
Article
Cortical Correlates of Locomotor Muscle Synergy
Activation in Humans: An
Electroencephalographic Decoding Study
Hikaru Yokoyama,

Naotsugu Kaneko,

Tetsuya Ogawa,

Noritaka

Kawashima,

Katsumi

Watanabe,

Kimitaka

Nakazawa

nakazawa@idaten.c.u-tokyo.

ac.jp

HIGHLIGHTS
We examined

relationships of brain and

locomotor muscle

synergies by brain

decoding

Locomotor muscle

synergy activation was

successfully decoded

from EEG signals

Single muscle activation

was decoded based on

muscle-synergy-related

EEG signals

The cortical correlates of

locomotor muscle synergy

may contribute to BMI for

gait
Yokoyama et al., iScience 15,
623–639
May 31, 2019 ª 2019

https://doi.org/10.1016/

j.isci.2019.04.008

mailto:nakazawa@idaten.c.u-tokyo.ac.jp
mailto:nakazawa@idaten.c.u-tokyo.ac.jp
https://doi.org/10.1016/j.isci.2019.04.008
https://doi.org/10.1016/j.isci.2019.04.008
http://crossmark.crossref.org/dialog/?doi=10.1016/j.isci.2019.04.008&domain=pdf


Article
Cortical Correlates of Locomotor
Muscle Synergy Activation in Humans:
An Electroencephalographic Decoding Study
Hikaru Yokoyama,1,2 Naotsugu Kaneko,3 Tetsuya Ogawa,3 Noritaka Kawashima,4 Katsumi Watanabe,5,6,7

and Kimitaka Nakazawa3,8,*
1Department of Electrical and
Electronic Engineering,
SUMMARY

Muscular control during walking is believed to be simplified by the coactivation of muscles calledmus-

cle synergies. Although significant corticomuscular connectivity during walking has been reported,

the level at which the cortical activity is involved in muscle activity (muscle synergy or individual mus-

cle level) remains unclear. Herewe examined cortical correlates ofmuscle activation duringwalking by

brain decoding of activation ofmuscle synergies and individual muscles from electroencephalographic

signals. We demonstrated that the activation of locomotor muscle synergies was decoded from

slow cortical waves. In addition, the decoding accuracy for muscle synergies was greater than that

for individual muscles and the decoding of individual muscle activation was based on muscle-syn-

ergy-related cortical information. These results indicate the cortical correlates of locomotor muscle

synergy activation. These findings expand our understanding of the relationships between brain

and locomotor muscle synergies and could accelerate the development of effective brain-machine

interfaces for walking rehabilitation.
Tokyo University of
Agriculture and Technology,
Koganei-shi, Tokyo 184-8588,
Japan

2Japan Society for the
Promotion of Science,
Chiyoda-ku, Tokyo 102-0083,
Japan

3Department of Life Sciences,
Graduate School of Arts and
Sciences, The University of
Tokyo, 3-8-1 Komaba,
Meguro-ku, Tokyo 153-8902,
Japan

4Department of
Rehabilitation for the
Movement Functions,
Research Institute of National
Rehabilitation Center for the
Disabled, Tokorozawa-shi,
Saitama 359-0042, Japan

5Faculty of Science and
Engineering, Waseda
University, Shinjuku-ku Tokyo
169-8555, Japan

6Art & Design, University of
New South Wales, Sydney,
NSW 2021, Australia

7Faculty of Kinesiology and
Physical Education, University
of Toronto, Toronto, ONM5S
1A1, Canada

8Lead Contact

*Correspondence:
nakazawa@idaten.c.u-tokyo.
ac.jp

https://doi.org/10.1016/j.isci.
2019.04.008
INTRODUCTION

Human locomotor movement is organized by the coordinated activation of a large number of muscles. It

has been suggested that complex muscle activity is generated from a small number of groups of muscle

activations calledmuscle synergies (d’Avella et al., 2003; Dominici et al., 2011; Ivanenko et al., 2004; Tresch

et al., 1999; Yokoyama et al., 2016, 2017). Locomotor muscle synergies are thought to be structured in the

spinal circuitry (Danner et al., 2015; McCrea and Rybak, 2008). Based on previous studies examining synergy

activation among different subject groups, it has been suggested that the cortex activates locomotor mus-

cle synergies (Danner et al., 2015; Dominici et al., 2011; Ivanenko et al., 2004). These studies reported that

locomotor muscle synergy in healthy adults exhibited activation that was sharply timed around gait events

(Ivanenko et al., 2004), whereas locomotor muscle synergy in neonates (Dominici et al., 2011) and patients

with complete spinal cord injury (SCI) (Danner et al., 2015) exhibited smooth prolonged activation. The dif-

ferences in the patterns in neonates and patients with SCI could be caused by immature and injured cor-

ticospinal pathways, respectively. Given that locomotor muscle synergies are thought to be structured in

the spinal cord (Danner et al., 2015; McCrea and Rybak, 2008), the affected spinal locomotor output in pa-

tients with hereditary spastic paraplegia due to the degeneration of corticospinal fibers originating from

the cortex (Martino et al., 2018) suggests cortical involvement in the activation of locomotor muscle syn-

ergies. Based on these findings, it is thought that cortical descending commands modulate basic locomo-

tor muscle synergy activation generated by subcortical structures, particularly in the spinal cord. However,

there is currently no direct evidence of cortico-muscle synergy relationships supported by simultaneous re-

cordings of cortical activity and muscle synergy activation during walking.

Unlike quadruped animals (Armstrong, 1988; Drew et al., 2008), human bipedal walking is characterized by

significant cortical activity even during undemanding steady-state walking (Artoni et al., 2017; Bradford

et al., 2016; Bruijn et al., 2015; Gwin et al., 2011; La Fougere et al., 2010; Miyai et al., 2001; Petersen et al.,

2012; Seeber et al., 2015; Wagner et al., 2012; Yang and Gorassini, 2006). Significant cortical activation

has been demonstrated previously in premotor, supplementary motor, and primary sensorimotor regions

during real and imagined walking using neuroimaging techniques such as positron emission tomography

and near-infrared spectroscopy (La Fougere et al., 2010; Miyai et al., 2001). Recent studies using electroen-

cephalography (EEG), which has greater temporal resolution, have demonstrated gait-phase-dependent
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Figure 1. EEG Electrode Montage Corresponding to the

International 10-20 System

Thirty electrode locations, which were used for the decoding

analysis, are shown.
modulation of cortical activity, particularly in the sensorimotor cortex, using a combined method of inde-

pendent component analysis and source localization techniques (Bradford et al., 2016; Bruijn et al., 2015;

Gwin et al., 2011; Seeber et al., 2015;Wagner et al., 2012). Other EEG studies have demonstrated significant

corticomuscular connectivity between the leg sensorimotor area and leg muscles during walking using in-

dividual muscle-level analysis (Artoni et al., 2017; Petersen et al., 2012). Although the results of these studies

suggest strong relationships between cortical and muscle activity during walking, the level at which the

cortical activity is related to muscle activity (at muscle synergies or individual muscles) remains unclear.

To address this question, we hypothesized that human cortical activity reflects muscle synergy activity more

than individual muscle activity based on the above-mentioned possibility of cortical control of locomotor

muscle synergy; we then examined how the cortex is involved in muscle activation during walking by de-

coding the activations of muscle synergies and individual muscles from EEG signals. Brain decoding tech-

niques, which predict themental or motor state of a human from recorded brain signals, have received sub-

stantial attention for the development of brain-machine interfaces (BMIs) for repairing or assisting deficits

in cognitive or sensory motor functions (Lebedev and Nicolelis, 2006, 2017; Patil and Turner, 2008). In addi-

tion to potentially restoring lost functions, neural decoding can provide information on the physiological

principles of how motor movements are controlled by the brain (Nicolelis, 2003).

In this study, using neural decoding techniques, we demonstrate that the activation of muscle synergies can

be decoded from cortical activity and that the decoding accuracy for muscle synergies is greater than that

for individual muscles. In addition, we show that the decoding of individual muscle activity is based onmus-

cle-synergy-related cortical information. These results provide experimental evidence of the cortical corre-

lates of locomotor muscle synergies in humans. In addition, they shed light on the relationships between

brain activity and muscle synergies during walking and provide an important basis for developing effective

neuroprostheses for walking rehabilitation.

RESULTS

Twelve healthy participants walked on a treadmill at 0.55 m/s for 7 min 30 s. Surface electromyographic

(EMG) signals were recorded from 13 leg muscles on the right side. EEG signals were recorded from 63

channels. EEG data from 30 channels (Figure 1), which are assumed to be less affected by eye blinks and

facial or cranial muscle activity, were used for subsequent analysis. Using the EMG and EEG signals, we

tried to decode individual muscle and muscle synergy activations from cortical activity. See Figure 2 for

an overview of our decoding methodology.

Extracted Locomotor Muscle Synergies

The recorded EMGs were rectified and smoothed by a low-pass filter. Next, using non-negative matrix

factorization (NMF) (Clark et al., 2010; d’Avella and Bizzi, 2005; Dominici et al., 2011; Lee and Seung,

1999; Yokoyama et al., 2016), muscle synergies were extracted from each participant. From the low-pass

filtered EMGs, 4.17 G 0.58 (mean G SD) muscle synergies were extracted from each participant.
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Figure 2. Schematic DiagramDepicting the Neural Decoding of LocomotorMuscle Synergy and Individual Muscle

Activations from Simultaneously Recorded EEG Signals

Examples of 8 s of raw EMG signals, EMG envelopes, muscle synergies, pre- and postartifact removal EEG signal from an

electrode, and slow cortical potentials in the delta band are shown.
The extracted muscle synergies were grouped into five types using cluster analysis (synergy A–E, Figure 3).

Table S1 summarizes the characteristics of the extracted locomotor muscle synergies.

Neural Decoding of Activation of Muscle Synergies and Individual Muscles from EEG Signals

As preparation for neural decoding, recorded EEG signals were band-pass filtered in the delta band

(0.5–4 Hz). The filtered non-rectified signals, which are called slow cortical potentials, were confirmed to

be particularly informative for decoding motor-related parameters (Bradberry et al., 2010; Contreras-Vidal

et al., 2018; Nakanishi et al., 2017; Presacco et al., 2011, 2012; Waldert et al., 2008). We used a time-

embedded (10 lags, corresponding to 0–90 ms ahead of the muscle activation) linear model, also referred

to as Wiener filter, to decode individual muscle and muscle synergy activations from the slow cortical po-

tentials, as used in previous studies decoding motor parameters (Bradberry et al., 2010; Contreras-Vidal

et al., 2018; Nakanishi et al., 2017; Presacco et al., 2011, 2012; Waldert et al., 2008).

