
RESEARCH ARTICLE

Traveling pulse emerges from coupled

intermittent walks: A case study in sheep
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Abstract

Monitoring small groups of sheep in spontaneous evolution in the field, we decipher beha-

vioural rules that sheep follow at the individual scale in order to sustain collective motion.

Individuals alternate grazing mode at null speed and moving mode at walking speed, so

cohesive motion stems from synchronising when they decide to switch between the two

modes. We propose a model for the individual decision making process, based on switching

rates between stopped / walking states that depend on behind / ahead locations and states

of the others. We parametrize this model from data. Next, we translate this (microscopic)

individual-based model into its density-flow (macroscopic) equations counterpart. Numerical

solving these equations display a traveling pulse propagating at constant speed even

though each individual is at any moment either stopped or walking. Considering the minimal

model embedded in these equations, we derive analytically the steady shape of the pulse

(sech square). The parameters of the pulse (shape and speed) are expressed as functions

of individual parameters. This pulse emerges from the non linear coupling of start/stop indi-

vidual decisions which compensate exactly for diffusion and promotes a steady ratio of walk-

ing / stopped individuals, which in turn determines the traveling speed of the pulse. The

system seems to converge to this pulse from any initial condition, and to recover the pulse

after perturbation. This gives a high robustness to this coordination mechanism.

Introduction

Behavioural mechanisms driving collective motion in animals and chemotactic bacteria have

raised a sustained interest over the last twenty years [1–15]. Beyond attraction/repulsion

basics, lots of studies have been devoted to understand how individuals coordinate their turns

(velocity matching, in magnitude and direction), either considering a constant speed module

[16, 17] or adaptive accelerations [18–20]. Data-based models have been proposed to under-

stand mutual interactions within flocks and schools [17, 21–24], and how they translate into

large-scale correlations and information propagation at the group scale [13, 25–28].

Here, we focus on a specific kind of speed coordination, namely for terrestrial animals who

display intermittent motion [29]: at any time, an individual is either stopped (null speed), or it
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is walking at a given constant speed. Such individual intermittent motion processes can com-

bine into collective displays that could be poorly accounted for by continuous-speed models

[30, 31]. In an intermittent walk, the behavioural decision is about the delay before switching

from stopped to walking, and back, depending on the relative position and moving states of

the others. In order to decipher the behavioural mechanisms at play so that intermittent-mov-

ing animals keep moving together, we studied small groups of sheep left alone grazing on their

own on flat homogeneous pastures. Our purpose is first to confirm that their decision making

process in spontaneous condition in the field can be modelled by extending a previous model

that accounted for their decision making process in manipulative condition. Our second pur-

pose is to derive a macroscopic model based on this microscopic (individual) behavioral rules

[2–4, 6, 32, 33].

Biological background

We followed the spontaneous evolution of groups of N = 2, 3, 4, 8 Merino sheep, introduced in

fence-delimited square pens (80 x 80 m) planted in flat irrigated pastures (groups of N = 100

sheep have also been monitored in the same series of experiments and have been the subject of

a separate study, reported in a previous paper [30]).

After habituation time, the groups adopted a collective behaviour alternating phases of

quasi-static grazing and phases of head-up walking (see S1 Movie for an illustration with a

group of three sheep). There was a striking coordination of these phases among individuals, so

that, most of time, a group is either found with all individuals grazing or all individuals walk-

ing. The collective grazing phases are characterised by individuals slightly moving and keeping

very close to each others (within the meter). The collective walking phases are much shorter

than grazing phases and can translocate the groups over several tens of meters.

Starting from a collective state when all individuals are stopped, a collective grazing period

ends when one individual spontaneously departs away from the group. This departure triggers

a reaction in the others, who switch in turn to the walking state and follow the initiator. The

group then walks for a while until one of the sheep stops and resumes grazing, which in turn

triggers the same behavioural switch in the others (Fig 1a, 1b and 1c). Since the characteristic

duration of the grazing/moving periods are large compared to the duration of switching cas-

cades (Fig 1c), collective transition events (collective departures or collective stops) are well

defined.

Regarding the directional process, we observed that the followers always adopted a bearing

matching the initiator’s (they followed him, Fig 1a), so that we will not address here the orien-

tational decision, taking for granted that the initiator chooses a bearing, that the followers will

systematically mimic. We can thus consider the spatial progress of a group along the multi-seg-

ments trajectory of the group center of mass, indexing the individual positions by projecting

their 2D positions onto the corresponding curvilinear abscissa along this group trajectory (Fig

1b). Doing this, the collective dynamics are idealised as individuals progressing in 1D towards

positive abscissa (Fig 1d), and the question becomes to understand the mechanisms synchro-

nising their switches from null-speed grazing to full-speed progression, and back (Fig 1c).

In previous studies, we have proposed an individual-based model to explain the collective

dynamics of group departures [34, 35], and group stops [36] observed in a manipulative setup,

using a remote control device to trigger the departure of a first (trained) individual [35, 36]. In

this model, individuals are in two possible states: stopped or moving (at speed v). Their transi-

tions from state to state are governed by a transition rate (probability switching state per unit

time), which depends on the state configuration of the others. In [35], we only considered col-

lective departures of naive individuals after the trained individual had departed. We had found
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Fig 1. Coordination of motion illustrated in one experimental group of 3 sheep. The position and behaviour of

each individual is monitored every 1s during 1800 s. The collective behaviour can be categorised as periods of

collective grazing (individuals are about motionless) interspersed by periods of collective walking (high speed motion).

