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Luis Ricardo Linard Martins 1,†, Kinga Grzech-Leśniak 2,† , Nidia Castro dos Santos 1,3 , Lina J. Suárez 1,4 ,
Gabriela Giro 1,*, Marta Ferreira Bastos 5 and Jamil Awad Shibli 1,*

1 Department of Periodontology, Dental Research Division, Guarulhos University, Guarulhos 07023-070, Brazil;
ricardo.linard@hotmail.com (L.R.L.M.); nidia.castro@ymail.com (N.C.d.S.); lijsuarezlo@gmail.com (L.J.S.)

2 Laser Laboratory at Dental Surgery Department, Medical University of Wroclaw, 50-425 Wroclaw, Poland;
kgl@periocare.pl

3 Center for Clinical and Translational Research, The Forsyth Institute, Cambridge, MA 02142, USA
4 Departamento de Ciencias Básicas y Medicina Oral, Universidad Nacional de Colombia, Cra 45 # 26-85,

Bogota 11001, Colombia
5 Programa de Pós Graduação em Ciências do Envelhecimento, Universidade São Judas Tadeu, Rua Taquari,

546, Sao Paulo 03166-000, Brazil; martafbastos@gmail.com
* Correspondence: gabi.giro@gmail.com (G.G.); jshibli@ung.br (J.A.S.)
† These authors contributed equally to this work.

Abstract: Peri-implantitis is a plaque-associated condition characterized by mucosal inflammation
and subsequent progressive loss of supporting bone; it is caused by bacterial biofilm, but the host
response triggered by bacterial stimulation promotes the release of cells and mediators that culminate
in tissue destruction. The Aryl-hydrocarbon Receptor (AhR) is associated with IL-22 production by
Th22 and Th17 CD4+ Th cells. The presence of IL-6 may promote the Th22 phenotype. The present
case-control study evaluated the gene expression of AhR, IL-22, and IL-6 in the peri-implant tissues
of healthy and peri-implantitis patients. Tissue biopsies were collected from thirty-five volunteers
(15 healthy and 20 with peri-implantitis). A real-time PCR reaction was utilized to assess the AhR, IL-
22, and IL-6 gene expression levels relative to the reference gene (GAPDH). The results were analyzed
using the Mann–Whitney test with a significance level of 5%. Higher levels of gene expression of
AhR and IL-6 were detected in peri-implantitis tissues. The IL-22 gene expression levels did not differ
between groups. In conclusion, higher gene expression levels for AhR and IL-6 were detected in the
soft tissues of peri-implantitis patients. IL-22 did not vary between conditions, which may indicate
the loss of the immunomodulatory role of IL-22 in periimplantitis.

Keywords: gene expression; peri-implantitis; Th22 lymphocytes; transcription factor aryl-hydrocarbon
receptor; interleukin-6; interleukin-22

1. Introduction

Dental implants have been used as a method for the rehabilitation of missing teeth, in
which the long-term results reach notorious levels of success [1]. Despite well-established
protocols, some failures can occur and lead to implant loss [2–4]. Dental implants, like teeth,
can be colonized by bacteria [5]. The establishment of a submucosal dysbiotic process [6]
causes an inflammatory response in the body that leads to alterations of the tissues that
protect and support the implants [7], triggering clinical signs of illness. Two inflamma-
tory diseases (mucositis and peri-implantitis) mediated by bacterial dysbiosis have been
described around dental implants [8].

The knowledge of the factors that mediate the pathogenesis of peri-implantitis has
recently evolved to the point of suggesting a division of the peri-implant conditions into
subtypes according to the identified triggering factors [9,10]. Thus, confirming that there
is an infectious origin in peri-implantitis, the pathogenesis of the disease in the context of
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the microbiome/host interrelation are beginning to be elucidated, as well as the role of
microorganisms in the functioning of epithelial barriers immunity around implants.

For periodontitis, the dysregulation of the immune response has been described as an
important part of tissue damage progression [11]. That regulation of immune response is
given by cytokines with pro- and anti-inflammatory characteristics [12]. An imbalance in
the production of cytokines can result in a destructive and progressive inflammatory re-
sponse, thus determining the severity of the disease [13]. This may also play a fundamental
role in the establishment and progression of peri-implant disease.

The aryl hydrocarbon receptor (AhR) is a latent, evolutionarily highly conserved cyto-
plasmic transcription factor whose expression is variable (and poorly characterized in many
tissues) but which is highly expressed in epithelial barriers, especially in intestinal epithelial
cells (IECs) and in cells of the gut-associated immune system (organ barriers) [14]. It is
activated by low molecular weight molecules (barrier permeable) of different chemical na-
ture, both xenobiotic and endogenous, which produces cell/ligand-specific transcriptomic
changes, as well as changes in cell functions [15].