Figure 4 provides examples of real and reconstructed muscle synergy activations (Figure 4A) and individual

muscle activations (Figure 4B) from a participant. In this participant, all locomotor muscle synergy activa-

tions were successfully reconstructed based on visual inspection of the similarity between the real and re-

constructed activations (Figure 4A). In contrast, in individual muscle activation, the amplitude modulation

was not sufficiently reconstructed in some muscles, such as sartorius (SART), adductor magnus (AM), per-

oneus longus (PL), and soleus (SOL) (Figure 4B).

To quantify the decoding accuracy, we calculated the coefficient of determination (R2) between the real

and reconstructed activations in each decoder (Figure 5). The mean values across the participants ranged

from 0.25 to 0.28 in muscle synergy decoders and from 0.11 to 0.28 in individual muscle decoders (Fig-

ure 5A). Although some individual muscles showed a similar decoding accuracy to that of muscle

synergies (gluteus medius (Gmed), gluteus maximus (GM), biceps femoris (BF), SOL, and gastrocnemius

medialis (MG); R2 ranged from 0.24–0.28), the majority of individual muscles showed a lower decoding
iScience 15, 623–639, May 31, 2019 625



Figure 3. Muscle Activation Patterns and Extracted Locomotor Muscle Synergies

In the left part, black lines indicate the averaged muscle activation patterns across participants during a gait cycle. Thick

lines indicate the average temporal activation patterns, whereas thin lines indicate the SDs. In the right part, five extracted

types of locomotor muscle synergies are shown. Average muscle weightings (bars) and corresponding temporal

activation patterns (waveforms) across participants in each type of locomotor muscle synergy are shown. Each bar height

represents the relative level of activation of each muscle synergy. An enlarged view of the x axis is shown at the bottom.

Lines indicate the temporal activation patterns of the muscle synergies. Thick lines indicate average temporal activation

patterns, whereas thin lines indicate their SD. See also Table S1.
accuracy (R2 ranged from 0.11–0.22). Regarding the general trend of differences in the accuracy between

the two decoder types, the across-participant mean of the overall accuracy (i.e., averaged correlation

values across all decoders in each type [muscle synergy or individual muscle]) of the muscle synergy

decoder was higher than that of the individual muscle decoder (t(11) = 4.42, p = 0.0001, paired t test,

Figure 5B).

To examine whether the difference in the overall decoding accuracy between the two types of decoders

stemmed from differences in the number of decoders (individual muscles: 13, muscle synergies: 3–5 de-

pending on participants) (Figure 5B), we calculated the overall decoding accuracy using the same number

of randomly sampled individual muscle decoders with muscle synergies from 13 muscles. We iterated the

procedure 10,000 times and calculated the 95% confidence interval of the distribution of the 10,000 values

of the across-participant mean of the overall decoding accuracy of individual muscles (Figure S1). As a

result, the participant mean of the overall decoding accuracy of muscle synergy decoders was larger

than all the 10,000 values of the participant mean of the overall decoding accuracy of individual muscles

(i.e., larger than the 95% confidence interval) (Figure S1). Thus the differences in the number of the two

types of decoders did not affect the comparison results of the overall decoding accuracies with regard

to the overall trend of the two decoder types.
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A B

Figure 4. Typical Examples of Decoded and Actual Activations from a Participant

(A and B) Red and blue waveforms indicate decoded and actual activation patterns, respectively. (A) Muscle synergy activations are shown. Bars represent

muscle synergy. (B) Individual muscle activations are shown.
Next, to validate the results of neural decoding, the same decoding process was performed on phase-ran-

domized EEG signals to estimate the chance levels. After the phase randomization, the power spectrum

was preserved in the surrogate data, but the phase relation to the muscle activity was disrupted. The

time series EEG data throughout the recording duration were phase randomized. We generated 100 sur-

rogate datasets and evaluated the mean and 95% confidence intervals of the decoding accuracy from the

distribution of decoding accuracy of the surrogate datasets (Figure 5C). The decoding accuracy from the

phase-randomized data was low regardless of the type of muscle synergies or individual muscles (range of

mean R2 values: 0.0067–0.012). At each decoder for each participant, the decoding accuracy from the orig-

inal EEGs exceeded the 95% confidence interval of the surrogate datasets for all muscle synergy and indi-

vidual muscle decoders in all the participants.

Relationships between Muscle Synergy Decoders and Individual Muscle Decoders

The decoding accuracy of muscle synergy activation was similar for all synergy types (Figure 5A). How-

ever, in individual muscle decoders, some muscles showed a similar decoding accuracy to that of muscle

synergies, whereas the majority of individual muscles showed a lower decoding accuracy (Figure 5A).

Namely, the decoding accuracy of individual muscle decoders varied widely across different muscles.

In this study, it was assumed that cortical activity reflected muscle synergy activity more than individual

muscle activity. Based on this assumption, the variability of decoding accuracy in individual muscles

would be reproduced by individual muscle activations indirectly decoded from muscle synergy activa-

tions decoded from muscle synergy decoders. To test this hypothesis, we reconstructed individual

muscle activations by summing the outputs of each decoded muscle synergy (Figure 6A). The decoding

accuracy of directly decoded individual muscle activations was found to have a very strong positive cor-

relation with that indirectly decoded from the outputs of decoded muscle synergies (r = 0.96, calculated

from data from all participants, Figure 6B). This result indicates that if muscle activation is not well de-

coded through decoded muscle synergies, the decoding accuracy of the muscle will be low even

when it is directly decoded.

The decoding accuracy relationships suggest that decoding of individual muscle activation is based on

muscle-synergy-related cortical information. If so, the weights of the individual muscle decoders (Wmuscle)

should be represented as a linear combination of those of muscle synergy decoders (Wsyn) with
iScience 15, 623–639, May 31, 2019 627
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Figure 5. Decoding Accuracy of Activation of Muscle Synergies and Individual Muscles

(A) Decoding accuracy (coefficient of determination) for each muscle synergy type (left) and EMG envelope of an individual muscle (right). The mean and SD

across participants are shown.

(B) Overall decoding accuracy for muscle synergy decoders and individual muscle decoders. Mean values across participants (black) and each participants’

data (gray) are shown.

(C) Decoding accuracy when EEG phase was scrambled. The bars indicate the participant’s mean of means and the upper ends of the 95% confidence

interval obtained from the distribution of the surrogate datasets of EEG signals. The mean and SD across participants are shown.

See also Figures S1�S8 and Tables S7 and S8.
non-negative coefficients. To test this possibility, 300-dimensional weights (30 electrodes 3 10 lags) of

an individual muscle decoder were reconstructed as a linear combination of the weights of muscle syn-

ergy decoders with non-negative coefficients (Wmuscle’, conceptual schema presented in Figure 6C). The

similarity between the original and reconstructed weights (i.e., Wmuscle and Wmuscle’, respectively) was

quantified by Pearson’s correlation coefficient, which was 0.91 G 0.11 (mean G SD) across all muscles

of all the participants. Regarding each type of muscle, the mean similarity values across participants

ranged from 0.77 to 0.99 among muscles (Figure 6D). Thus, as expected, the weights of individual muscle

decoders represented very similar patterns as those reconstructed from the weights of muscle synergy

decoders.

Contributions of Electrodes to Neural Decoding

To evaluate the spatial contributions of cortical activity for predicting muscle synergy activations, we calcu-

lated the contribution of each electrode from the weights of the decoding model (Chao et al., 2010). Fig-

ure 7A shows examples of the contributions of each electrode to the decoding in one participant. In this

participant, the contribution of each electrode was approximately 7% at the highest. Thus widely distrib-

uted cortical activity, rather than activity from one specific electrode and area, contributed to decoding.

The widely distributed contribution of the whole cortex was also observed in the mean contribution in

each type of synergy across participants (Figure 7B).

To further validate the widely distributed contribution of cortical activity to the decoding of locomotor mus-

cle synergy, we divided the electrodes into four major regions of interest (ROIs), namely, frontal, central,

lateral, and parietal ROIs (Figure 7C). Next, for each ROI, we performed the same decoding procedure

used for all electrodes and compared the decoding accuracies. The comparisons of the decoding accuracy
628 iScience 15, 623–639, May 31, 2019
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Figure 6. Relationships between Muscle Synergy Decoders and Individual Muscle Decoders

(A) A schematic flow diagram illustrating directly decoded muscle activity and indirectly decoded muscle activity

reconstructed from decoded muscle synergies.

(B) Relationships of decoding accuracy in each individual muscle activity between those directly decoded from individual

muscle decoders and those indirectly decoded frommuscle synergy activations decoded frommuscle synergy decoders.

Values from all muscle synergies of all participants are plotted individually.

(C) Schematic diagram of reconstruction of weights of an individual muscle decoder from those of muscle synergy

decoders.

(D) Similarity of weights of individual muscle decoders between the originals and those reconstructed from weights of

muscle synergy decoders. The mean and SD across participants are shown.
did not show any significant differences among ROIs, except for that between the central and parietal ROIs

in synergy E (Figure 7D). Nevertheless, the decoding accuracy in the full electrodes was significantly higher

than that in each ROI (Figure 7D, p < 0.05, false discovery rate [FDR] corrected for multiple comparisons,

see Tables S2�S6 for detailed statistical values). Interestingly, the mean decoding accuracy of the central

ROI was the largest for all synergy types except synergy C, and significantly higher accuracy was found in

the central ROI compared with frontal and parietal ROIs for synergy E (Figure 7D, p = 0.023 and 0.0082,

respectively, FDR corrected for multiple comparisons).

Decoding of Muscle Synergy Activation Using EEG Signals in Different Time Lags

The above-mentioned results were obtained from decoders that use a negative time lag (�90 to 0 ms, for-

wardmodel), as we were interested in examining the cortical descending control of muscle activity. In addi-

tion to the forward decoders, we attempted to decode using a positive (0–90 ms, backward model) and

wider (�90 to 90ms, wide time lagmodel) time lag. The across-participant means of the decoding accuracy

(R2) of the backward decoders ranged from approximately 0.25–0.29 among different muscle synergy types

and were not significantly different from those of forward decoders in all muscle synergy types (Figure S2;

see Table S7 for detailed statistical values). The wide time lag decoders showed a higher decoding accu-

racy (mean R2 ranged from approximately 0.3–0.4) than both the other types of decoders in all muscle syn-

ergy types except synergy B (Figure S2). Thus both positive and negative time lag information were related

to the activation of muscle synergy.

Effect of Normalization of EMG Amplitude on Decoding

Muscle activation levels vary across leg muscles during slow walking (Cappellini et al., 2006). Thus the

normalization of EMG activity to the maximum for each muscle, which was used for the above-mentioned

results, largely altered the relative amplitude across all themuscles. Therefore it is possible that the normal-

ization affected the decoding of muscle synergy activation.
iScience 15, 623–639, May 31, 2019 629
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D

Figure 7. Contribution of Each Electrode to the Decoding of Muscle Synergy

(A–C) (A) Examples of contributions of each electrode to decoding from a participant. (B) Mean contribution of each

electrode in each synergy type. The error bars indicate the SD. (C) Scalp map indicating the electrodes included in each

ROI to examine the contributions from different cortical regions to decoding.