(a) An extract of 70 s shows a typical event of collective transition from grazing to walking, leading to a spatial shift of

Traveling pulse emerges from coupled intermittent walks
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a double mimetic effect based on the state of the others: departed individuals tend to stimulate

stopped individuals to switch to moving while still stopped individuals tends to inhibit it. The

higher the number of individuals that have already departed, the higher the rate to depart. The

higher the number of individuals that are still stopped, the lower the rate to depart. We pro-

posed then a formal dependence of the stopped-to-moving (activation) switching rate KA, fol-

lowing:

K
A
ðA; IÞ ¼ a

Ab

Ig
ð1Þ

where A denotes the number of moving individuals (departed, active) and I the number of

stopped individuals (not departed, inactive). We checked in a later study [36] that the same

double mimetic effect can explain as well how moving-to-stopped (inactivation) switchings

escalate in a group of moving individuals to reach a consensus to stop.

In those previous studies, only one event (collective departure or collective stop) was moni-

tored at a time, a trained individual was used to trigger the collective events and the model was

purely temporal. To give account of groups behaviour in the present study, we start from the

same model, to which we add two ingredients so that groups can chain multiple collective

departures / collective stops as they meander spontaneously on the pasture.

The first ingredient accounts for the spontaneous switching rates, to allow a first individual

to depart from a stopped group and a first individual to stop in a moving group.

A second ingredient is needed to introduce spatial effects. In the present setup (small

groups on open pastures), it was obvious that each sheep can monitor every other one,

so we do not introduce limited range of interaction (this point is discussed further in the

Discussion), neither metric nor topologic [24]. As a proxy for the relevant information in

sheep decisions, we consider only relative positions along the 1-dimensional group trajectory,

so that one individual can make a difference between individuals ahead of him and individuals

behind him. The states configuration of the others around can then be split into four pools: the

individuals behind him that are stopped I−, the ones behind him that are moving A−, the ones

ahead that are stopped I+ and the ones ahead that are moving A+.

For the stopped-to-moving switching rates KA (activation), the double mimetic effects

become:

K
A
ðA� ; I� ;Aþ; IþÞ ¼ m

A
þ a

A

½Aþ�bA

½A� þ I� þ Iþ�gA

¼ m
A
þ a

A

½Aþ�bA

½N � Aþ�gA

ð2Þ

the group to a new location where individuals resume grazing. (b) The data are idealised by binarizing individual speed

(0,1) and the motion is projected in 1D along the axis of collective motion. (c) The same event reported in time shows

that the collective starts and stops are triggered by sheep synchronising their transition from grazing to walking (and

back) within time windows by far shorter than typical duration of grazing / walking periods. (d) Time-space

representation of group evolution in 1D. Alternating synchronously grazing/walking/grazing over large time (1800 s)

lead to a collective intermittent progression along the curvilinear abscissa S of the group trajectory. The extracted event

of 70 s is highlighted.

https://doi.org/10.1371/journal.pone.0206817.g001
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and for the moving-to-stopped switching rates:

K
I
ðA� ; I� ;Aþ; IþÞ ¼ m

I
þ a

I

½I � �bI

½Aþ þ A� þ Iþ�gI

¼ m
I
þ a

I

½I � �bI

½N � I� �gI

ð3Þ

where we have considered that only neighbours ahead and moving, A+, are stimulating

switches to motion (the others inhibiting it) and only stopped neighbours behind, I−, are stim-

ulating stopping decision of a moving animal (the others inhibiting it). This modeling choice

is discussed further in the Discussion. In absence of stimulating individuals, the rates reduce to

the spontaneous switching rates μA and μI.

Parameters estimation

In order to estimate the parameters for the stimulated part (α•, β•, γ•), we collected all collective

transition events from 1800-s movie sequences, combining group sizes to disentangle the two

mimetic effects, as in [35, 36] (Table 1).

This functional dependence fitted with the experimental rates as nicely as in our previous

studies (Fig 2a and 2c), and correctly predicted as well the duration of events depending on

group size (Fig 2b and 2d).

The spontaneous rate of switching to the stopped state μI was straightforwardly retrieved

from collective moves duration, and we found that it depends on the group size N, following:

mI ¼ m
�
I =N ð4Þ

with m�I ¼ 0:08 s� 1.

The spontaneous rate of switching to the walking state was practically impossible to esti-

mate from data because small grazing moves and actual departures as an initiator were too dif-

ficult to discriminate. A reasonable estimate is however μA = 0.0055 (s−1), corresponding to a

mean time of 3 minutes before next spontaneous departure. This estimate yields Monte Carlo

realisations that singly compare favourably with experimental alternation of stopped / moving

periods (Fig 3b vs. 3a), and on average with the distances covered by the groups over 1800 s

(Fig 3d vs. 3c).

We note that this value is inevitably ad hoc for the present experimental conditions, and

may vary a lot depending on the available resources, the animals’ physiological state, the day

hour, and the seasons. Still, the cohesion of collective departures and collective stops would

poorly depend on μA, provided it remains low in front of the stimulating ingredient, which is

well the case here (μA� αA). Indeed, stochastic simulations show that this low value

Table 1. Individual parameters for the double mimetic effect.

Parameter Stopped-to-Moving Kept Moving-to-Stopped Kept

α (s−1) 0.32 [0.25;0.41] 0.3 0.42 [0.33;0.54] 0.4

β 0.61 [0.44;0.78] 0.6 0.48 [0.31;0.65] 0.5

γ 0.71 [0.53;0.87] 0.7 0.54 [0.36;0.71] 0.5

Mean estimates and 95% CI are given for each parameter and for both kinds of transition. In Kept columns are reported the mean estimates rounded at the first decimal,

which was retained in numerical simulations.

https://doi.org/10.1371/journal.pone.0206817.t001
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guarantees a sustained cohesion (see S2 Movie). In the opposite, for spontaneous rates domi-

nant over coupling (μA� αA), the groups would consistently disperse (see S3 Movie). We

illustrate this continuous transition from mostly diffusive collective display (weak imitation) to

mostly advective collective display (strong imitation) by varying the intensity of the imitation

parameters over a large interval (Fig 4). The values estimated from experiments appear to max-

imize cohesion to the edge of crowding.