It has been documented that AhR could be involved in disease tolerance and may
function as a sensor of bacterial danger [16]. There may be crosstalk (complex formation)
with other proteins, including nuclear factor-kB (NFkB). AhR deficiency has been related to
a decrease in IL-22 levels and therefore susceptibility to infections [17].

IL-22, which is a member of the Il-10 family, is recognized for its dual character,
that is, protector and mediator of the pathogenesis of multiple infectious/inflammatory
diseases [18,19]. As a protector agent it is part of the defense mechanisms against pathogens,
as it acts on epithelial cells and induces their production of antimicrobial peptides [20,21],
contributes to wound healing, and stimulates tissue regeneration [22,23]; on the other hand,
as a mediator of pathogenic process it has been associated with various inflammatory
diseases due to their association with osteoclastic differentiation and resorption activity
(In vitro) [24].

Some non-lymphoid cells (fibroblasts, mast cells, macrophages, and neutrophils) can
also produce IL-22 in different diseases [25,26], and innate lymphoid cells (ILCs), which
reside at barrier surfaces, are also a main source of this cytokine [18].

It is also reported that AhR in the presence of immunological stimulation by proin-
flammatory cytokines or activation of Toll receptors regulates the expression of cytokine/
chemokine genes, especially IL-6 [27], contributing to the function of the epithelial barrier.

The aim of the present case control study was to investigate the levels of gene ex-
pression of Ahr, IL-22, and IL-6 in the peri-implant soft tissues of peri-implantitis and
healthy patients.

2. Materials and Methods
2.1. Study Population

This case-control study included partially or totally edentulous individuals who pre-
sented at least one implant-supported restoration in function for more than 2 years, as
previously described [28]. This earlier study evaluated the levels of gene expression of
the levels of RORγT and FOXP3 gene expression around healthy and diseased implants.
Briefly, for inclusion in the study, the patients had to meet the following inclusion criteria:
absence of lesions in the oral cavity, good oral hygiene, and indication of anti-infective
surgical treatment for peri-implantitis (peri-implantitis group). Exclusion criteria were
pregnancy or lactation; systemic diseases that could interfere with peri-implant tissues
(osteoporosis, immune disorders, hepatitis, diabetes); use of systemic antibiotics 3 months
prior to the sample collection; chronic use of medications that could interfere with immune-
inflammatory response (e.g., corticosteroids, non-steroidal anti-inflammatories, immuno-
suppressive drugs, bisphosphonates) 3 months prior to the sample collection; chronic
use of antimicrobial rinses (e.g., chlorhexidine, essential oils, cetylpyridinium chloride,
triclosan). The experimental protocol was approved by the Research Ethics Committee of
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the University of Guarulhos (CAAE #0007.0.132.000-10) and the patients signed a free and
informed consent form.

2.2. Clinical Parameters

Measurements of bleeding on probing (BoP), suppuration, probing depth (PD) in mm,
and clinical attachment level (CAL) in mm were determined at six sites per implant for all
the subjects included in the study. The PD and CAL measurements were recorded to the
nearest mm using a North Carolina periodontal probe (PCPNU-15, Hu-Friedy, Chicago,
IL, USA).

2.3. Peri-Implant Tissue Collection

The peri-implant tissue collection sites met the following criteria:

• Healthy group: dental implants scheduled to surgical procedures for non–disease-
related reason procedures such as dental implant placement next to other implants,
soft tissue grafting to modify peri-implant tissue phenotype.

• Peri-implantitis group: In order to obtain a biopsy of an area representative of the peri-
implant inflammatory process, the mucosal tissue was removed around the implant
with advanced peri-implantitis (PD≥ 5 mm, bleeding on probing and/or suppuration,
mobility and impairment of 2/3 of bone support). The tissue around a single implant
was obtained from each individual with peri-implantitis.