(D) Decoding accuracy by each ROI and all electrodes. Data are represented as mean G SEM. Asterisks indicate

significant differences (*p < 0.05, **p < 0.01, FDR corrected for multiple comparisons, See also Tables S2�S6 for detailed

statistical values).

See also Figures S4�S9 and Tables S2�S6 and S8.
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To examine the effect of the normalization on the decoding of muscle synergy activation we extracted mus-

cle synergies from non-normalized EMG activity and performed a decoding analysis using the muscle syn-

ergy activation extracted from the non-normalized EMG. Five types of muscle synergies were extracted

(Figure S3A), and the across-participant means of the decoding accuracy (R2) ranged from approximately

0.20 to 0.27 among different muscle synergy types (Figure S3B). The decoding accuracy was comparable

to those of the normalized muscle synergy activation (Figure 5, mean R2 ranged from approximately

0.25–0.28), indicating that the EMG normalization did not largely affect our decoding results.

Effect of Motion Artifact on the Decoding

The potential effects of movement artifacts should be considered when recording EEGs during dynamic

movements. Because the power spectra of EEGs, which are affected by motion artifact during walking,

exhibit power peaks at the stride and step frequencies due to head motion (Arad et al., 2018; Kline

et al., 2015; Nathan and Contreras-Vidal, 2016) we examined the power spectra of the EEGs using the

fast Fourier transform. Figure S4 shows examples of EEG data at three electrodes (Cz, Pz, C6) for the diver-

sity of their spatial localizations (top, back, and right side of the head, respectively) from participants who

showed the best, moderate, and worst decoding accuracies—which were participants ID-6, ID-1, and ID-4,

respectively. In these examples, one electrode (Cz of ID-6) showed an obvious high power at the step fre-

quency. Regarding the other electrodes, although the power spectra in some electrodes showed peaks at

the stride and step frequencies, the amplitudes were comparable with the maximum power in other fre-

quencies in the delta band (0.5–4.0 Hz).

Because obviously large peaks in the movement frequency, when compared with the power in the other

frequencies like Cz of ID-6, have been previously demonstrated to be a feature of motion artifacts in

EEGs during walking (Castermans et al., 2014; Kline et al., 2015), such electrodes would have been affected

by movement artifact. Therefore we calculated the relative power between the peak power in frequency

from the stride frequency to the step frequency and the mean power in the delta band frequency

(0.5–4.0 Hz) as a rough indicator of the artifact size of each electrode. Then the correlation between the

artifact size and electrode contribution to the decoding was calculated. If the decoding was based on

movement artifact, the EEG signals with a large artifact size, which were assumed to greatly reflect motion

artifacts less buried by cortical activity, were highly weighted in the decoder model; thus the correlation

would exhibit a significantly positive value. Figure S5 shows scatterplots of the artifact size and electrode

contribution from the three participants presented in Figure S4. It is noteworthy that the most contributing

electrode showed lower artifact size in each decoder in Figure S5. In all participants, there was no signif-

icant positive correlation between the artifact size and electrode contribution, except for 2 of 54 decoders

(Figure S6). These results suggest that the effect of motion artifact on the decoding was small.

Relationships between Head Acceleration and Slow Cortical Potentials

To further examine the effect of movement artifact on the decoding, we conducted a supplemental exper-

iment by measuring head movement accelerations, as movement artifacts are mainly caused by vertical

head accelerations (Kline et al., 2015). We measured triaxial head accelerations in addition to EEG and

EMG signals from three healthy participants during walking on a treadmill under the same experimental

and data-recording conditions used in the main experiment.

The overall decoding accuracies of the muscle synergies in each of the three participants were R2 = 0.29,

0.21, and 0.20, respectively (Table S8). In the three participants, all head accelerations showed clear cyclic

patterns (Figure S7). If the head acceleration affected the activation patterns of the slow cortical poten-

tials, the two signals would show a correlation with a time lag, where the head movement precedes the

slow cortical potentials. Because movement artifacts are mainly caused by vertical head accelerations

(Kline et al., 2015), we examined the relationships between the vertical head acceleration time series

and the slow cortical potentials at each electrode using cross-correlation (Figure S8A). In one participant

(ID-S1), the correlation values were very low (r < 0.06 in all electrodes). In the other two participants (ID-

S2 and ID-S3), the majority of electrodes showed almost no correlation (r < 0.2). Although some elec-

trodes showed weak correlation (r ranged from about 0.2 to 0.3), the time lags varied greatly, and half

of them indicated that EEG signals preceded the head accelerations. Given the high variability in the

time lags, the weak correlation may indicate that the acceleration was not correlated with movement arti-

fact, but instead with gait-phase-related cyclic brain activity in the EEG signals. In addition, there was no

significant correlation between the maximum correlation value of the cross-correlation analysis and the
iScience 15, 623–639, May 31, 2019 631



electrode contribution to decoding in all muscle synergy decoders in all participants (Figure S8B). Taken

together, these results suggest that motion artifact derived from head acceleration has little effect on the

decoding.
DISCUSSION

Cortical Correlates of Muscle Synergy Activation during Walking

The last 15 years of research has suggested that cortical descending commands modulate basic locomo-

tor muscle synergy activation generated by subcortical structures (Clark et al., 2010; Danner et al., 2015;

Dominici et al., 2011; Ivanenko et al., 2004). Nevertheless, currently, there has been no evidence of cortical

correlates of locomotor muscle synergies from simultaneously recorded cortical and muscle activity. In this

study, we revealed that activation of locomotor muscle synergies decoded from EEGs was moderately

correlated with real activation (Figure 5A). Although some individual muscles showed a similar decoding

accuracy to that of muscle synergies, the majority of individual muscles showed a lower decoding accuracy

(Figure 5A). Regarding the general trend of differences between the two decoder types, mean decoding

accuracy across all muscle synergy types were significantly higher than that of individual muscles (Fig-

ure 5B). By examining the relationships between individual muscle and muscle synergy decoders, we

also showed that both types of decoders were based on almost the same cortical information (Figures

6B and 6D). Assuming that cortical activity encodes muscle synergy activation and both types of decoders

are based on synergy-related cortical information, the following are considered as explanations for the

differences in the decoding accuracies among the decoders: (1) all muscle synergies, which were strongly

associated with synergy-related cortical information, were well decoded; (2) some individual muscles,

which would be strongly associated with synergy-related cortical information, were well decoded, whereas

other individual muscles, which would not be associated with synergy-related cortical information, were

not well decoded. Given that decoding accuracy in muscle synergies are generally higher than in individ-

ual muscles, and the high possibility of contribution of synergy-related cortical information to both types

of decoders, the decoding results demonstrate significant cortico-muscle synergy relationships during

walking. Thus the present findings possibly support the hypothesis that the human cortex hierarchically

controls locomotor muscle activity through muscle synergies rather than by directly controlling each mus-

cle (Ting et al., 2015).

However, it should be kept in mind that it is difficult to examine causal relationships from cortical activity

to muscle synergy activity, such as descending control of muscle synergies, using the decoding method

in this study. It is highly possible that the cortical correlates of muscle synergies, which was demon-

strated by the neural decoding in this study, stemmed not only from the descending commands but

also from sensory-related cortical activity, including somatosensory, vestibular, and visual inputs. Given

the task in this study (steady-state walking), somatosensory inputs originating from dynamic limb move-

ments were probably dominant sensory inputs, which may have affected the decoding. Because the pri-

mary somatosensory cortex (S1) has a close link with the primary motor cortex (M1), as demonstrated by

anatomical (Donoghue and Wise, 1982; Veinante and Deschênes, 2003) and functional (Witham et al.,

2007) connectivity in animals, somatosensory inputs influence the cortical motor output in humans (Rose-

nkranz and Rothwell, 2004; Roy and Gorassini, 2008; Schabrun et al., 2012). Thus it is possible that the

somatosensory inputs contributing to the decoding were not only communicating current bodily states

but also indirectly involved in the control of locomotor muscle synergies through the sensorimotor

network. In fact, a control framework has been proposed, where sensory information, including somato-

sensory inputs, contributes to the modification of muscle synergy activity through M1 during challenging

walking tasks in cats based on physiological evidence (Drew and Marigold, 2015). Although the sensory

contribution of muscle synergy control is limited to challenging walking conditions in cats, such sensory

information might contribute to the control of locomotor muscle synergies during walking in humans

given the significant brain to muscle connectivity, even during steady-state walking in humans unlike

cats (Artoni et al., 2017).

Regarding the effects of neurological disorders on the locomotor muscle synergies, it was reported that

patients with stroke recruit fewer locomotor muscle synergies as a result of the merging of healthy muscle

synergies, which reflect disruption in the corticospinal descending pathways (Clark et al., 2010). Therefore

poststroke changes suggest cortical involvement in the activation of the locomotor muscle synergies.

Other evidence regarding the cortical control of locomotor muscle synergies has been suggested by

altered activation of the muscle synergies in patients with complete SCI (Danner et al., 2015) and neonates
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(Dominici et al., 2011). Both subject groups exhibited smooth sinusoidal-like activation patterns of loco-

motor muscle synergies rather than sharply timed activation, which was observed in healthy subjects (Iva-

nenko et al., 2004; Yokoyama et al., 2016). The sinusoidal-like activation patterns were also observed in

other mammals (Dominici et al., 2011). Based on lack of corticospinal interactions in patients with SCI

and neonates, this similarity may suggest that the sinusoidal-like activation patterns are phylogenetically

conserved in the spinal circuits. Taken together, it is possible that cortical descending commands modu-

late basic locomotor muscle synergy activation patterns generated by the spinal cord into the sophisti-

cated patterns underlying human-specific upright bipedal walking.

The decoded muscle synergy activation observed here was able to account for about 25% of the data

variance of the actual activation, which implies that 75% was not accounted for (Figure 5). The not-so-

high decoding accuracy is thought to be caused by a low signal-to-noise ratio (SNR) of EEG signals.

Because EEG sensors are placed around the scalp—distant from the signal sources in the brain—the

cortical signal is weak relative to various artifacts, such as electromagnetic, thermal, and mechanical

noise. Therefore, in general, the SNR of EEGs is very low compared with those of invasive recording

methods, such as electrocorticography (ECoG) and single-unit activity (SUA) (Ball et al., 2009a). In the

present study, because the decoders attempted to extract meaningful activity from the signals with a

low SNR, the decoding accuracy would not have been high. Another possible explanation for the low

decoding accuracy is the partial contribution of the cortex to generate activation patterns of locomotor

muscle synergies. Muscle synergy is considered to be recruited via multiple neural pathways via the

brainstem and spinal cord, in addition to the cortex (Chvatal and Ting, 2012; Saltiel et al., 2015; Ting

et al., 2015). Basic rhythmic activation patterns of locomotor muscle synergies are generated from

the spinal cord itself (Danner et al., 2015). In addition, locomotor muscle synergy activation is modu-

lated in response to afferent feedback during walking at latencies corresponding to long-latency re-

sponses (�100 ms), which are considered to be mediated by brainstem pathways (Chvatal and Ting,

2012). Therefore although the cortex is likely to be involved in the control of locomotor muscle syn-

ergies, its contribution may not be exclusively dominant. The partial contribution of the cortex to the

control of locomotor muscle synergies may explain the not-so-high decoding accuracy observed in

this study.