Fig 2. Mimetic amplification governs individual transition rates. (a) For each group size (2,3,4,8), we report the individual transition rate

from stopped to moving as a function of the number of individuals moving ahead. This rate increases, indicating that individuals moving

ahead have a positive feedback effect upon the propensity to follow them (stimulating effect). Note that, for a given number of departed

individuals (e.g. 1), the rate decreases with group size, indicating an inhibitory effect of other individuals. Open circles: data, crosses: fitted

rates. (b) For each group size, simulating collective departures using the fitted transition rates yields a correct prediction of the average event

duration, from first start to last start, as a function of group size (10000 simulated events, dotted lines indicate 95% CI of the mean). (c) Same

kind of data and fitted rates, but for the moving-to-stopped rates. While en route, stopping rates are positively enhanced by the number of

individuals stopped behind (stimulating effect), together with a inhibitory effect of the others. (d) Events simulations also confirm that the

fitted stopping rates yield correct predicted average event duration, from first stop to last stop, as a function of group size. Fitted parameters

are indicated in Table 1.

https://doi.org/10.1371/journal.pone.0206817.g002
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Overall, we advocate that the proposed model give a good account of the behavioural mech-

anism driving the sustained groups cohesion when small groups of sheep are left pasturing on

their own.

Deriving the macroscopic model

We now turn to the theoretical study of this collective motion emerging from N individuals

synchronizing their intermittent walks, should they be sheep or any other entities. The intrigu-

ing feature of this kind of collective motion is that groups can be seen to progress as a whole at
some fraction of the individual speed even though each individual is either stopped or moving at
full speed at any time. This is well illustrated in the S4 Movie, with a group of N = 32 sheep.

The interesting observables at collective level are then the collective speed at which groups

propagate on the one hand, and how cohesive they remain in time on the other hand. To better

understand how these collective observables emerge from individual behaviours, we translate

the individual-based model exposed above into densities equations. In this aim, we provision-

ally admit that the model extends as it is to large groups. We first translate the model into the

Fig 3. Individual-based model (IBM) prediction for 1D-propagation. (a) The evolution of one experimental group

of 4 sheep is reported for illustration (same time-space representation as Fig 1d). (b) A typical evolution of a simulated

4-sheep group is reported for visual comparison with (a). This evolution is one stochastic realisation of the IBM,

computed with an exact Monte Carlo (Gillespie algorithm was used), using the fitted rates and μA = 0.0055 (s−1). (c)

Average distance walked by experimental groups over 1800 s, for each group size separately (thiner line: N = 2, thicker

line: N = 8). (d) Corresponding IBM predictions, averaging over 100 simulations per group size, like the one reported

in (b).

https://doi.org/10.1371/journal.pone.0206817.g003
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corresponding Boltzmann equations, check for finite size effects and then derive the density-

flow equations.

Boltzmann-like (kinetic) equations

Let A(x, t) and I(x, t) denote respectively the density of active (moving) and inactive (stopped)

sheep at location x at time t. They evolve according to:

(
@tIðx; tÞ ¼ � KAðx; tÞIðx; tÞ þ KIðx; tÞAðx; tÞ

@tAðx; tÞ þ v@xAðx; tÞ ¼ þKAðx; tÞIðx; tÞ � KIðx; tÞAðx; tÞ
ð5Þ

where KA(x, t) and KI(x, t) are respectively the conversion rates from stopped-to-moving (acti-

vation) and moving-to-stopped (inactivation) at location x at time t, which depend on A and I
according to:

(KAðx; tÞ ¼ mA
þa

A
½
R1

x Aðu; tÞdu�bA ½N �
R1

x Aðu; tÞdu�� gA

KIðx; tÞ ¼ m
I
þa

I
½
R x
� 1

Iðu; tÞdu�bI ½N �
R x
� 1

Iðu; tÞdu�� gI
ð6Þ

with N ¼
R1
� 1

Aðu; tÞ þ Iðu; tÞdu is the total amount of sheep (which is conserved in time),

and parameters are those given in the individual-based model. This description in density is

the direct translation of the individual model expressions (in the limit of continuum theory).

In absence of coupling (αA = αI = 0), the system would propagate like a linear advection-dif-

fusion system (see S1 Fig). In presence of coupling (αA 6¼ 0, αI 6¼ 0), numerical resolution of

Fig 4. Predicted packing as a function of the intensity of the stimulating effect. To examine the transition from

mostly diffusive regime to mostly advective regime, we varied the stimulation parameters αA and αI by a multiplying

factor spanning from 10−4 to 102 (keeping the spontaneous parameters μA and μI constant). For each value, we

collected the average dispersal of the groups from 1000 Monte Carlo simulations with N = 4 individuals at time

t = 1000 s. The dispersion was estimated from the range of the positions divided by N − 1, giving the average distance

between two neighbours (meters/sheep). To the left of abcissa (μ/α!1), spontaneous switching dominates over

imitation while to the right (μ/α! 0), imitation is dominant. Group dispersion shows a smooth transition (over the

log scale of the modulation factor) from the left where diffusion is completely dominant and saturating to the right

where the packing of the group tends to 0. We note that in the latter limit, crowding effects should be taken into

account. The biological values (modulation factor = 1) appears to favor maximally the cohesion (about one sheep every

meter).

https://doi.org/10.1371/journal.pone.0206817.g004
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Eqs 5 and 6 shows that the density propagates as a cohesive traveling pulse (a solitary wave)

[33, 37–39], with no dispersal (Fig 5). The system appears to converge asymptotically to this

solution from various initial conditions (see examples in S5 Movie). We have not found initial

conditions that would lead to another regime, and we do not see actually which other solution

there could be.

