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Necrostatin-1 ameliorates symptoms in R6/2
transgenic mouse model of Huntington’s disease
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Dear Editor,
Huntington’s disease (HD) is characterized clinically by
movement abnormalities (i.e. chorea), psychiatric symptoms,
and cognitive deficits. Mutant Huntingtin (Htt) with expanded
(436) polyQ (glutamine) repeats causes the dysfunction
and death of neurons, particularly medium spiny neurons
(MSNs) that account for B90% of striatal neurons, despite an
ubiquitous expression.1,2 The striatal neuronal death corre-
lates with the increment of HD severity, being about B30% in
grade 0 and B95% of MSNs in grade 4 patients.3 The
mechanism underlying the striatal cell death remains elusive
and no effective treatment is available for this fatal disease.
Different from well-characterized apoptosis, necroptosis is an
emerging alternative cell death mediated by RIP1 kinase.4

Necrostatin-1 (Nec-1) was recently confirmed to be an
allosteric RIP1 kinase inhibitor (EC50¼ 0.18 mM),5 protective
in NMDA-mediated excitotoxicity and acute pathologies
including cerebral ischemia.4 Here we explored the role of
necroptosis in HD by studying Nec-1 in immortalized striatal
cells and R6/2 transgenic mouse.

ST14A is an immortalized striatal cell line with MSNs
characteristics6 and ST14A 8plx line stably expressing mutant
Htt fragment (N548-128Q) was established as a cell model of
HD.7,8 To our surprise, pan-caspases inhibitor zVAD-fmk
efficiently induced ST14A 8plx cell to death, which can be
almost completely rescued by Nec-1 (Figures 1a and b). Unlike
apoptosis, dying striatal cells showed atrophy and shrinkage of
the cell body and had no caspase-3-specific cleavage of
neuronal cytoskeleton a-fodrin protein compared with the
cleavage after staurosporine-induced apoptosis (Supplemen-
tary Figure S1a). Further experiments with selective caspase
inhibitors revealed that caspase-8 inhibitor (IETD-fmk), but not
caspase-3 (DEVD-fmk) or caspase-9 (LEHD-fmk) inhibitor,
had the similar necroptosis-inducing effect as zVAD-fmk
(Figures 1a and b and Supplementary Figure S1b). The
zVAD-fmk or IETD-fmk inhibited RIP1 cleavage dose-depen-
dently in striatal cells (Supplementary Figure S1c), thus
facilitating RIP1 kinase activation and subsequent necroptosis,

whereas Nec-1 rescued striatal cell death and restored the
normal status of RIP1 cleavage in zVAD-fmk/IETD-fmk-treated
cells to the similar level as untreated control cells (Figure 1c and
Supplementary Figure S1d). Another necroptosis inhibitor,
necrostatin-5 did not inhibit zVAD-fmk-induced striatal cell
death (data not shown).

In response to the same dose of zVAD-fmk, ST14A 8plx
cells were more vulnerable and exhibited more cell death
than parental ST14A cells (Figure 1d). We also noticed that
there were more full-length RIP1 proteins in 8plx cells
compared with parental cells (Supplementary Figure S1e).
In addition, culturing 8plx cells in serum-free medium
promoted RIP1-mediated cell death following zVAD-fmk
treatment (Figure 1e), but had no impact on zVAD-fmk-
induced inhibition of RIP1 cleavage (Supplementary Figure
S1f). We next assessed the ERK1/2 signaling and found that
zVAD-fmk treatment greatly reduced the phosphorylated
ERK1/2 and the effect was inhibited by Nec-1 treatment,
correlating with its inhibition of necroptosis (Figure 1f). We did
not observe the phosphorylation of JNK or p38 MAPK in
striatal cells necroptosis (data not shown).

After demonstrating that Nec-1 inhibited striatal cell
necroptosis efficiently in vitro, we next evaluated the Nec-1
in well-studied R6/2 transgenic mouse model of HD, which
expresses exon 1 of mutant human htt gene.9 Nec-1 can cross
the blood-brain barrier easily but has a short half-life, about
B1 h.10 So we delivered Nec-1 intracerebroventricularly with
Alzet osmotic pump by neurosurgery to ensure continuous
supply of the drug. The treatment was started from 5 weeks of
age as we observed increased full-length RIP1 protein in R6/2
mice at this time point compared with age-matched wild-type
littermates (Supplementary Figure S1g). The mouse motor
function was monitored by Rotarod test at the speed of 5 and
15 r.p.m. (Figures 2a and b). The disease onset was
determined when animal failed to run over 7 min at
15 r.p.m.8 Nec-1 treated mice retained much better motor
performance at the age of 11 weeks (Figure 2a). The disease
onset was about 78.0±4.4 days in Nec-1-treated mice (n¼ 7)
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and 64.2±3.3 days in vehicle-treated ones (n¼ 6), respec-
tively (Figure 2c). Vehicle-treated R6/2 mice started to lose
weight since 9 weeks of age whereas Nec-1-treated R6/2
mice maintained the body weight even at 11 weeks of age
(Figure 2d). The curve of probability of onset of the disease
clearly showed the difference with significantly delayed
behavior deterioration in Nec-1 treated mice (Figure 2e,
P¼ 0.023, logrank test). The drug extended the life span of the
R6/2 mice modestly (Figure 2c and f).