It is possible that the higher decoding accuracies of muscle synergies, compared with individual muscles,

was a consequence of the fact that the muscle synergies represent a gait event in a gait cycle robustly

among strides. However, although individual muscle activity represents a gait event weakly among

strides, if the activity of cortical neurons highly co-varies with the muscle activity among the strides,

the decoding accuracy of the individual muscle would be higher than that of muscle synergies. Therefore

more robust muscle activity among strides does not necessarily mean its decoder has a higher decoding

accuracy. Regarding the robustness of the representation of the phases of gait, it was reported that

stride-to-stride variability of EMG patterns varies among lower limb muscles during walking (Winter

and Yack, 1987). Because a muscle synergy is extracted to reconstruct activation of multiple muscles

(maybe including muscles showing low and high stride-to-stride variability), muscle synergies may not

necessarily be better at representing the phases of gait than single muscles. Because leg muscles can

be selectively activated through spinal reflex circuits, even between synergistic muscles in both the lower

leg (Duysens et al., 1991) and thigh (Kim et al., 1995) muscles, such subcortical adjustments of single mus-

cle activity may be related to the lower decoding accuracies from the cortical signals in individual muscle

decoders.
Spatially Global Cortical Contribution to the Decoding

Although activations of unilateral (right-sided) muscle synergies were decoded, widely distributed bilat-

eral cortical activity, rather than activity from a specific electrode or area, contributed to the decoding

(Figure 7). EEG records the electrical activity of the brain on the scalp through tissues, such as spinal fluid,

bone, and skin. Because the bone has very low electrical conductivity, the electrical activity attenuates

greatly and spreads widely on the scalp. Given the low spatial resolution of EEG, a possible reason for

the bilateral widely distributed cortical contribution may be that the electrodes on the right side may

have recorded the activity from the left-sided leg region of the primary motor cortex, as the leg motor

area is located close to the midline. Another possibility is that the inner part of the primary motor cortex,

which is folded in the longitudinal fissure of the cerebrum, corresponds to the thigh and lower leg region.

Because neuron columns are perpendicular to the cortical surface (Asanuma, 1975), many axons of
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neurons in the longitudinal fissure of the cerebrum are directed horizontally (left-right direction). Thus the

electric field of such a horizontal cortical column (horizontal current source) spreads in the left-right direc-

tion (the schema is illustrated in Figure S9), and the peak amplitude is observed not directly above the

tangential source, but rather at a distance of 2–5 cm along the scalp—depending on the depth of such

a horizontal source (Srinivasan, 1999). Therefore unilateral leg muscle activity would be related to EEG sig-

nals in the bilateral cortices. As possible characteristics of muscle synergies related to the spatially global

cortical contribution, a previous study showed that each locomotor muscle synergy activates bilateral leg

muscles at a certain timing (Maclellan et al., 2014). In addition, Cappellini et al. (2006) showed that loco-

motor synergies activate the upper and lower limb muscles together. Therefore it is possible that muscle

synergies extracted from unilateral muscle activity in the present study would have been part of muscle

synergies at the level of whole body; thus spatially global cortical regions may have contributed to the

decoding of the unilateral muscle synergies. In addition, a previous study showed that unilateral motor

cortical regions, which encode muscle synergies of the leg and pelvic floor muscles, have functional con-

nectivity with wide cortical regions including the contralateral cortex (Rana et al., 2015). The spatially wide

functional networks might have contributed to the decoding of muscle synergy activation in the present

study.

As with our results, previous studies of neural decoding while walking demonstrated that leg kinematics

could be decoded from cortical signals from widely distributed regions (Presacco et al., 2011, 2012). Pre-

vious work has shown the contributions of widespread cortical circuits, including the posterior parietal cor-

tex, motor cortex, somatosensory cortex, and visual cortex, to visually guided walking in cats (Drew and

Marigold, 2015). Although the contribution of widespread cortical circuits is limited to challenging walking

conditions in cats, such circuits may contribute to the control of human walking even during steady-state

walking because the mechanical instability of human-specific bipedal walking (Kuo, 1999) requires addi-

tional cortical involvement. Indeed, widespread cortical activity has been reported during human walking

by source estimation of EEG signals (Bulea et al., 2015; Gwin et al., 2011). In addition, motor imagery studies

have demonstrated locomotor-related activity in brain regions including the primary and supplementary

motor cortex and several bilateral parietal and frontal regions using functional magnetic resonance imag-

ing (Van DerMeulen et al., 2014; Wang et al., 2008). Thus it is possible that locomotor-related global activity

in the cortex can explain the widely distributed contribution of electrodes to the decoding of locomotor

muscle synergy activations in the present study.

Although our results based on EEGmeasurements showed that spatially broad cortical activity contributed

to the decoding, previous animal studies, which used more precise recording methods such as local field

potentials and SUA, showed a solid association between motor cortical areas and muscle control during

walking (Armstrong and Drew, 1984; DiGiovanna et al., 2016). In humans, ECoG studies have demonstrated

the involvement of specific areas of the sensorimotor cortex in arm-reaching movements (Acharya et al.,

2010; Ball et al., 2009b). Therefore it is important to keep in mind that the low spatial resolution of EEGs

possibly affected the global cortical contribution in the decoding; thus other electrophysiological

recording methods with a higher spatial resolution would provide a more precise spatial localization of

cortical areas related to muscle synergy control in human walking.
Roles of Slow Cortical Potentials in Sensorimotor Control

In the present study, slow cortical potentials in the delta band (0.5–4 Hz) were used for our neural decoding

method. Although such low-frequency cortical activity is associated with sleep (Hobson and Pace-Schott,

2002), recent studies suggest that low-frequency cortical activity contains sensorimotor-related informa-

tion. For example, delta band cortical activity plays a role in decisionmaking about somatosensory discrim-

ination (Nácher et al., 2013) and prediction of sensory events (Saleh et al., 2010). In addition, neural decod-

ing studies in humans have demonstrated that delta band activity is particularly informative for decoding

kinematic parameters (Bradberry et al., 2010; Contreras-Vidal et al., 2018; Nakanishi et al., 2017; Presacco

et al., 2011, 2012; Waldert et al., 2008) and muscle activity (Nakanishi et al., 2017). In recent rodent studies,

multisensory integration in widespread brain networks through slow cortical waves was suggested by cal-

cium imaging (Kuroki et al., 2018). As more direct evidence, a study on monkeys revealed intrinsic cyclic

activity of slow cortical waves, functioning much like a spinal central pattern generator for locomotion, in

the motor cortex and that slow waves synchronized upper-limb movements and muscle activity (Hall

et al., 2014). In addition, they demonstrated the slow cortical dynamics during sleep and under sedation.

Given the task commonality between upper-limb movement and sleep, it is possible that the slow cortical
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dynamics are shared with walking. If the above-mentioned roles of slow cortical waves are conserved in hu-

mans, slow cortical waves may integrate muscle-synergy-related sensor information and be synchronized

to muscle synergy activations. Therefore locomotor muscle synergy activations could be decoded from

slow waves in this study.

Applicability to Brain-Machine Interfaces

The decoding methodology and results of this study could contribute to the development of more

effective locomotor rehabilitation approaches for patients with neural disorders. Several recent studies

have used a binary neural decoder to detect patients’ intention to walk (i.e., ‘‘walk’’ or ‘‘idle’’) to sup-

port their walking movement (Donati et al., 2016; King et al., 2015). Unlike such binary decoders, our

continuous decoders predict muscle activity changes with every moment and thus have the potential

to develop a more precise gait supporting system. Recently, BMI systems, which control stimulators

that activate muscles through functional electrical stimulation (FES) based on cortical signals, have

been used to aid recovery of movement in impaired patients (Bouton et al., 2016). As a new stimula-

tion pattern of FES, muscle synergy-based stimulation patterns have been suggested for upper-limb

reaching (Muceli et al., 2010) and locomotion (Alibeji et al., 2015). The present results indicate that

EEG signals contain information about the control of locomotor muscle synergies, providing funda-

mental information for effective neuroprosthetic systems based on a combined approach (e.g.,

BMI-FES with muscle-synergy-based stimulation patterns) for restoring locomotion. In addition to sup-

porting impaired movement, both BMI (Donati et al., 2016) and FES (Everaert et al., 2010) can induce

neural plasticity through long-term training. Therefore the BMI-FES system, based on muscle synergy

decoders, would have the potential to greatly accelerate neural plasticity to enhance the functional re-

covery of walking.

Effects of Motion Artifacts on the Decoding

Although EEG is a suitable method for examining brain activity during walking because of its high temporal

resolution and mobility, the potential effects of movement artifacts should be considered. The power

spectra of EEGs, which are affected by motion artifact in walking, exhibit power peaks at the stride and

step frequencies due to head motion (Arad et al., 2018; Kline et al., 2015; Nathan and Contreras-Vidal,

2016). Thus if our decoding results were based on motion artifact, the EEG electrodes, which showed a

larger peak power in the movement frequencies and were assumed to reflect motion artifacts less buried

by cortical activity, would highly contribute to the decoding. Nevertheless, there is almost no correlation

between the size of peak power in the movement frequencies and electrode contribution (Figures S5

and S6). Rather, most contributing electrodes in each decoder showed a lower peak power in the move-

ment frequencies (Figure S5). In addition, our supplemental experiment showed that head accelerations

do not contribute to the decoding under the slow walking speed (0.55 m/s) (Figures S7 and S8), suggesting

that motion artifact derived from head acceleration has little effect on the decoding results in the present

study.

Some electrodes showed a peak power in the movement frequencies at a comparable amplitude to the

maximum power in the other frequencies in the delta band (0.5–4.0 Hz) (Figure S4). Previous studies

showed that rhythmic sensory inputs (Giabbiconi et al., 2004) and the observation of rhythmic movement

(Kline et al., 2016) elicit a peak in the power spectra of EEGs at the given frequency. Given the knowledge of

activity modulation of cortical neurons within a gait cycle in cats (Armstrong and Drew, 1984) and mice

(DiGiovanna et al., 2016), it is possible that the lower power peaks around the stride and step frequencies

may have reflected the cortical activity related to rhythmic walking movements.