Group size effects

In the classical view (e.g. in gas and fluid mechanics), the spatiotemporal density equations

represent the evolution of a continuous mass. That would correspond here to a group of infi-

nite size. In linear systems, it can also represent straightforwardly the average statistic of pres-

ence over an infinite number of stochastic replicates, in which case density becomes

probability density of presence in space-time. In the present case, we deal with small groups

governed by non linear mechanisms, so we had to ensure how well our Boltzmann equations

Fig 5. Density Model prediction for 1D-propagation. (a) The predicted evolution of a group of 4 sheep is the

formation of a traveling pulse, which travels at constant speed, and with no dispersion (the leftmost profile is the initial

condition, the rightmost profile is at time 1800 s, intermediate profiles are every 100 s; numerical solution of Eqs 5 and

6, with Δt = 10−2 s). (b) The stabilised profile (black line, at time 1800 s) is zoomed out to show the density distribution

around the group center of mass (0 abscissa). It displays a slight asymmetry (vertical line through the distribution peak

for visual guidance), with an excess of density in the left tail (at the rear of the group). The underlying densities of

stopped (blue) and moving (red) appear homogeneously proportional to the total.

https://doi.org/10.1371/journal.pone.0206817.g005
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reflect the behaviour of groups. For this, we compared its predictions to individual-based

model simulations.

In absence of coupling (αA = αI = 0), the system behaves as an advection-diffusion process

(which is linear), and we found a perfect convergence of Monte Carlo simulations of the Indi-

vidual-Based Model and numerical resolution of Eqs 5 and 6, as expected (see S2 Fig).

Since groups can progress at quite different average speeds (see S2 Movie), averaging

plainly individual presence over replications would yield the same kind of advection-diffusion

pattern (because of the dispersion of the groups centres of mass, namely the inter-group vari-

ance), and it would not capture the cohesion within each group (intra-group variance). To

extricate inter-group variance from intra-group variance, we thus retained two separate statis-

tics: the average speed of groups, and the internal dispersion within groups. The internal dis-

persion is computed taking individual abscissa relative to the center of mass of the group they

belong to, group by group, so that we superimpose statistics of presence centred around the

center of mass.

Considering large groups (N = 100), the numerical solution of Eqs 5 and 6 fit nicely with

averages over Individual-Based Model (IBM) stochastic realisations, both for the internal dis-

persion (Fig 6a) and for the average speed (Fig 6c, N = 100).

Considering smaller groups (from N = 32 down to N = 2), we observe that the IBM estima-

tion of internal dispersion tends to appear more symmetrical than the predicted continuous

profile (Fig 6b, for N = 4). However, this finite size effect is only due to the observable itself

because the center of mass computed from individuals’ locations tend to be more stochastic in

small groups. Indeed, if we sample groups of 4 positions from the continuous profile (Fig 6b,

red curve), and compute the same statistic as we do from IBM predictions, both fit very well

(Fig 6b, black curve).

In contrast, we observe a clear finite size effect regarding the average propagation speed

(Fig 6c): the IBM realisations with small groups show slower propagation than predicted by

Eqs 5 and 6, albeit both follow the same trend. This discrepancy will deserve further investiga-

tions in the future.

All in all, the Boltzmann equation captures the essential behaviour of groups as small as

N = 4, and represents one group progressing at constant speed, and keeping its density

unchanged at long time: on average, groups behave as a traveling pulse. Boltzmann equation

could then be used directly to numerically explore properties of groups propagation depending

on individual parameters, especially pulse shape and extension. In the next section, we start

from it to progress toward an analytical solution.

Minimal model and analytical solution

In an approach by minimal model, we are interested to realise the very essence of the coupling

between individual and collective scales that sustains the propagation of the pulse in the

steady regime. To this end, we simplify as far as possible the model presented above by setting

βA = βI = 1, and neglecting inhibitory effects: γA = γI = 0. Doing this, we keep only the two

essential components: the spontaneous switch of speed (driven by μA and μI), and the stimulat-

ing effect of the others (driven by αA and αI).

To derive an analytical solution, we first translate the Boltzmann equations above into the

corresponding “macroscopic” density-flow equations. We selected eventually two variables to

describe this evolution. The dispersion can be described by the sum density of sheep η(x, t)
(moving and stopped) at location x at time t:

Zðx; tÞ ¼ Aðx; tÞ þ Iðx; tÞ ð7Þ

Traveling pulse emerges from coupled intermittent walks
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and the collective speed can be described by the moving fraction β(x, t) at location x at time t:

bðx; tÞ ¼
Aðx; tÞ

Aðx; tÞ þ Iðx; tÞ
¼

Aðx; tÞ
Zðx; tÞ

ð8Þ

the collective speed being v β(x, t), where v is the speed at which a walking individual walks.

Next, we sought the combined conditions over the pair (η(x, t), β(x, t)) for a steady regime

of the traveling pulse. We found one solution, combining a flat spatial profile for β(x, t) and an

equation governing the density profile η(x, t) translated into n(y) in a moving frame anchored

Fig 6. Density Model predictions vs. IBM predictions. (a) Histogram: statistics of presence around the center of mass

of the group for N = 100, predicted from 300 IBM realisations; red line: numerical solution of Eqs 5 and 6 (Δt = 10−2 s).

(b) Histogram: statistics of presence around the center of mass of the group for N = 4, predicted from 106 IBM

realisations; red line: numerical solution of Eqs 5 and 6 (Δt = 10−2 s); black line: statistics of presence around the center

of mass for groups of 4 positions sampled from the red curve, and applying the same procedure than the one used to

obtain the histogram from IBM realisations (106 samples). (c) Predicted propagation speed depending on group size.

Open dots: IBM predictions (error bars lie within the point size). Black dots: Density Model predictions.

https://doi.org/10.1371/journal.pone.0206817.g006
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to the pulse peak (y indexing abscissa in the moving frame). This profile obeys:

ðn0Þ2 � nn00 �
aA þ aI

v
n3 ¼ 0 ð9Þ

where prime denotes regular derivative with respect to y.