2.4. Gene Expression Analysis
2.4.1. RNA Extraction

Immediately after the biopsies were performed, the peri-implant mucosal tissue
samples were packed in an RNAlater ® solution (Ambion Inc., Austin, TX, USA) to prevent
RNA degradation. Samples were incubated at 4 ◦C for 24 h and then stored at −20 ◦C until
extraction. First, the RNA later solution was aspirated, and the tissue was packaged in
liquid nitrogen for shredding. The triturated sample was then placed in TRIZOL reagent
(Gibco BRL, Life Technologies, Rockville, MD, USA), homogenized for 30 s, and incubated
for 5 min at room temperature. After this period, chloroform (Sigma, St. Louis, MO, USA)
was added, and the samples were vortexed and centrifuged at 11,500 rpm for 15 min at 4 ◦C.
The aqueous portion was transferred to another tube to which isopropanol was added,
stirred, incubated for 20 min at −20 ◦C, and centrifuged as described above. RNA samples
were subsequently resuspended in approximately 50 µL of diethylpyrocarbonate (DEPC)
treated water and stored at −70 ◦C. Finally, the RNA concentration was determined by
means of a spectrophotometer. Next, 1 µg of total RNA was evaluated for quality by 1%
agarose gel electrophoresis.

2.4.2. DNAse Treatment

Total RNA samples were treated for disposal of any DNA residue with DNAse (DNA-
free TM, Ambion Inc., Austin, TX, USA) as recommended by the manufacturer. Buffer
solution and DNAse turbo were added to the tubes with the extracted RNA, based on
the previously evaluated RNA concentration. After shaking and centrifugation, the sam-
ples remained incubated at 37 ◦C for 30 min. Finally, the inactivator was added and
the solution was stirred and centrifuged. Total RNA was again quantified by means
of aspectrophotometer.

2.4.3. Reverse Transcription

A total of 1 µg of the total DNA free RNA sample was used for cDNA synthesis. Reac-
tions were performed to a final volume of 30 µL using the First-Strand cDNA Synthesis Kit
(Roche Diagnostic Co., Indianapolis, IN, USA) following the manufacturer’s recommen-
dations. Initially, the samples were incubated for 10 min at 25 ◦C and then for 60 min at
42 ◦C. After the second incubation step, the samples were incubated for 5 min at 95 ◦C and
then for 5 min at 4 ◦C for cooling. The reagents used and their respective concentrations
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were buffer solution (1×), MgCl2 (5 mM), deoxynucleotides (1 mM), randomized primers
(3.2 µg), RNAse inhibitor (50 U), and AMV reverse transcriptase (20 U).

2.5. Real-Time PCR (RT-PCR) Gene Expression Analysis
2.5.1. Primer Design

The GAPDH (glycerin-aldehyd-3-phosphat-dehydrogenase, reference gene) primers
for AhR, IL-22, and IL-6 were designed with the help of a program developed specifically
for the preparation of primers for the LightCycler (Roche Diagnostics GmbH, Mannheim,
Germany). All primers were checked for specificity by melting curve analysis, always
using positive and negative controls. Table 1 shows the primer sequence, reaction profile,
and amplicon size.

Table 1. Target genes, primers sequences, amplification profile, and amplicon size during Real
Time PCR reaction AhR, Aryl-hydrocarbon Receptor; GADPH, glycerin-aldehyd-3-phosphat-
dehydrogenase; IL, interleukin.

Gene Sequence (5′–3′) Amplification Profile
[Temperature (◦C)/Time (s)] Amplicon Size (bp)

AhR
F: CAGTCTAATGCACGCCTG

95/10; 56/7; 72/7 155R: GTTGGTTGCCTCATACAACAC

IL-6
F: CTGGCTTGTTCCTCACTAC

95/10; 56/7; 72/7 168R: GAACCTTCCAAAGATGGCTG

IL-22
F: CTGATAACAACACAGACGTTCG

95/10; 56/7; 72/7 170R:CCACCTCCTGCATATAAGGC

GAPDH
F: CTGAGTACGTCGTGGAGTC

95/10; 56/5; 72/10 250R: TGATGATCTTGAGGCTGTTGTC

2.5.2. Reaction Optimization

The efficiency for each gene was optimized before the start of the reactions. Concen-
trations ranging from 2.5 to 5 M for each pair of primers were used to determine under
which conditions the reaction presented the best efficiency, as suggested by the equipment
manufacturer, and 5 µM was chosen.

2.5.3. RT-PCR Reactions

RT-PCR reactions were performed with the LightCycler system (Roche Diagnostics
GmbH, Mannheim, Germany) using the FastStart DNA Master SYBR Green I kit (Roche
Diagnostics GmbH, Mannheim, Germany). The reaction profile was determined following
the protocol suggested by the equipment manufacturer. For each analysis, water was used
as a negative control, and the reaction product was quantified using the manufacturer’s soft-
ware (LightCycler Relative Quantification Software—Roche Diagnostics GmbH). GAPDH
gene expression levels were used as reference (housekeeping) for normalization of values.