A recent study examined gait-movement-related artifacts in EEG data by blocking the recording of elec-

trophysiological signals (brain, eye, heart, and muscle activity) using a non-conductive layer (silicone

swim cap) (Kline et al., 2015) and demonstrated that artifacts were smaller in electrodes in the central region

(i.e., the vertex) compared with the peripheral regions, becausemovement artifacts were caused by vertical

head acceleration. In the present study, widely distributed cortical activity, including that from central re-

gions and peripheral regions (Figures 7A–7C), contributed to decoding.

We used a principal-component analysis (PCA)-based artifact rejection algorithm (ASR) to remove move-

ment artifacts and other artifacts derived from muscle, heart, and eye activities. The ASR method removes

high-variance artifact components from a dataset by comparison with a resting dataset (Mullen et al., 2015).
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This method has been utilized in studies recording EEG signals during walking, and its effectiveness has

been confirmed in several studies (Bulea et al., 2014; Nathan and Contreras-Vidal, 2016).

Taken together, the effects of movement artifacts on the current decoding results are not expected to be

large. By using recently developed EEG cap hardware (dual electrode EEG cap), which can record EEG sig-

nals (cortical activity with artifact), and pure artifact signals, simultaneously (Nordin et al., 2018), we should

be able to specifically evaluate the effect of artifacts on the decoding in the future.

Conclusions

We demonstrated that low-frequency cortical waves are informative for the decoding of muscle synergy

activity during walking and that the decoding of individual muscle activity is based on muscle synergy-

related cortical information. These results indicate cortical correlates of muscle synergy activation,

possibly suggesting that the cortex is involved in hierarchical control of locomotor muscle activity through

muscle synergies. These findings advance our understanding of relationships between brain activity and

muscle synergies during walking. Moreover, they demonstrate the feasibility of neural decoding of muscle

synergy activation, supporting its future contribution to the development of effective brain-muscle neuro-

prostheses to restore walking in patients with mobility limitations.

Limitations of the Study

Given that EEG signals are the summation of underlying cortical dynamics, there is a possibility that our

results stemmed from the summation of cortical activity for the control of single muscles. However, a num-

ber of electrophysiological and anatomical studies have shown experimental evidence that the muscle

representation inM1 is at the level of muscle synergy rather than a single muscle. For example, electrophys-

iological (Fetz and Cheney, 1980) and anatomical (Shinoda et al., 1981) studies have shown that individual

corticospinal axons in monkeys branch widely in the spinal cord and innervate multiple motoneuron pools.

In addition, it has been shown that microstimulation within M1 activates multiple muscles acting around

more than one joint in cats (Armstrong and Drew, 1985) and monkeys (Overduin et al., 2012). The mus-

cle-synergy-based representation in M1 was also reported in humans using transcranial magnetic stimula-

tion (Gentner and Classen, 2006). Therefore our results may be based on the somatotopic feature in M1.

There are several limitations regarding muscle synergy extraction. The EMG normalization affects muscle

synergy extraction. However, the decoding accuracy of muscle synergies was at a comparable level be-

tween those extracted from normalized (Figure 5) and non-normalized muscle synergies (Figure S3B).

Therefore the normalization did not largely affect our decoding results. However, it should be kept in

mind that the number of recorded muscles may affect the number of extracted muscle synergies by

NMF (Steele et al., 2013; Zelik et al., 2014). Although the muscle synergies in this study were extracted

from 13 leg muscles, the decoding of muscle synergies from a larger number of muscles would provide

a more detailed understanding of modular strategies to simplify muscle control.

In this study we selected a slow walking speed (0.55 m/s) to minimize movement artifacts from the EEG

based on previous EEG studies (Kline et al., 2015; Nathan and Contreras-Vidal, 2016). Nevertheless, it

should be recognized that this walking speed is not ideal for examining muscle activity because EMG sig-

nals tend to be relatively small and noisy during slow-speed walking. For future studies, we should inves-

tigate the cortical involvement in the activation of muscle synergies during a more natural gait speed using

EEG recoding systems that are less susceptible to the effects of movement artifacts andmore sophisticated

artifact removal techniques.

METHODS

All methods can be found in the accompanying Transparent Methods supplemental file.

SUPPLEMENTAL INFORMATION

Supplemental Information can be found online at https://doi.org/10.1016/j.isci.2019.04.008.
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Figure S1. Histogram of the distribution of the across-participant mean of the overall decoding 
accuracy of individual muscle decoders from the same number of randomly selected muscles 
as the muscle synergies. Related to Figure 5. Vertical red lines indicate the 95% confidence 
intervals. The red arrow indicates the across-participant mean of the overall decoding accuracy 
of muscle synergy decoders. 
  



  

 

  

Figure S2. Decoding accuracy (coefficient of determination) of muscle synergy decoders in 
three different decoder types (Forward, Backward and Wide time lag models). Related to 
Figure 5. The mean and SEM across all participants are shown. Asterisks indicate significant 
differences (*: p < 0.05, FDR corrected for multiple comparisons; see Table S7 for detailed 
statistical values). 
 
 
 
 



  

 

Figure S3. Five extracted types of locomotor muscle synergies from non-normalized muscle 
activity (A) and decoding accuracy for the muscle synergies (B). Related to Figure 5. (A) 
Averaged muscle synergies (bars, spatial muscle weightings) across participants in each type are 
shown. Each bar height represents the relative level of activation of each muscle synergy. An 
enlarged view of the x-axis is shown at the bottom. (B) The mean and SD of the decoding 
accuracy (coefficient of determination) across participants for each muscle synergy type are 
shown. 
 
 

  



  

Figure S4. Examples of EEG data from three electrodes (Cz, Pz, C6), for the diversity of their 

spatial localizations (top, back, and right side of the head, respectively), from participants who 

showed the best, moderate, and worst decoding accuracies, respectively. Related to Figure 5 

and Figure7. The central column shows 5 seconds of EEG signals after artifact subspace 

reconstruction (ASR) just before low-pass filtering (4 Hz) to obtain slow cortical potentials. The 



  

right column shows the power spectra of the electrodes in the delta band (0.5–4 Hz). Red and 

green squares indicate their stride and step frequency, respectively.  



  

  

 

Figure S5. Relation between electrode contribution to the decoding and movement artifact 
size of participants who showed the best, moderate and worst decoding accuracy. Related to 
Figure 5 and Figure7. Each plot indicate each electrode data. Correlation coefficients are shown. 
 
 
 
 

 

 

  

Syn. A Syn. B Syn. C Syn. D Syn. E
El

ec
tro

de
 c

on
tri

bu
tio

n

Peak power in stride freq. to step freq. / 
Mean power across 0.5-4.0 Hz

Best 
ID6

Moderate 
ID1

Worst 
ID4

El
ec

tro
de

 c
on

tri
bu

tio
n

0 20 401

2
3
4
6
6
7

0 20 40
0
2
4
6
8
10
12

0 20 40
0
2
4
6
8
10
12

0 20 40
0

2

4

6

8

0 20 40
1

2

3

4

5

6

7

0 20 40
0

2

4

6

8

10

0 20 40
2
3
4
5
6
7
8
9

0 20 40
2

3

4

5

6

7

8

0 20 40
0

2

4

6

8

10

0 20 400

2

4

6

8

10

0 20 400

2

4

6

8

10

12

0 20 40
0

2

4

6

8

10

El
ec

tro
de

 c
on

tri
bu

tio
n

r = -0.21 (n.s.) r = -0.012 (n.s.)r = -0.11 (n.s.) r = -0.056 (n.s.)

r = -0.018 (n.s.) r = -0.011 (n.s.)r = -0.085 (n.s.) r = -0.041 (n.s.)

r = -0.18 (n.s.) r = -0.022 (n.s.)r = 0.069 (n.s.) r = -0.095 (n.s.)



  

  

Figure S6. Correlation between electrode contribution to the decoding and movement artifact 
size for all muscle synergy decoders in all participants. Related to Figure 5 and Figure7. Each 
plot indicates the correlation value for each muscle synergy decoder. Open and filled circles 
indicate statistically non-significant and significant correlation values, respectively. 
 
  



  

 

 
Figure S7. Time courses of head accelerations (mediolateral, vertical, and anterior-posterior), 
and EEG signals (slow cortical potentials) from three electrodes (Cz, Pz, C6), for the diversity 
of their spatial localizations (top, back, and right side of the head, respectively), from all three 
participants in the supplemental experiment. Related to Figure 5 and Figure7. 
 
 
 
 
  



  

Figure S8. Cross-correlation results between vertical head accelerations and slow cortical 
potentials. Related to Figure 5 and Figure7. (A) Peak correlation coefficient values are shown in 
the bar graphs. Time lags at the peak correlation values are shown in the plot graphs. Red plots 
indicate that EEG signals are preceding the head accelerations; blue plots indicate that head 
accelerations are preceding the EEG signals. (B) Relation between the peak correlation values of 
the cross-correlation analysis and electrode contribution in all electrodes in each muscle synergy 
decoder.  
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Figure S9. Schematic illustration of the electrical source in the left primary motor cortex 
corresponding to the right lower leg muscle area and the resulting electrical field in the brain. 
Related to Figure7. Blue, green, and red rectangles represent the cortical areas corresponding 
to the hip, thigh, and lower leg muscles, respectively. The white arrow indicates direction of 
electric current of an electric source (i.e., neural column). Darker areas of color indicate a 
stronger electric field. Red and blue areas indicate positive and negative values, respectively. 
 
  



  

Supplemental tables 

Table S1. Characteristics of each type of locomotor muscle synergy. Related to Figure 3. 

Type Activation timing Major muscles 

Synergy A Mid stance phase TFL, Gmed, and GM 

Synergy B Mid swing phase and early stance phase ST, RF, VL, AM, and TA 

Synergy C Last swing to initial stance phase BF, ST 

Synergy D Mid swing phase and transition from the stance 

phase to the swing phase 

AM, TA 

Synergy E Latter half of stance phase SOL and MG 

 

 

 

  



  

Table S2. Summary of statistical analyses for comparisons of decoding accuracy among each 

ROI and all electrodes for Synergy A. Related to Figure 7. 

Method Pair Value 

ANOVA  F4,48 = 19.15, p = 1.8×10-9 

Multiple t-test with FDR correction Frontal vs. Cental p = 0.50 

Multiple t-test with FDR correction Frontal vs. Lateral p = 0.33 

Multiple t-test with FDR correction Frontal vs. Parietal p = 0.29 

Multiple t-test with FDR correction Frontal vs. All p = 0.00010 

Multiple t-test with FDR correction Central vs. Lateral p = 0.16 

Multiple t-test with FDR correction Central vs. Parietal p = 0.13 

Multiple t-test with FDR correction Central vs. All p = 6.3e-05 

Multiple t-test with FDR correction Lateral vs. Parietal p = 0.52 

Multiple t-test with FDR correction Lateral vs. All p = 7.1e-05 

Multiple t-test with FDR correction Parietal vs. All p = 0.00010 

 

Table S3. Summary of statistical analyses for comparisons of decoding accuracy among each 

ROI and all electrodes for Synergy B. Related to Figure 7. 