A solution to Eq 9 is given by:

nðyÞ ¼
1

2
Ngsech2

gyð Þ with g ¼
NðaA þ aIÞ

4v
ð10Þ

Full details for how we derived the analytical solution of this steady regime for the minimal

model are given in S1 Appendix.

The full expression of the steady regime for the pulse profile and the associated propagation

speed in the field frame are then:

(
Zsðx; tÞ ¼

N
2

NðaA þ aIÞ

4v
sech2 NðaA þ aIÞ

4v
ðx � b�s vtÞ

� �

b
s
ðx; tÞ ¼ b�s ¼

N
2
ðaA � aIÞ � mA � mI

� �

þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

N
2
ðaA � aIÞ � mA � mI

� �2

þ 4mA
N
2
ðaA � aIÞ

s

NðaA � aIÞ

ð11Þ

when αA 6¼ αI.

In the symmetrical case where αA = αI, the steady regime solution simplifies to:

(
Zsðx; tÞ ¼

N
2

Na
2v

sech2 Na
2v
ðx � b�s vtÞ

� �

b
s
ðx; tÞ ¼ b�s ¼ mA=ðmA þ mIÞ

ð12Þ

The shape of the pulse depends on individual speed v, reaction terms αA and αI and group

size N, while the propagation speed of the pulse also depends on the spontaneous switching

rates μA and μI. Sensitivity of the latter to some parameters is illustrated in next section.

This solution is well in accordance with the numerical predictions of the Boltzmann expres-

sion Eqs 5 and 6, for different parameters α•. As a steady regime, it would propagate

unchanged if the system starts from it, and it is the solution towards which the system tends

asymptotically if it starts from a different initial condition (see S6 Movie in which we have

superimposed this analytical solution in red upon the numerical prediction in black). Whether

the basin of attraction of this steady regime is indeed the whole phase space and how fast the

system tends to it depending on parameters are open questions that would deserve further

work (see e.g. [40, 41] for conservative solitons, and [38, 39, 42, 43] for dissipative solitons).

Sensitivity of the moving fraction to parameters

The collective behaviour of first interest is the mean speed at which groups propagate, and it is

a direct reflect of the moving fraction, given by Eq 11. In the general case, this moving fraction

depends upon two kinds of parameters:

1. The rates of spontaneous switching μA and μI: in terms of individual behaviour, these rates

govern the propensity for an individual to be the first to depart from a stopped group,

respectively the propensity for an individual to be the first to stop in a moving group.
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2. The imitation rates αA and αI: in terms of individual behaviour, these rates govern the pro-

pensity for a stopped individual to imitate departing individuals, respectively the propensity

for a moving individual to imitate stopping individuals.

Fig 7 reports the moving fraction as a function of group size, varying the parameters.

As mentioned above, in the case of symmetrical imitations, the moving fraction b�s appears

to depend only on the rates of spontaneous switching μA and μI and in this particular case,

it would not depend on the group size N (Fig 7a, black curve). In the asymmetric cases, the

moving fraction also depends on imitation rates and on group size. Promoting departure

Fig 7. Moving fraction as a function of group size, varying individual parameters. (a) The symmetrical imitations case is reported

in black, with αA = αI = α = 0.5, m�A ¼ 0:02 and m�I ¼ 0:08. Blue curves: αA = 1.001α and αA = 1.01α keeping αI = α, and red curves:

same variations for αI keeping αA = α. (b) Setting αA = 1.001 α, μI is varied from lower (blue) to higher (red) values than m�I (black).

Variations correspond respectively to division or multiplication by 2, 10 and 100. (c) Setting αI = 1.001α, μI is similarly varied from

lower (blue) to higher (red) values than m�I (black). (d) Setting αI = 1.001α, μA is similarly varied from lower (blue) to higher (red)

values than m�A (black).

https://doi.org/10.1371/journal.pone.0206817.g007
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imitation over stopping imitation (αA> αI), even by the slightest amount (Fig 7a, blue curves,

αA = 1.001 αI and αA = 1.01 αI) lead larger groups to display higher and higher moving frac-

tions (tends to 1 for large groups). Conversely, promoting stopping imitation (Fig 7a, red

curves) lead larger groups to lower and lower moving fractions (tends to 0 for large groups).

The trend to full moving fractions for promoted departure imitation depends on the spon-

taneous stopping rate μI (Fig 7b). For very large values of μI (low moving fraction, Fig 7b, red

curves), this trend is very slow and might be negligible. At the other end of the scope, very low

μI values would promote a high moving fraction even for smallest group (Fig 7b, blue curves)

so that the trend is also saturated. In between, μI has a sensible effect upon the trend. The trend

to null moving fractions for promoted stopping imitation is more affected by μI (Fig 7c) than

by μA (Fig 7d), especially when it is low (Fig 7c, blue curves).

Overall, the moving fraction depending on group size is especially sensitive to slight promo-

tion of imitation rates, but also to spontaneous stopping rate when the latter is low.

As a variant of the model, our data suggest that the spontaneous stopping rate is regulated

by the group size N (Eq 4) such that walking individuals in large groups tend to spontaneously

stop less often. In such a case, the moving fraction in the symmetrical imitation case, should be

rewritten as:

b�s ¼
mA

mA þ ðmI=NÞ
ð13Þ

Avowedly, extending this property to very large groups would result in a vanishing sponta-

neous stopping rate, so that the moving fraction should tend to 1 in any case at first sight. This

is actually true only in the symmetrical case. In the general case, this effect combines with

other parameters and yields non monotonous trends with group size, so we expose it for the

sake of interest. Fig 8 reports the moving fraction as a function of group size (or total mass),

varying the parameters the very same way as in Fig 7, but for the variant model (graphics can

be compared one to one).