2.6. Statistical Analysis

Statistical analysis was performed using the Prism 7.0 software (GraphPad Soft-
ware Inc., San Diego, CA, USA). Initially, the data were analyzed for normality using
the Kolmogorov-Smirnov test and when the absence of normal values was detected, non-
parametric statistical methods were used. Differences in gender frequency were assessed
using Fisher’s exact test. Mean Student’s t-test evaluated age. All demographic data
were presented as mean and standard deviation, except gender. The Mann–Whitney test
performed comparisons of the levels of gene expression of the AhR transcription factor and
the cytokines IL-6 and IL-22. The results were expressed as mean and standard deviation.
The level of significance was set at 5% (p < 0.05).
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3. Results

A total of 35 patients participated in this study, 16 females and 19 males. Initially,
35 samples were obtained and divided between the two experimental groups (healthy,
n = 15, and peri-implantitis, n = 20). The periodontal parameters were collected for both
groups and presented in the Table 2. Diseased implants presented more clinical inflamma-
tion when compared with non-diseased implants (p < 0.05).

Table 2. Mean ± SD of the periodontal parameters and clinical characteristics of evaluated implant
supported restoration from control (healthy, n = 15 subjects) and test (diseased, n = 20 subjects)
groups. Mann–Whitney U test (* p < 0.05); ns: no significant.

Health Peri-Implantitis p Value

PD (mm) * 3.42 ± 1.32 6.88 ± 0.11 0.012
CAL (mm) * 1.23 ± 0.54 5.58 ± 1.99 0.023

BoP (%) * 36.3 ± 13.3 80.8 ± 20.4 0.005
Suppuration (%) * 0 ± 0 19.3 ± 0.7 0.001

Time of loading (years) 5.2 ± 1.3 8.3 ± 2.4 p > 0.05
Maxilla:Mandible 6:9 8:12 p > 0.05

PD: Pocket Depth, CAL: Clinical Attachment Level, BoP: Bleeding on Probing.

During the RNA extraction processes, three samples (belonging to the peri-implantitis
group) that did not have the necessary quality were excluded from proceeding with
the analysis. In the real-time PCR step (RT-PCR), all samples showed expression of the
reference gene (GAPDH). In total, 15 samples for the healthy group and 17 samples for the
peri-implantitis group were included.

The results for the gene expression levels of the transcription factor AhR and the
cytokines IL-6 and IL-22 regarding the reference gene GAPDH are shown in Figure 1. The
highest levels of gene expression of the AhR-1 transcription factor and the IL-6 cytokine
were found in the peri-implantitis group compared to the healthy group (p = 0.024 and
p = 0.001, respectively). The analysis of IL-22 expression levels for the healthy and peri-
implantitis groups did not reveal significant differences between groups (p = 0.46).
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Figure 1. Gene expression levels of the transcription factor Aryl-hydrocarbon Receptor (AhR) (A),
interleukin (IL)-6 (B), and IL-22 (C) according to the expression of the reference gene (GAPDH:
glycerin-aldehyde-3-phosphate-dehydrogenase). * Statistically significant difference assessed using
Mann–Whitney test (p < 0.05).

4. Discussion

Barrier organs such as mucosa from the oral–gut axis and skin, which are in contin-
uous contact with external agents, including possible infectious agents, must be able to
differentiate between physiological and pathological agents and subsequently activate
immune responses according to the type of stimuli [29]. Mucosal tissues surrounding
implants are no exception to this rule, and innate and adaptive host responses within the
oral mucosa have been associated with the progression of peri-implant disease [30].

To evaluate possible alterations in the function of the epithelial barrier around implants
that may be related to the occurrence of peri-implantitis, the gene expression of factors
associated with the differentiation of Th cells in the Th22 subpopulation (AhR, IL-22,
and IL-6) were evaluated in peri-implant soft tissues. Increased mRNA expression levels
for Ahr and IL-6 were detected in diseased peri-implant tissues compared to healthy
tissues. In addition, similar levels of IL-22 gene expression were observed in healthy and
peri-implantitis patients, which shows a pattern contrary to what has been described for
periodontal disease studying the Th22 T cells subpopulation [24,31].

The activators of AhR are, among others, natural substances found in yeasts and
bacteria, stress factors and substances such as hydrogen and oxygen metabolites, metals,
oxidized low-density lipoproteins, ozone, indoles, and even arachidonic acid metabolites
such as lipoxin A4 [14]. This recognition of the microbiota and host-generated tryptophan
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metabolites has been proposed to explain the role of the AhR in innate immune signaling
within barrier tissues in response to the presence of microorganisms.