Method Pair Value 

ANOVA  F4,20 = 11.32, p = 5.8×10-5 

Multiple t-test with FDR correction Frontal vs. Cental p = 0.16 

Multiple t-test with FDR correction Frontal vs. Lateral p = 0.74 

Multiple t-test with FDR correction Frontal vs. Parietal p = 0.74 

Multiple t-test with FDR correction Frontal vs. All p = 0.027 

Multiple t-test with FDR correction Central vs. Lateral p = 0.16 

Multiple t-test with FDR correction Central vs. Parietal p = 0.46 

Multiple t-test with FDR correction Central vs. All p = 0.027 

Multiple t-test with FDR correction Lateral vs. Parietal p =0.47 

Multiple t-test with FDR correction Lateral vs. All p = 0.027 

Multiple t-test with FDR correction Parietal vs. All p = 0.036 

 

  



  

Table S4. Summary of statistical analyses for comparisons of decoding accuracy among each 

ROI and all electrodes for Synergy C. Related to Figure 7. 

Method Pair Value 

ANOVA  F4,36 = 17.57, p = 4.4×10-8 

Multiple t-test with FDR correction Frontal vs. Cental p = 0.80 

Multiple t-test with FDR correction Frontal vs. Lateral p = 0.45 

Multiple t-test with FDR correction Frontal vs. Parietal p = 0.77 

Multiple t-test with FDR correction Frontal vs. All p = 0.0013 

Multiple t-test with FDR correction Central vs. Lateral p = 0.77 

Multiple t-test with FDR correction Central vs. Parietal p = 0.77 

Multiple t-test with FDR correction Central vs. All p = 0.00026 

Multiple t-test with FDR correction Lateral vs. Parietal p = 0.99 

Multiple t-test with FDR correction Lateral vs. All p = 0.00023 

Multiple t-test with FDR correction Parietal vs. All p = 0.00023 

 

Table S5. Summary of statistical analyses for comparisons of decoding accuracy among each 

ROI and all electrodes for Synergy D. Related to Figure 7.  

Method Pair Value 

ANOVA  F4,24 = 9.18, p = 0.00012 

Multiple t-test with FDR correction Frontal vs. Cental p = 0.28 

Multiple t-test with FDR correction Frontal vs. Lateral p = 0.93 

Multiple t-test with FDR correction Frontal vs. Parietal p = 0.82 

Multiple t-test with FDR correction Frontal vs. All p = 0.0069 

Multiple t-test with FDR correction Central vs. Lateral p = 0.30 

Multiple t-test with FDR correction Central vs. Parietal p = 0.68 

Multiple t-test with FDR correction Central vs. All p = 0.0074 

Multiple t-test with FDR correction Lateral vs. Parietal p = 0.82 

Multiple t-test with FDR correction Lateral vs. All p = 0.0069 

Multiple t-test with FDR correction Parietal vs. All p = 0.0069 

 

  



  

Table S6. Summary of statistical analyses for comparisons of decoding accuracy among each 

ROI and all electrodes for Synergy E. Related to Figure 7. 

Method Pair Value 

ANOVA  F4,52 = 16.11, p = 1.22×10-8 

Multiple t-test with FDR correction Frontal vs. Cental p = 0.023 

Multiple t-test with FDR correction Frontal vs. Lateral p = 0.57 

Multiple t-test with FDR correction Frontal vs. Parietal p = 0.30 

Multiple t-test with FDR correction Frontal vs. All p = 0.00033 

Multiple t-test with FDR correction Central vs. Lateral p = 0.053 

Multiple t-test with FDR correction Central vs. Parietal p = 0.0082 

Multiple t-test with FDR correction Central vs. All p = 0.0013 

Multiple t-test with FDR correction Lateral vs. Parietal p = 0.84 

Multiple t-test with FDR correction Lateral vs. All p = 0.0012 

Multiple t-test with FDR correction Parietal vs. All p = 0.00040 

 
  



  

 
Table S7. Summary of statistical analyses for comparisons of decoding accuracy between three 

types of decoders (Forward, Backward and Wide time lag decoders). Related to Figure 5. See 

also Figure S2. 

 

Method 
Statistical value 

Synergy A Synergy B Synergy C Synergy D Synergy E 

ANOVA 
F2,24 = 19.08, 

p = 1.1×10-5 

F2,10 = 2.15, 

p = 0.168 

F2,18 = 32.99, 

p = 9.6×10-7 

F2,12 = 16.87, 

p = 0.00033 

F2,26 = 14.35, 

p = 6.3×10-5 

Multiple t-test with FDR correction 
(Forward vs. Backward) 

p = 0.6803 - p = 0.054 p = 0.65 p = 0.71 

Multiple t-test with FDR correction 
(Forward vs. Wide time lag) 

p = 9.1e-06 - p = 0.00015 p = 0.0060 p = 0.0030 

Multiple t-test with FDR correction 
(Backward vs. Wide time lag) 

p = 0.0056 - p = 0.0013 p = 0.012 p = 0.00045 

 
 
 
 
 
 
 
 
 
 
 
Table S8. Summary of decoding accuracy in the supplemental experiment. Related to Figure 5 

and Figure 7. See also Figure S7 and Figure S8. 

 ID-S01 ID-S02 ID-S03 All muscle synergies from three 
participants 

R2 (Mean (SD)) 0.29 (0.038) 0.21 (0.035) 0.20 (0.062) 0.23 (0.060) 

 
 
 
  



  

Transparent Methods 
 

Experimental model and subject details 

Participants 

In this study, we conducted two experiments: 1) the main experiment and 2) the supplemental 

experiment. Twelve healthy male volunteers (age, 23–31 years) participated in the main 

experiment. Additionally, three healthy male volunteers (age, 24–28 years) participated in the 

supplemental experiment. Each participant provided written informed consent. The 

experiments were performed in accordance with the Declaration of Helsinki and with the 

approval of the Ethics Committee of the Graduate School of Arts and Sciences, University of 

Tokyo. 

 

Method details 

Main experiment  

Experimental design and setup 

Participants walked on a treadmill (Bertec, Columbus, OH, USA) at 0.55 m/s for 7 min 30 seconds. 

The last seven minutes of data were used for the analysis. The slow walking speed was chosen 

based on two previous studies examining the effects of walking speed on movement artifacts in 

EEG signals (Kline et al., 2015; Nathan and Contreras-Vidal, 2016): Kline et al. (2015) used an 

experimental method to isolate and record independent movement artifacts with a silicone 

swim cap (nonconductive material), and reported large movement artifacts at walking speeds 

faster than 0.8 m/s. A study that analyzed relationships between head acceleration and motion 

artifacts in EEG signals indicated that recordings were robust at gait speeds below 3.0 km/h (0.83 

m/s) (Nathan and Contreras-Vidal, 2016). As a static baseline condition, the participants sat on 

a chair for two minutes. 



  

 

Data collection 

Three-dimensional ground reaction forces (GRF) were recorded from force plates under the 

right and left belts of the treadmill (sampling rate: 1000 Hz). GRF data were smoothed with a 

low-pass filter (zero-lag Butterworth filter, 5 Hz cutoff). MATLAB 2016b (MathWorks, Natick, MA, 

USA) was used to perform all the post-processing analyses offline. 

Surface electromyographic (EMG) signals were recorded from the following 13 leg 

muscles on the right side using a wireless EMG system (Trigno Wireless System, DelSys Inc., 

Boston, MA, USA): tensor fasciae latae (TFL), gluteus maximus (GM), gluteus medius (Gmed), 

sartorius (SART), biceps femoris (BF), semitendinosus (ST), rectus femoris (RF), vastus lateralis 

(VL), adductor magnus (AM), tibialis anterior (TA), peroneus longus (PL), soleus (SOL), and 

gastrocnemius medialis (MG). EMGs were amplified (with 300 gain preamplifier), band-pass 

filtered (20–450 Hz), and sampled at 1000 Hz. 

A 64-channel EEG cap (Waveguard original, ANT Neuro b.v., Enschede, Netherlands) 

and a mobile EEG amplifier (eego sports, ANT Neuro b.v., Enschede, Netherlands) were used to 

record EEG signals at a sampling frequency of 500 Hz. Arrangement of the electrodes was 

according to the international 10–20 electrode system. EEG signals were referenced to CPz and 

a ground electrode was placed on AFz. Electrode impedances were kept below 30 kΩ (10 kΩ in 

most electrodes), which was substantially below the recommended impedance (below 50 kΩ) 

for the high-impedance EEG amplifier. Peripheral channels, which are prone to contamination 

by facial/cranial muscle activity and eye blinks, were removed from the offline analysis (channels 

labeled Fp, AF, FT, T, TP, O, PO, and F5-8, P5-8) (Bulea et al., 2014), resulting in the 30 channels 

presented in Figure 1. 

 



  

EMG processing and extraction of locomotor muscle synergies 

Figure 2 shows an overview of our decoding methodology. From the recorded EMG signals, EMG 

envelopes and muscle synergies were used for the neural decoding analysis. 

 First, the recorded EMG data were high-pass filtered (zero-lag fourth-order 

Butterworth at 30 Hz), demeaned, full-wave rectified, and smoothed with a low-pass filter (zero-

lag fourth-order Butterworth at 4 Hz cutoff) to obtain EMG envelopes (Clark et al., 2010). EMG 

envelopes were resampled at 100 Hz. The amplitude of EMG envelopes for each muscle was 

normalized to the maximum value for that muscle during the walking task. Muscle synergies 

were extracted from the processed EMG envelopes using non-negative matrix factorization 

(NMF) (Clark et al., 2010; d'Avella and Bizzi, 2005; Dominici et al., 2011; Lee and Seung, 1999; 

Yokoyama et al., 2016). For each participant, muscle synergies were extracted from the EMG 

dataset organized as a matrix with 13 muscles × 42000 variables (i.e., 100 Hz × 420 sec [7 min]). 

Using NMF, the EMG matrix (M) was decomposed into spatial muscle weightings (S), which 

correspond to the muscle synergies and their temporal activations (C) according to formula (1): 

𝑀	 = 𝑆	 ∙ 	𝐶	 + 	𝐸	 (1) 

where M (m × t matrix, where m is the number of muscles and t is the number of samples in the 

EMG data matrix) is a linear combination of muscle synergies, S (m × Nsynergy matrix, where Nsynergy 

is the number of muscle synergies), and their temporal activation patterns, C (Nsynergy × t matrix), 

and E is the residual error matrix. The number of muscle synergies, Nsynergy, was determined by 

iterating each possible Nsynergy from 1 to 10. For each Nsynergy, the goodness of fit was evaluated 

based on the variance accounted for (VAF) (Torres-Oviedo et al., 2006). Based on the VAF, the 

optimal Nsynergy was defined as the minimum value fulfilling two criteria: (1) the number of 

muscle synergies achieving VAF > 90% (Torres-Oviedo et al., 2006), and (2) the number to which 

adding an additional muscle synergy did not increase VAF by > 5% (Frere and Hug, 2012). Then, 



  

we clustered the extracted muscle synergies using hierarchical clustering analysis to examine 

the extracted types of muscle synergies (Ward’s method, correlation distance) based on muscle 

weightings, as in our previous studies (Yokoyama et al., 2017a; Yokoyama et al., 2016; Yokoyama 

et al., 2017b). The gap statistic method was used to define the optimal number of clusters 

(Tibshirani et al., 2001). 