Introducing the variant produces a striking effect upon the sensitivity to parameters. First,

as expected, the moving fraction increases with group size under the symmetrical influences

case (Fig 8a, black curve). Promoting departure imitation over stopping imitation (αA> αI)

just accelerate this trend (Fig 8a, blue curves). For such promoted departure imitation (αA>

αI), the spontaneous stopping rate μI only affects the rate at which the moving fraction

increases with group size (Fig 8b).

In contrast with the first model, promoting stopping imitation (Fig 8a, red curves) now dis-

plays a non monotonous trend, as there is a range of group sizes that display an increased mov-

ing fraction despite stopping is promoted, and the trend to lower and lower moving fractions

is recovered only for largest group (tends to 0 for largest groups). In such a case of promoted

stopping imitation, this range of group size is strongly affected both by μI (Fig 8c) and by μA

(Fig 8d). Overall, if stopping imitation is stronger than departure imitation, the variant model

promotes the moving fraction in a limited range of group sizes. This moving fraction can be as

high as one, and both group size range and maximal value are controlled by the spontaneous

rates.

Discussion

The analytical solution for the minimal model (a traveling pulse in sech square shape) can be

regarded as the solution of reference for collective motion emerging among entities with inter-

mittent walk and which synchronise their switching decisions based on a simple behind/ahead

partitioning of their influential neighbours. With no constraint, the dynamics will always
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converge towards a single pulse since the interaction promote cohesion in any case: individuals

ahead waits for those behind to keep up while individuals behind do what it takes to keep up.

The mechanism should ensure the self-organised convergence to only one traveling pulse

from any initial condition, and restore from any perturbation (see S7 Movie). Incorporating

further ingredients could alter its cohesion and its speed. It is likely, for instance, that taking

back the inhibitory part into account would affect both the propagation speed, and the shape

of the traveling pulse. However, it would still ensure the propagation of the group as a traveling

pulse, as indicated by the numerical solution of the complete model using the Boltzmann-like

equations.

We used an idealized description of the actual modes of motion by sheep: we have assimi-

lated small random moves observed in the grazing state to one null-speed state, and we have

Fig 8. Moving fraction as a function of group size, varying individual parameters (Variant Model). Same legend as Fig 7 (same

parameters, same parameter variations). Note the expanded scale in (d) to clearly show the effect; the upper red curve starts to

decrease around N = 8000.

https://doi.org/10.1371/journal.pone.0206817.g008
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considered a unique value for the speed in the moving state. An extended model relaxing this

idealization could be based upon a composite Brownian walk [44] with two modes of motion

with characteristic speeds of the order 0.1 and 1 m.s−1. Composite Brownian walk have been

suggested in the context of optimal foraging theory [45] where intermittent search has been

proved better than pure diffusive processes [46, 47], especially Lévy flight model [48–53]. In

the present context, since the pastures were homogeneous, we dot not consider that animals

were in searching mode [30] even though their mode of motion is very reminiscent of models

mentionned above. To our knowledge, these strategies have been so far considered only in the

context of independent searchers (except [54] but see [44]). Our results suggest further theo-

retical works, e.g. towards extensions for one dimensional Lévy flights with coupling.

In the present context, we had no reason to take into account the biological limits to percep-

tion, and in the model, the stimulating neighbours are integrated over infinite half-lines.

Avowedly, animals do have perceptual limits, being they endogenous or due to fragmented

landscape. However, groups were small enough to neglect crowding effect upon perception

(which would justify a topological limit on influential neighbours set, like in starling flocks or

large fish flocks [24, 55]), and landscape obstacles to perception would need to be introduced

explicitly if they were of relevance. Moreover, the dynamics favours packing against diffusion,

so if small groups start from reasonably dense initial condition, the probability that the group

disperse so widely that individuals could not see each other anymore due to endogenous limit

is nearly zero. In absence of external factors disrupting the groups, introducing a biologically

relevant metric cutoff (e.g. some hundreds of meters in sheep) would then have no effect upon

the sustained dynamics of the pulse (which is far narrower than that).

With no limited perception, the spatial effect results entirely from the asymmetrical influ-

ence of individuals that are in the opposite state: only active individuals ahead are stimulating

switching to motion, only inactive individuals behind are stimulating switching to stop. In the

minimal model, this asymmetry can also be interpreted as a combined reaction to receding

conspecifics behind versus receding conspecifics ahead [56–58].

The simple behind/ahead asymmetrical influence together with the double mimetic effect

are sufficient to generate the traveling pulse since it promotes the tendency to wait at the front

edge of the pulse, and to keep moving at the back edge [32].

Without this simple asymmetry, e.g. if we had considered all (behind and ahead) active

individuals as stimulating switching to motion, there would be no spatial effect at all, since the

stimulation would be the same all over the space. In such a case, the dynamics would degener-

ate into a simple advection-diffusion process, and the group would eventually disperse despite

interactions. This asymmetry can then be seen as an alternative to models based upon topolog-

ically-defined neighbours [59] or limited sensing kernels (non local terms) [2]. It could as well

be described by an Heaviside odd kernels on the half-line [33]. Considering extension to

2-dimensional motion, our simple behind/ahead symmetry breaking parallels the violation of

Newton’s third law (action-reaction symmetry) in models based on social forces [60].

Classically, traveling pulse studies start directly from a macroscopic description at the sys-

tem level [37–39]. In the present study, we have found a traveling pulse solution starting from

the “microscopic” description of interactions at the individual level (and even binary interac-

tions in the minimal model) so that the macroscopic solution (in the minimal version of the

model) is completely parametrized by the individual behavioral parameters.

In the same spirit, Bertin et al. [61], extended by Peshkov et al. [62], propose a method to

derive density equations for the Vicsek model [16] in the dilute regime (binary interactions).

