduces a
relatively small error in comparison to the effect of the storage temperature variability that could
practically be neglected.
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3.3. Effect of Temperature Variability

Based on our results, temperature conditions throughout the current cold chain, deviating from
the ideal ones, have an important impact on overall uncertainty, when assessing the quality status at
any point of distribution. A ‘what if’ analysis was also performed regarding temperature variability
(Figure 8), assuming a narrower distribution (red, narrower distribution within both Figure 8a,b),
during storage at the domestic freezer (3rd stage), which is found to be the weakest link of the chain.
As it can be seen in Figure 8, the remaining shelf life is estimated to be 103.9 ± 74.8 days (Figure 8a,
narrower temperature conditions during home storage), and 113.1 ± 65.6 days (Figure 8b, assuming
reference conditions during home storage), a quite narrower, improved distribution compared to the
93.4 ± 110.5 days, derived when temperatures during the third stage followed the broad, often abusive
distribution of Figure 1c (based on real data).
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4. Conclusions

When revisiting recent literature on kinetics of food-related reactions, limited number of
investigations have studied the significance of statistical aspects, such as the effect of kinetic parameter
uncertainty. Additionally, few researches take into account quantitatively the significant temperature
variability, recorded in all stages of the actual cold chain of frozen foods. Most physicochemical
properties of raw food materials, even of the same species or cultivar, are found to assume values in
a wide range, a variability that is difficult to be quantified and properly introduced within kinetic
models. Therefore, next to the inconsistency of the initial quality, it is important to investigate in
depth the significance and the impact of parameters uncertainty (as expressed by their 95% Confidence
Intervals), as well as temperature conditions’ variability, especially when the goal is to derive realistic
model predictions. Reporting of parameter uncertainty is essential when kinetic results are presented.
The use of computational tools such as Monte Carlo technique can provide a practical approach in
providing an integrated picture of the impact of both experimental and statistical uncertainties as well
as the potential conditions’ dynamics.

In this work, by applying the proposed technique with the double Monte Carlo scheme on
Vitamin C degradation of frozen green peas, a broader, more realistic prediction of the remaining shelf
life was obtained based on the fact that the model incorporates more realistic conditions, as model
validation was not implemented in this study. The aforementioned methodology allows also for a
sensitivity analysis, revealing the importance of reducing the 95% Confidence Intervals of the kinetic
parameters (possibly by optimizing the experimental design), and/or by improving temperature
conditions of the cold chain, actions that would lead to narrower distributions of the remaining shelf
life, with less unacceptable products.

As a final remark, it should be pointed out that, although the preceding analysis was exemplified
by application on a first-order reaction (Vitamin C loss) and temperature dependence modelled by the
Arrhenius equation, the same approach, using identical steps of methodology, can be implemented
when an alternative primary or secondary model is used to describe kinetic data.
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