 

EEG pre-processing 

In the current study, fluctuations in the amplitude of slow cortical potentials (0.5 – 4 Hz in the 

time domain) were used for the neural decoding analysis (Figure 2) based on a similar 

methodology used in previous studies (Bradberry et al., 2010; Contreras-Vidal et al., 2018; 

Nakanishi et al., 2017; Presacco et al., 2012; Presacco et al., 2011). EEG data analysis was 

performed using custom programs in MATLAB incorporating functions of EEGLAB 14.1b 

(Delorme and Makeig, 2004). The EEG signals were band-pass filtered between 0.5−100 Hz with 

a Butterworth filter (fourth-order). The “cleanline” function in EEGLAB was used to remove 

power line noise (50 Hz). Next, the EEG signals were resampled at 100 Hz. Then, we checked 

noisy EEG channels based on two criteria adopted from a previous study (Gwin et al., 2011): 1) 

standard deviation greater than 1000 μV, and 2) kurtosis of more than five standard deviations 

from the mean. In this study, no EEG electrode satisfied the criteria in all the participants. Since 

various types of artifacts were potentially introduced in the EEG data, we used an artifact 

rejection method called Artifact Subspace Reconstruction (ASR) (Mullen et al., 2015) in EEGLAB 

to remove artifacts derived from walking, eye blinks, muscle, and heart activity. Next, the 

cleaned EEG signals were low-pass filtered at 4 Hz with a zero-phase Butterworth filter (fourth-

order) and re-referenced to a common average reference. Finally, the amplitude of each 

electrode was normalized by calculating the standard z-score. 



  

 

Neural decoding of muscle synergy and individual muscle activation 

To continuously decode the activation of muscle synergies and individual muscles from the slow 

cortical potentials, we designed a time-embedded (10 lags, corresponding to 0 ms to -90 ms) 

linear decoding model, called the Wiener filter (Bradberry et al., 2010; Carmena et al., 2003; 

Presacco et al., 2011), for the muscle synergy and EMG envelope data. The linear model is given 

by: 

𝑦(𝑡) 	= 	𝑏	 +	 . .𝑊01

2
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∙ 	𝑥0[𝑡 − (𝑗 − 1)] 	+ 	𝑒	(𝑡) (2) 

where y(t) is the predicted time series activation of each muscle synergy or EMG envelope at 

time t, b is the intercept, Nelectrode (= 30) is the number of electrodes, L (=10) is the number of 

time lags, x(t) is the normalized slow cortical potentials at electrode i at time t, Wij is the weights 

at electrode i and time lag j, and e(t) is the residual error. The time lag was selected to use the 

cortical information ahead of the muscle activity because we were interested in examining the 

cortical descending control of muscle activity. The maximum time lag (-90 ms) was chosen based 

on the traveling time of the cortical command to the muscles examined by TMS (~35−40 ms) 

(Nielsen et al., 1995; Terao et al., 2000). Thus, we set the time lag to sufficiently contain the 

traveling time. The parameters of the model were calculated with multidimensional generalized 

linear regression (Bradberry et al., 2010; Carmena et al., 2003; Presacco et al., 2011) using the 

“glm” function in MATLAB (Gaussian distribution condition). Neural decoders were designed 

separately for each participant and each decoded parameter (i.e., each muscle synergy and each 

EMG envelope).  



  

In addition to the above-explained forward decoder (-90 to 0 ms, forward model), we 

performed decoding analyses of muscle synergy activation using two additional types of 

decoders, which used positively time-lagged information (0 to 90 ms, backward model) and 

widely time-lagged information (-90 to 90 ms, wide time lag model). 

For assessing the predictive accuracy of each decoder, a seven-fold cross-validation 

procedure was performed. Thus, the data recorded during the 7 min walking task were divided 

into 7 segments (1 min each). Six segments were used for training data while the remaining 

segment was used for testing the decoding model. In the cross-validation, the temporal 

activation patterns of muscle synergies (C in equation (1)) for the test data were calculated using 

the NMF algorithm initialized with the spatial weightings of muscle synergies (S in equation (1)) 

extracted from the training data and updating only the temporal activation patterns of the 

synergies to reconstruct the muscle activation patterns of test data (Berger et al., 2013; Clark et 

al., 2010; d'Avella et al., 2006; Yokoyama et al., 2016). The EEG signals for the test data were 

normalized by subtracting a mean value from the training data and then dividing by the standard 

deviation of the training data. This procedure was repeated for all possible combinations (i.e., 

seven times).  Coefficient of determination (R2) were calculated between the real activation 

and the decoded activation at each decoder in each iteration. To compare the overall decoding 

accuracy between the two types of decoders (muscle synergy decoders vs. individual muscle 

decoders), overall R2 values were calculated for each type per participant. To minimize the 

effects of skewness in the sampling distributions on the correlation coefficients, each coefficient 

of determination value was averaged after Fisher’s Z-transformation (Corey et al., 1998). After 

averaging, the Z-values were back-transformed to the scale of Pearson’s r values. 



  

The difference in the number of decoders (individual muscles: 13, muscle synergies: 

3−5 depending on participants) may have possibly affected the comparisons of the overall 

decoding accuracy, as the sample mean of the larger sample size more accurately estimates the 

population mean. To overcome this issue, the overall decoding accuracy was calculated using 

the same number of randomly sampled individual muscle decoders with muscle synergies from 

13 muscles per participants (sampling without replacement). In this analysis, the Z-transformed 

decoding accuracy values were randomly sampled and averaged. We then calculated the across-

participant mean of the overall decoding accuracy for individual muscle decoders. The 

procedure was iterated 10000 times, and we calculated the 95% confidence interval of the 

distribution of the 10000 values of the across-participant mean of the overall decoding accuracy 

of individual muscles. Then, we tested whether the across-participant mean of the overall 

decoding accuracy for muscle synergy decoders was larger than the 95% confidence interval. 

Chance levels of neural decoding were evaluated by randomizing the EEG phase 

(Theiler et al., 1992). Phase-randomized EEG signals were generated using the fast Fourier 

transform of a time series throughout the recording duration to randomize the phase in the 

Fourier domain while keeping the power spectrum unchanged; then the inverse Fourier 

transform was performed to back to the time domain. After phase-randomization, the power 

spectrum was preserved in the surrogate data, but the phase relation to the muscle activity was 

disrupted. When decoding from the time-domain EEG signals, it is assumed that the signals are 

phase-locked to muscle activity and that a randomization of the phase can provide a chance 

level of the decoding accuracy. The same decoding procedure was performed using the phase-

randomized EEG signals. We generated 100 phase-randomized EEG datasets for each participant 



  

and performed neural decoding using each randomized dataset to obtain confidence intervals 

for the decoding accuracy. 

 

Analysis of relationships between muscle synergy decoders and individual muscle decoders 

We reconstructed individual muscle activations by summing the outputs of each 

decoded muscle synergy to test whether the variability in decoding accuracy in individual 

muscles would be reproduced by individual muscle activations indirectly decoded from muscle 

synergy activations decoded from muscle synergy decoders. The output of a decoded muscle 

synergy was explained by the product of the muscle weighting component and the decoded 

temporal activation pattern from the slow cortical potentials. Next, the decoding accuracy of 

the indirectly decoded individual muscle activation through the decoded muscle synergies were 

assessed. 

To examine the weight of each muscle decoder (Wmuscle) based on those of the muscle 

synergy decoders (Wsyn), a 300-dimensional weight of an individual muscle decoder was 

reconstructed as a linear combination of the weights of the muscle synergy decoders with non-

negative coefficients (Wmuscle’, conceptual schema presented in Figure 6C). The non-negative 

least squares problem was solved by the “lsqnonneg” function in MATLAB. The similarity of the 

weights of the original and reconstructed individual muscle decoders (i.e., Wmuscle and Wmuscle’, 

respectively) was evaluated using Pearson’s r, calculated from the decoder data of all 

participants. 

 

Contribution of each electrode to decoding 



  

To evaluate the spatial contributions of cortical activity to predict muscle synergy activations, 

we calculated the contribution of each electrode from the weights of the decoding model as 

determined in a previous study (Chao et al., 2010): 

%𝑇F 	= 	
∑ H𝑤F1H2
134
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× 100; (3) 

for all k from 1 to Nelectrode, where %Tk is the percentage contribution of each EEG electrode k. 

 In addition, we divided the electrodes into four major ROIs to examine the individual 

contribution of each area to the decoding. The ROIs were the frontal area (F3, F1, Fz, F2, F4, FC3, 

FC1, FCz, FC2, and FC4), central area (FC1, FCz, FC2, C3, C1, Cz, C2, C4, CP1, and CP2), lateral area 

(FC5, FC3, FC4, FC6, C5, C6, CP5, CP3, CP4, and CP6), and parietal area (CP3, CP1, CP2, CP4, P3, 

P1, Pz, P2, and P4). Using the same procedure as for the full electrodes, the decoding accuracy 

of each muscle synergy activation was separately calculated using the electrode set in each ROI. 

 

Effects of amplitude normalization of EMG signals  

To examine the effect of amplitude normalization of EMG signals on the decoding of muscle 

synergy activation, we also extracted muscle synergies from non-normalized EMG activity and 

performed decoding analyses using the muscle synergy activation. We performed the same 

procedures for muscle synergy extraction and activation decoding as those used those for 

muscle synergies extracted from normalized EMGs. 

 

Effects of motion artifact in EEG 

The spectra of the EEG signals were analyzed using the fast Fourier transform (FFT) via the fft 

function in Matlab. Default setting parameters of the fft function were used (FFT size was set to 



  

the length of the EEG signal rounded up to the next power of two). The power spectra of EEGs, 

which are affected by motion artifact during walking, exhibit the power peaks around the stride 

and step frequencies due to head motion (Arad et al., 2018; Kline et al., 2015; Nathan and 

Contreras-Vidal, 2016). Therefore, we calculated the relative power between the peak power in 

frequency from the stride to step frequencies and the mean power in the delta band frequency 

(0.5−4.0 Hz) as a rough indicator of artifact size of each electrode. Then, relationships between 

the artifact size and electrode contribution to the decoding, defined by formula (3), were 

examined using Pearson's correlation coefficient in each muscle synergy decoder per participant. 