Since peri-implantitis is an inflammatory disease initiated by bacteria, the changes
in AhR expression and its activation may be directly related to the dysbiosis condition. A
reciprocal interaction between the microbiota and the AhR has also been described where
the microorganisms generate AhR activators, and consequently, the AhR-mediated host
response regulates the microbiota through quorum-sensing activity [15]; this constitutes in
itself a mechanism through which the epithelia try to control the changes in the microbiome
in search of preventing the disease or its progression.

The responses activated by AhR may depend on the tissue environment, such as
that generated by effector immune responses [32]. Epithelial barriers include multiple
immune cells, many of which express differential levels of AhR: low levels in naïve T
cells, helper T cells Th1 and Th2, and regulatory T cells, but high levels in Th17 cells and
in both the interleukin (IL)-17/IL-22-producing and IL-17/IL-22-non-producing subsets
of peripheral gd T cells. AhR is even recognized as a marker of the Th22 subpopulation
of CD4+ T cells [33]. It is believed that Th17 cells that express ROR-γT are responsible
for mediating the synthesis of AhR. This transcription factor, in turn, is necessary for the
activation of cytokine production by some cell populations, such as the secretion of IL-22
by Th17 cells [34].

It is known that the mucosa acts as a protective physical barrier against the entry of
microorganisms. In this context, it has been described that IL-22 is a cytokine produced
by cells of the innate immune response, such as monocytes, dendritic cells, and natural
killers. This cytokine has protective actions against the entry of bacteria and fungi, and
it increases the proliferation of epithelial cells and the tissue repair [33,35–38]. IL-22 has
distinct characteristics from other cytokines, as it is the only cytokine secreted by immune
cells that acts primarily on non-immune epithelial cells with a unidirectional signaling
flow [39].

Despite the protective functions described for IL-22, studies in a murine model of
periodontitis progression establishing the presence of CD4+ AhR+ subpopulations that
produce IL-22 in periodontal tissues reported a higher detection of these cells in periodontal
lesions when compared with uninfected controls, and their association with alveolar bone
loss [31].

Thus, it would be expected that in the presence of an infectious process, the activation
of AhR would increase the production of IL-22 in search of modulating the inflammatory
process and preventing further damage. In the present study, however, it was found that
despite the increase in the gene expression of AhR, there was no significant increase in IL-22
gene expression pattern. Studies carried out to explain the host/microbiome relationship
in other inflammatory conditions have found a reduction in the expression of IL-22 related
to dysbiotic processes.

In a murine model of alcoholic liver disease, ethanol-associated dysbiosis reduced
AhR activation levels, and thus intestinal Il-22 production was also decreased [40]. This
could lead us to think of alterations in the regulation of inflammation mediated by Il-22
induced by dysbiotic changes that occur in peri-implantitis, which could be related to
differences observed in the progression of periodontal and peri-implant diseases, where
a faster progression pattern has been described for the infection around implants when
compared to the infection around teeth [30].

The analysis of IL-6 gene expression in peri-implant tissues with peri-implantitis
revealed the presence of increased levels of this cytokine compared to healthy tissues. In
agreement with the data obtained in the present study, Severino et al. (2016) evaluated the
levels of cytokines IL-6, IL-10, IL-17, and IL-33 in the peri-implant crevicular fluid by ELISA.
Increased levels of IL-6 were detected compared to healthy peri-implant tissue [12]. In 2016,
Duarte et al. conducted a systematic review of the cytokines involved in the pathogenesis
of peri-implantitis. The analysis of 18 articles indicated moderate evidence of increased
levels of pro-inflammatory cytokines, such as IL-6 [41]. More recently, Diaz-Zuniga et al.
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(2017) [42] conducted an in vitro study with monocyte-derived dendritic cells and CD4+
T cells from donors stimulated with A. actinomycetemcomitans. Increased levels of IL-6
produced by dendritic cells, and IL-22 and AhR by CD4+ T cells, were detected [42]. These
results are partially in line with those found in the present study.

Finally, the cross-sectional study design does not allow a clear impact of the markers
on the progression of peri-implant diseases. This limitation could impact on the gene
expression markers and further prospective studies could clarify the role of transcription
factor AhR in soft tissue sealing.

5. Conclusions

In conclusion, higher gene expression levels of the transcription factor AhR and the
cytokine IL-6 were detected in the soft tissues of peri-implantitis patients, which can be
interpreted as a reflection of the dysbiotic condition present around implants with peri-
implantitis that exacerbated the inflammatory process. In peri-implant tissues, the low
expression of IL-22 genes could imply an alteration in the modulation of the immune
response at the level of the peri-implant mucosa.

This communication highlights the need for more studies on the role and modulation
of IL-22 in peri-implant tissue loss.
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