Starting from the Boltzmann expression (and using an approximation needed by the 2-dimen-

sional nature of their model), they find an explicit expression of the macroscopic transport

coefficients. Projecting their Boltzmann expression onto an arbitrary direction in the unstable
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collective motion regime, the resulting 1-dimensional system display irregular trains of travel-

ing pulses. In contrast to the sech2 profile we found for our model, these traveling pulses pro-

files are made of two (behind / ahead) exponential decays compatible with their

hydrodynamic approximation. Saragosti et al. [4] also found double exponential wave profiles

by deriving analytical macroscopic behavior from a kinetic description of the mesoscopic run-

and-tumble process in chemotactic bacteria E. coli. Such traveling bands have been long iden-

tified in large-scale IBM simulations [63, 64]. The Vicsek model assuming a constant velocity

module, it would be interesting to study the effect of incorporating coupled intermittent

motion in such large-number 2-dimensional systems, e.g. along the lines developed in [65].

Methods

Ethics statement

Animal care and experimental manipulations were applied in conformity with the rules of the

Ethics Committee for Animal Experimentation of Federation of Research in Biology of Tou-

louse, in accordance with the European Directive 2010/63/EU, with the rules of the European

Convention for the Protection of Vertebrate Animals used for Experimental and Other Scien-

tific Purposes. All protocols were approved by the Steering Committee of the National Institute

of Higher Education in Agricultural Sciences—Montpellier SupAgro (French Ministry of

Agriculture). We note that upon the French Ethical Committee for animal experimentation

regulation, no special rule had to be invoked since no protected or endangered species was

involved, and the experiments did not imply any invasive nor stressful manipulation, the

experimental protocol consisting only in the observation of groups and the acquired data

being only pictures of the animals in their normal herding conditions. At the end of the experi-

ment, all animals reintegrated the herd of the breeding research station. All personnel involved

had technical support and supervision by the employees of the Research Station as required by

the French Ministry of Research.

Data collection

Sheep (Merinos d’Arles) groups evolutions were collected at the experimental farm of

Domaine du Merle (5.74˚E and 48.50˚N, South France) during 2008-2009 winter. Groups of

18-months aged females were formed, picking individuals at random from a large sheep herd

(around 1600) which was raised on the domain. The groups were introduced within one of

four 80m x 80m enclosures delimited by fences and opaque 1.2m high polypropylene blind

(for visual isolation). The pastures were flat and homogeneously covered by native Crau grass.

A 7-m-high tower was anchored at the middle point between enclosures, from the top of

which snapshots of groups were recorded every second for an hour, using Digital cameras

(15.1-megapixel Canon EOS D50). Only the second half-hour recording was used in data anal-

ysis, to discard perturbation effects due to the introduction of groups in enclosures. Groups of

N = 2, 3, 4 and 8 individuals were used, with 8 replications each. 2 groups of 8 individuals,

recorded on the same day, were discarded from the analysis because the high wind condition

was very perturbative to their behaviour (they kept about motionless for an hour near the

blind that was the most protective from the wind).

Events extraction

For groups of N = 2, 3 and 4, the position of each sheep was visually tracked using a Cintiq

interactive pen displays [Cintiq 21 UXGA 1600 x 1200 pixels). From these positional tracks,

events of collective departures and collective stops were identified, and we visually checked on
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the original pictures that they well corresponded to head-up walking behaviours. For groups of

N = 8, harder to track, we first identify such events on the original pictures, and only tracked

the position from the start of collective departures to the end of collective stops. Field coordi-

nates were recovered from pixel coordinates using projective geometry inverse.

Finally, we obtained 76, 58, 66 and 21 collective departures events for groups of N = 2, 3, 4

and 8; and 73, 56, 60 and 18 collective stop events respectively (the lower number of collective

stops is because we filtered out the few events where the initiator stopped before the last fol-

lower departed, so that the stimuli at work were not clearly determined).

Estimation of interaction parameters α•, β•, γ•

We follow the same procedure as we used in previous studies. In each collective departure

event, we considered the following latency (in s) for each individual (time elapsed between the

previous individual switching to walking and the switching time of this individual). We then

obtained a collection of latencies, each associated with the states of other individuals in the

group (namely, W the number already in walking mode, and R the number still at rest). The

corresponding following rate f(R, W) (in s−1) was then recovered as the inverse of the mean

latency before switching when confronted to R, W, taking into account the number of individ-

uals at risk. Gathering all those rates across the group size 2, 3, 4 and 8, we performed a single

regression in the log-domain following:

mcreg = MCMCregress(log(LatencesDeparts$f) ~ log(LatencesDeparts$W)

+ log(LatencesDeparts$R));

We used MCMCregress from the R Package MCMCpack in order to obtain distribution-

free confidence interval. The use of standard lm / confint yielded the same results to the second

digit. The output of lm was:

Multiple R-squared: 0.9455, Adjusted R-squared: 0.9334
F-statistic: 85.04 on 2 and 10 DF, p-value: 5.281e-07
We performed the same data analysis for the collective stops. The corresponding output of

lm was:

Multiple R-squared: 0.9108, Adjusted R-squared: 0.8929
F-statistic: 51.02 on 2 and 10 DF, p-value: 5.662e-06

Spontaneous switching rates

To estimate the spontaneous rate of switching to the stopped state μI, we consider the set of all

durations between the starts of collective move (the date at which the last individual had

switched to the moving state) and the date at which the first moving individual switched to the

stopped state. The corresponding rate appeared to depend upon the group size, following

mI ¼ m
�
I =N ð14Þ

with m�I ¼ 0:08 s� 1.