 

Supplemental experiment 

Three participants walked on a treadmill under the same experimental conditions used in the 

main experiment. In this supplemental experiment, we measured tri-axial head accelerations 

with a 1000 Hz sampling frequency in addition to obtaining EEG, EMG, and GRF data under the 

same data recording conditions. An accelerometer (Trigno Wireless System, DelSys Inc., Boston, 

MA, USA) was attached to the participant’s forehead along the midline of the nose (Figure S7), 

as described in previous studies (Kline et al., 2015; Nathan and Contreras-Vidal, 2016), to 

measure the best estimate of the head acceleration without any interfering EEG recordings. 

Using the same analyses performed for the main experiment data, we extracted 

muscle synergies from EMG signals and then performed the decoding analysis of muscle synergy 

activation from slow cortical potentials obtained from the EEG signals. The acceleration signals 

were band-pass filtered between 0.5−4 Hz with a Butterworth filter (fourth-order) to examine 

the effects of head acceleration on the slow cortical potentials of EEGs. Then, the acceleration 



  

data were resampled at 100 Hz to match the sampling frequency for the slow cortical potentials. 

If the head acceleration affected the activation patterns of the slow cortical potentials, the two 

signals showed a correlation with the time lag, in which the head movement preceded the slow 

cortical potentials. Because movement artifacts are mainly caused by vertical head accelerations 

(Kline et al., 2015), we calculated the cross-correlation between the time series of vertical head 

accelerations and slow cortical potentials at each electrode. The maximum correlation between 

the vertical head accelerations and the slow cortical potentials were examined in a time lag 

range from -500 to 500 ms so as not to exceed the step duration (approximately 600—900 ms 

depending on the participants). Finally, we used Pearson's correlation to examine the 

relationships between the electrode contribution to the decoding and the maximum correlation 

of the cross-correlation analysis in all the electrodes in each muscle synergy decoder. 

 

Quantification and statistical analysis 

The differences between the overall correlation values (i.e., decoding accuracy) between the 

two types of decoders (muscle synergy decoder vs. individual muscle decoder) were assessed 

using two-tailed paired t-tests. In addition, the differences in decoding accuracy between each 

ROI and the full electrode set were compared using repeated measures one-way analysis of 

variance (ANOVA) test with multiple t-tests with FDR correction for each muscle synergy type. 

Before performing the t-test and ANOVA, the normality was tested and found using the Lilliefors 

test. For the statistical tests, the coefficient of determination values were transformed into Z-

values using Fisher’s Z-transformation and the tests (i.e., t-test, ANOVA, multiple t-tests with 



  

FDR correction) were conducted on the Fisher’s Z-values. Statistical significance was set at p < 

0.05. 

 
  



  

Supplemental References  
 
 

Arad, E., Bartsch, R.P., Kantelhardt, J.W., and Plotnik, M. (2018). Performance-based approach 

for movement artifact removal from electroencephalographic data recorded during 

locomotion. PloS One 13, e0197153. 

Berger, D.J., Gentner, R., Edmunds, T., Pai, D.K., and d'Avella, A. (2013). Differences in adaptation 

rates after virtual surgeries provide direct evidence for modularity. J. Neurosci. 33, 

12384-12394. 

Bradberry, T.J., Gentili, R.J., and Contreras-Vidal, J.L. (2010). Reconstructing three-dimensional 

hand movements from noninvasive electroencephalographic signals. J. Neurosci. 30, 

3432-3437. 

Bulea, T.C., Prasad, S., Kilicarslan, A., and Contreras-Vidal, J.L. (2014). Sitting and standing 

intention can be decoded from scalp EEG recorded prior to movement execution. 

Front. Neurosci. 8, 376. 

Carmena, J.M., Lebedev, M.A., Crist, R.E., O'Doherty, J.E., Santucci, D.M., Dimitrov, D.F., Patil, 

P.G., Henriquez, C.S., and Nicolelis, M.A. (2003). Learning to control a brain–machine 

interface for reaching and grasping by primates. Plos Biol. 1, e42. 

Chao, Z.C., Nagasaka, Y., and Fujii, N. (2010). Long-term asynchronous decoding of arm motion 

using electrocorticographic signals in monkeys. Front. Neuroeng. 3, 3. 

Clark, D.J., Ting, L.H., Zajac, F.E., Neptune, R.R., and Kautz, S.A. (2010). Merging of healthy motor 

modules predicts reduced locomotor performance and muscle coordination 

complexity post-stroke. J. Neurophysiol. 103, 844-857. 

Contreras-Vidal, J.L., Bortole, M., Zhu, F., Nathan, K., Venkatakrishnan, A., Francisco, G.E., Soto, 

R., and Pons, J.L. (2018). Neural decoding of robot-assisted gait during rehabilitation 

after stroke. Am. J. Phys. Med. Rehabil. 97, 541-550. 

Corey, D.M., Dunlap, W.P., and Burke, M.J. (1998). Averaging correlations: Expected values and 

bias in combined Pearson rs and Fisher's z transformations. J. Gen. Psychol. 125, 245-

261. 

d'Avella, A., and Bizzi, E. (2005). Shared and specific muscle synergies in natural motor behaviors. 

Proc. Natl. Acad. Sci. U. S. A. 102, 3076-3081. 

d'Avella, A., Portone, A., Fernandez, L., and Lacquaniti, F. (2006). Control of fast-reaching 

movements by muscle synergy combinations. J. Neurosci. 26, 7791-7810. 



  

Delorme, A., and Makeig, S. (2004). EEGLAB: an open source toolbox for analysis of single-trial 

EEG dynamics including independent component analysis. J. Neurosci. Methods 134, 

9-21. 

Dominici, N., Ivanenko, Y.P., Cappellini, G., d'Avella, A., Mondi, V., Cicchese, M., Fabiano, A., Silei, 

T., Di Paolo, A., Giannini, C., et al. (2011). Locomotor primitives in newborn babies and 

their development. Science 334, 997-999. 

Frere, J., and Hug, F. (2012). Between-subject variability of muscle synergies during a complex 

motor skill. Front. Comput. Neurosci. 6, 99. 

Kline, J.E., Huang, H.J., Snyder, K.L., and Ferris, D.P. (2015). Isolating gait-related movement 

artifacts in electroencephalography during human walking. J. Neural Eng. 12, 046022. 

Lee, D.D., and Seung, H.S. (1999). Learning the parts of objects by non-negative matrix 

factorization. Nature 401, 788-791. 

Mullen, T.R., Kothe, C.A., Chi, Y.M., Ojeda, A., Kerth, T., Makeig, S., Jung, T.-P., and 

Cauwenberghs, G. (2015). Real-time neuroimaging and cognitive monitoring using 

wearable dry EEG. IEEE Trans. Biomed. Eng. 62, 2553-2567. 

Nakanishi, Y., Yanagisawa, T., Shin, D., Kambara, H., Yoshimura, N., Tanaka, M., Fukuma, R., 

Kishima, H., Hirata, M., and Koike, Y. (2017). Mapping ECoG channel contributions to 

trajectory and muscle activity prediction in human sensorimotor cortex. Sci. Rep. 7, 

45486. 

Nathan, K., and Contreras-Vidal, J.L. (2016). Negligible motion artifacts in scalp 

electroencephalography (EEG) during treadmill walking. Front. Hum. Neurosci. 9, 708. 

Nielsen, J., Petersen, N., and Ballegaard, M. (1995). Latency of effects evoked by electrical and 

magnetic brain stimulation in lower limb motoneurones in man. J. Physiol. 484, 791-

802. 

Presacco, A., Forrester, L.W., and Contreras-Vidal, J.L. (2012). Decoding intra-limb and inter-limb 

kinematics during treadmill walking from scalp electroencephalographic (EEG) signals. 

IEEE Trans. Neural. Syst. Rehabil. Eng. 20, 212-219. 

Presacco, A., Goodman, R., Forrester, L., and Contreras-Vidal, J.L. (2011). Neural decoding of 

treadmill walking from noninvasive electroencephalographic signals. J. Neurophysiol. 

106, 1875-1887. 



  

Terao, Y., Ugawa, Y., Hanajima, R., Machii, K., Furubayashi, T., Mochizuki, H., Enomoto, H., Shiio, 

Y., Uesugi, H., and Iwata, N.K. (2000). Predominant activation of I1-waves from the leg 

motor area by transcranial magnetic stimulation. Brain Res. 859, 137-146. 

Theiler, J., Eubank, S., Longtin, A., Galdrikian, B., and Farmer, J.D. (1992). Testing for nonlinearity 

in time series: the method of surrogate data. Phys. D 58, 77-94. 

Tibshirani, R., Walther, G., and Hastie, T. (2001). Estimating the number of clusters in a data set 

via the gap statistic. J. R. Statist. Soc. B 63, 411-423. 

Torres-Oviedo, G., Macpherson, J.M., and Ting, L.H. (2006). Muscle synergy organization is 

robust across a variety of postural perturbations. J. Neurophysiol. 96, 1530-1546. 

Yokoyama, H., Hagio, K., Ogawa, T., and Nakazawa, K. (2017a). Motor module activation 

sequence and topography in the spinal cord during air-stepping in human: Insights into 

the traveling wave in spinal locomotor circuits. Physiol.  Rep. 5, e13504. 

Yokoyama, H., Ogawa, T., Kawashima, N., Shinya, M., and Nakazawa, K. (2016). Distinct sets of 

locomotor modules control the speed and modes of human locomotion. Sci. Rep. 6, 

36275. 

Yokoyama, H., Ogawa, T., Shinya, M., Kawashima, N., and Nakazawa, K. (2017b). Speed 

dependency in α-motoneuron activity and locomotor modules in human locomotion: 

indirect evidence for phylogenetically conserved spinal circuits. Proc. R. Soc. B 284, 

20170290. 

 

 

 

 


	Cortical Correlates of Locomotor Muscle Synergy Activation in Humans: An Electroencephalographic Decoding Study
	Introduction
	Results
	Extracted Locomotor Muscle Synergies
	Neural Decoding of Activation of Muscle Synergies and Individual Muscles from EEG Signals
	Relationships between Muscle Synergy Decoders and Individual Muscle Decoders
	Contributions of Electrodes to Neural Decoding
	Decoding of Muscle Synergy Activation Using EEG Signals in Different Time Lags
	Effect of Normalization of EMG Amplitude on Decoding
	Effect of Motion Artifact on the Decoding
	Relationships between Head Acceleration and Slow Cortical Potentials

	Discussion
	Cortical Correlates of Muscle Synergy Activation during Walking
	Spatially Global Cortical Contribution to the Decoding
	Roles of Slow Cortical Potentials in Sensorimotor Control
	Applicability to Brain-Machine Interfaces
	Effects of Motion Artifacts on the Decoding
	Conclusions
	Limitations of the Study

	Methods
	Supplemental Information
	Acknowledgments
	Author Contributions
	Declaration of Interests
	References