The zVAD-fmk is widely used as a pan-caspase inhibitor in
apoptosis research. However, inhibition of death receptor
(Fas/TNFR) signaling by zVAD-fmk leads to RIP1 kinase
activation and subsequent necroptosis.4 The fact that
necrostatin-5 can inhibit RIP1 activation induced by extrinsic
death receptor signaling5 but not striatal necroptosis in our
model suggests the existence of an alternative intrinsic RIP1
activation pathway in striatal cells. ST14A 8plx striatal cells

are more sensitive to necroptosis, possibly due to the effect of
mutant Htt on post-translational modifications of RIP1, which
include phosphorylation, ubiquitination and caspase clea-
vage, thus tipping the intracellular balance of RIP1 protein and
intrinsic kinase activation pathway(s). Of note, zVAD-fmk
itself has shown cytotoxicity in non-neuronal cell lines,11 and
also promotes necrosis in mitochondrial toxin MPP-treated
dopaminergic neurons, which are selectively depleted in the
patients’ brain with Parkinson’s disease (PD).12 Therefore,
further studies of predisposed zVAD-fmk/IETD-fmk toxicity in
striatal cells may provide useful insights into mechanisms
underlying neuronal loss not only in HD, but also in other
neurodegenerative diseases like PD.

ERK signaling is involved in the physiological function of
striatum in the neural circuitry underlying procedural learning,
motor control, and reward as well as in striatal gene trans-
cription induced by BDNF, a critical neurotrophic factor for
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Figure 1 Nec-1 inhibited RIP1 mediated necroptosis in striatal cell model of HD in vitro. (a) Addition of zVAD-fmk (20 mM) or IETD-fmk (40mM) to ST14A 8plx cells resulted
in cell death, which was inhibited by RIP1 inhibitor Nec-1 (20 mM). Photos were taken 36 h after treatment, Bar¼ 50mm; and (b) supernatant was collected for evaluating cell
death by LDH assay. (c) Lysates from ST14A 8plx cells treated with zVAD-fmk/IETD-fmk/Nec-1 for 36 h were blotted by RIP1 antibodies. (d) Parental ST14A cells and ST14A
8plx cells were treated with 20 mM zVAD-fmk in the presence/absence of 20 mM Nec-1. Cell death was measured 36 h after treatment. (e) Mutant Htt expressing ST14A 8plx
cells were treated with 20mM zVAD-fmk in the presence/absence of serum. Cell death was measured 24 h after treatment. (f) Lysates from ST14A 8plx cells treated with
20mM zVAD-fmk for 24 h were analyzed in western blot by antibodies against phospho- or total-ERK1/2. *Po0.05
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MSNs survival.13,14 Altered ERK signaling is also implicated in
HD and activated ERK signaling is protective to MSNs in HD
models in different experimental settings.7,15,16 This concept
is further supported by our observations that Nec-1 prevented
the reduction of ERK signaling and increased cell survival in
zVAD-fmk-treated striatal cells. In our experiments, striatal
cell necroptosis was facilitated by serum-free media, implying
that unspecified serum factors inhibiting RIP1 kinase activa-
tion under necroptotic stress, and that BDNF, which is
deficient in HD,2 might be one of the factors promoting
necroptosis in vivo.

Delaying the disease onset by Nec-1 in R6/2 mice further
confirmed the involvement of RIP1 signaling in the disease
pathogenesis. However, the survival benefit was modest. This
discrepancy might be due to different mechanisms involved
in early (necroptotic) and late (apoptotic) disease stages
as apoptotic characteristics can be detected in late stage
(411 weeks) of R6/2 mouse and in grade 3 and 4 patients’
brain.17 The differentiation between early and late stages of
the disease is proposed due to different sensitivity of mutant
striatal cells to excitotoxicity as well as the suggestion for the
different treatment strategy.18 Early disease stage with

necroptosis signaling might explain the extensive and early
involvement of activated astrocytes in HD pathogenesis.2

In ST14A cells, treatment of Nec-1 increased the cleavage of
full-length RIP1 (Figure 1c and Supplementary Figure S1d),
indicating the higher basal caspase-8 activity, which might
have a side effect in the late apoptotic stage of the disease in
mice. As RIP1 protein is also involved in caspase-8 activation
in apoptosis, the interplay of apoptosis and necroptosis is
even more complicated. It was reported that Nec-1 treatment
reverted necroptosis to apoptosis.19 Hence, concomitant
treatment with both apoptosis and necroptosis inhibitors
may have better beneficiary effect on the disease, especially
regarding the development of caspase inhibitor for HD.20

Finally, as Nec-1 helped maintaining the body weight and
motor functions with significantly delayed disease onset in R6/
2 mouse (B21.5%), it can be considered as a potential
treatment of HD patients to ameliorate the symptoms and
improve the quality of life.
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Figure 2 Nec-1 maintains the body weight and motor function in R6/2 mouse model of HD in vivo. Behavior and disease progression data were generated from the same
cohort of mice. Motor performance of R6/2 mice was evaluated by recording the time that they remained on a rotarod tuning at 15 r.p.m. (a) and 5 r.p.m. (b). *Po0.05. Mice
were treated with vehicle or Nec-1 by intracerebroventricular delivery using osmotic pump. (c) The age (in days) at disease onset and at death was tabulated for both Nec-1-
and vehicle-treated animals; data were processed by student’s t-test. (d) The body weight of the R6/2 mice was recorded on a weekly basis. For vehicle treated mice n¼ 6 and
for Nec-1 treated mice n¼ 7. *Po0.05. (e) Cumulative probability of onset in Nec-1- and vehicle-treated R6/2 mice. P¼ 0.023 by logrank test. (f) Cumulative probability of
survival in Nec-1- and vehicle-treated R6/2 mice. P¼ 0.079 by logrank test
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