Unfortunately, we found impracticable to estimate accurately the spontaneous rate of

switching to the moving state μA. Indeed, the spontaneous departure of one individual could

trigger a collective response in some cases, but lots of them actually do not, because the inhibi-

tory effect of the others makes it stop before they start moving. Such aborted departures would

mix with the high number of small moves that sheep display while grazing, when one individ-

ual leave the grass clump he was feeding on, walks a couple of steps and resume grazing on

another clump. It was thus impossible to define a clear behavioural clue to cut among pure

grazing small moves and actual aborted departures. This parameter remains then free in the

present study, and we provide a realistic value, based on Monte Carlo simulations of the whole

Traveling pulse emerges from coupled intermittent walks

PLOS ONE | https://doi.org/10.1371/journal.pone.0206817 December 5, 2018 18 / 24

https://doi.org/10.1371/journal.pone.0206817


process, chaining multiple collective departures / collective stops over 1800 s, and calibrating it

by comparing model predictions to the average distances experimental groups ranged over the

pasture.

Supporting information

S1 Fig. Propagation with no interaction (1). Numerical simulations of Eqs 5 and 6, with

Δt = 10−2 s, and αA = αI = 0. The leftmost profile is the initial condition, and profile are shown

every 100 s. Since there is no non linear term to compensate for diffusion, the profile tends to a

gaussian distribution. The center of mass is simply advected towards positive abscissa due to

the moving fraction.

(EPS)

S2 Fig. Propagation with no interaction (2). Statistics over stochastic Monte Carlo simulation

of the individual-based model, with αA = αI = 0. Histograms of presence are reported at differ-

ent dates, starting from time 0 where all individuals are collapsed near location 0. The corre-

sponding profile from numerical resolution of Eqs 5 and 6 is superimposed at time 1800 s (red

curve).

(EPS)

S3 Fig. bs as a function of C. The value found by Eq 43 in S1 Appendix is given as a function

of C, and for varied values for μA and μI. Larger values of C, meaning αA> αI, promote higher

moving fractions.

(EPS)

S1 Data. Data and source codes. All data and source codes for data treatment (using R),

numerical solving equations and stochastic simulations.

(ZIP)

S1 Appendix. Analytical solution in the steady regime for the minimal model.

(PDF)

S1 Movie. Typical motion behaviour of a group of 3 sheep. The evolution of 3 sheep is

reported every second in field coordinates. Each sheep has been assigned a colour. Individuals

are nearly motionless most of the time, while they are devoted to grazing. These grazing phases

are separated by collective moves that translocate the group over several meters at high speed.

A clear event of such a collective motion happens from frame 318 to frame 344.

(MOV)

S2 Movie. Stochastic simulations for a group of N = 4 sheep with biological parameters

given in the main text. One realisation is given in each frame. The 1D position of each indi-

vidual is presented as a function of time. Horizontal progression indicates a motionless indi-

vidual. Oblique progression indicates a moving individual. The aggregation in time of oblique

events indicates the synchronisation of motion phases.

(MOV)

S3 Movie. Stochastic simulations for a group of N = 4 sheep, like in S2 Movie, but with a

dominant spontaneous departure parameter. The coupling parameters have been down-

scaled to αA = 0.001 and αI = 0.016. As a consequence, individual are mainly driven by inde-

pendent switching decisions, which results in the loss of synchronisation and group dispersion

over ten of meters.

(MOV)
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S4 Movie. Illustration of the propagation of a group of N = 32 sheep predicted by the

model. Illustrating that groups can be seen to progress as a whole at some fraction of the indi-

vidual speed whilst each individual is either stopped or moving at full speed. Stopped individu-

als are reported by black dots, and moving individuals are reported by red dots. The panel

above reports the number of individuals in motion. The dotted line indicates the average of

this number over time.

(MOV)

S5 Movie. Numerical simulations of Eqs 5 and 6, with Δt = 10−2 s, for various initial condi-

tions. Four different initial conditions were tested: starting at frame 1, the group starts loosely

dispersed over 20-30 m with all individuals in the stopped state, from frame 116 the group

starts with the same dispersion but with all individuals in the moving state, from frame 210 the

group is split into two separated groups with moving individuals in the group ahead, and from

frame 348 with moving individuals in the group behind. All simulations converge to the same

traveling pulse.

(MOV)

S6 Movie. Numerical simulations of Eqs 5 and 6, with Δt = 10−2 s, with analytical solution

superimposed. The upper panel shows the numerical simulations of the Boltzmann-like

equations using the minimal model (βA = βI = 1 and γA = γI = 0, N = 4, spontaneous rates

unchanged). Two sets of parameters are reported: αA = αI = 0.5 from frame 1, and αA = 0.8,

αI = 0.2 from frame 202. The lower panel shows a zoom of the numerical profile, centred on

the center of mass (black curve) and the steady regime traveling pulse (red curve). Since

αA + αI remains equal to 1 in both case, the steady regime is the same for the density profile.

However, the propagating speed is affected (it is faster for the case with dominant activating

stimulation) and the route to converge towards the steady shape is different.

(MOV)

S7 Movie. Recovering the traveling pulse propagation after a perturbation. We use the IBM

simulation program to test how the group reacts to a perturbation. Here, the perturbation is

the extinction of interactions for a given period of time. The group starts unperturbed. Stopped

individuals are reported in black and moving individuals in red. In the beginning, we set the

camera in constant speed motion tuned to the average speed of the group. We can see the

group ahead of sync or behind of sync in regards to this moving camera frame, but still it

keeps progressing on average. At time 1000 (frame 1000), the interactions are set off, and the

camera is stopped while its angle is enlarged to cover a larger area. From that time, individuals

progress at their own pace, leading to group dispersal (by advection/diffusion). At time 1999

(frame 1999), interactions are restored. The groups then tends to regain its cohesion, illustrat-

ing that the ones ahead waits for the one behind to progress before they move again. At times

near 2500, the group has reached its steady regime density and recovers the steady regime

propagation. The camera is set back in motion at time 2550 and its angle restored to its initial

value.

(MOV)
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