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Abstract: Previous research has shown that sleep deprivation can affect emotions and some cognitive
functions. However, research on how sleep deprivation influences the visuomotor memory have
rarely been reported. In the current study, a Fitts’ Law task was used to investigate how movement
and the visuomotor memory are affected under the condition of sleep deprivation. Experiment 1 had
36 participants (15 males, mean age = 21.61 years) complete the same Fitts’ Law task 10 days apart
under standard conditions. Experiment 2 had five participants (three males, mean age = 27.2 years)
complete the task after 7 days of sleep deprivation, then complete it again after 10 days without sleep
deprivation. Experiment 1 demonstrated the stability of the trial-to-trial effects. Experiment 2 showed
that the previous trial (n) exerted no effect on the current trial (n + 1) under the conditions of sleep
deprivation (p = 0.672). However, the effect was observed after 10 days without sleep deprivation
(p = 0.013). This suggests that sleep deprivation did not affect task performance but influenced the
transfer of the trial history. Future studies are required to investigate the effect of sleep deprivation
with more participants.

Keywords: sleep deprivation; Fitts’ Law; trial-to-trial transfer; visuomotor memory; task performance;
goal-oriented movement

1. Introduction

Some professionals (e.g., pilots and medical staff) must live and work on duty by turns
and potentially perform functions while coping with sleep deprivation. Astronauts, for
instance, may need to manually operate complex technical systems with touch screens
or monitors, requiring significant cognitive and psychomotor functions, while sleep de-
prived [1]. Even in daily life, people sometimes have to stay up late to complete their heavy
workload before the deadline under conditions of sleep deprivation. In the meantime,
more than 50% of the general population was affected by obstructive sleep apnea, which is
a frequent respiratory sleep disorder and is associated with neurocognitive performance
impairment [2]. Previous studies have mostly focused on the effect of sleep deprivation on
emotions and some cognitive functions [3,4]. By contrast, research on how sleep deprivation
affects hand movement and task performance, particularly after extended periods of sleep
deprivation, have rarely been reported. Further, very few studies have investigated the
impact on performance using systems involving touch screens or monitors, commonplace
in space capsules, submarines, medical fields, and many other work contexts in which
manual speed and accuracy are paramount.

Many studies have reported that sleep deprivation can adversely influence the emo-
tional state [5]. For instance, research by Zohar et al. has shown that sleep deprivation
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can lead to an increase in negative emotion and a decrease in positive emotion [6]. In
addition to these emotional issues, scientific observations and anecdotal reports during
human spaceflight have provided evidence for cognitive dysfunction, including spatial dis-
orientation, visual illusion, time sense disorder, impairment of attention and concentration,
and disturbances of motor skills (for review, see [7]). Previous research has suggested that
high emotional arousal facilitates the smoothness of movement [8] and several cognitive
functions, such as attentional focus [9,10] and working memory [11], thus affecting motor
learning. Daviaux et al. have found that sleep deprivation affects the perception of action
capabilities via the cognitive processing of inputs [12]. However, there are also studies that
did not show this effect. For example, Hennecke et al. have found that restricted sleep only
impaired the spatial working memory but not the declarative memory [13]. Previous stud-
ies of three consecutive 12 h nursing shifts have shown that no significant differences were
found in the mean reaction time between different shifts although neurobehavioral tests
demonstrated performance problems after working for 12 consecutive hours [14]. Many
previous results have also indicated that sleep deprivation does not inevitably influence
performance on executive control components of cognition [15,16]. Meanwhile, it should be
noted that professionals (e.g., astronauts and medical staff) working with sleep deprivation
can still finish tasks correctly and perform their jobs successfully. Conflicting results could
be accounted for by differences in the experimental paradigms and different durations of
sleep deprivation. The cognitive impairments were affected differently by chronic sleep
deprivation and acute sleep deprivation [17]. Previous research mostly focused on task
performance but studies on cognition related to the performance have rarely been reported.
The current study aimed to investigate the effects of 7 days of sleep deprivation on simple
motor skills. At the same time, we investigated whether the effects on cognitive functions
were in accordance with those on task performance. It is possible for hand movement to be
affected by sleep deprivation directly or via emotions.

Fitts’ Law can be used to investigate the effects of sleep deprivation on precise hand
movement. Fitts’ Law states that a stable functional relationship exists among distance,
target size, and movement time in target-oriented movement and is suitable for a wide
range of tasks, including the movements of the hand, handheld tools [18], or a mouse-
controlled cursor [19]. Fitts’ Law describes the tradeoff between accuracy and time in
an aiming task, which reflects both the task performance and visuomotor memory. The
law has been widely studied in psychology and is suitable for a wide range of purposes,
including investigating the impact of sleep deprivation on precise hand movements.

Previous Fitts’ Law studies have shown that the grasping movement in a trial is
influenced by its occurrence in a previous trial [20]. It also occurs during a cursor-hitting
task. Specifically, the movement time required to hit the current target manually or with
a mouse is shortened when the target in the previous trial is large, and the movement
time required to hit the current target is extended when the target in the previous trial
is small [21]. Trial-to-trial transfer is explained as a transfer of a sensorimotor memory,
indicating that the previous visuomotor memory plays an important role in programming
the grasping movement [22]. However, the trial-to-trial transfer effect lasts for a short time
and typically disappears by 5 s [23]. Based on these reports of our lab, we planned to study
whether the trial-to-trial transfer would disappear under conditions of sleep deprivation if
the visuomotor memory were damaged by sleep deprivation. We predict that trial-to-trial
transfer is likely to disappear because of cognitive function impairment.

In the current study, a Fitts’ Law task was used to investigate whether a task perfor-
mance or a transfer of the trial history was influenced by 7 days of sleep deprivation. It
might be the case that sleep deprivation would affect the trial-to-trial transfer but not the
task performance. Two experiments were conducted to investigate whether the movement
performance and the transfer of the trial history were affected by sleep deprivation. In
Experiment 1 (Exp1), the participants moved a cursor to hit the target under normal condi-
tions when the target sizes were presented either blocked or alternately. In Experiment 2
(Exp2), the same was conducted on the participants after 7 days under conditions of sleep
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deprivation before they left the confined space. Participants were allowed 8 h of sleep
every 24 h over a 7-day testing period. The participants in both Exp1 and Exp2 were tested
10 days later to provide baseline data. We predicted that the task performance was not
affected by sleep deprivation, indicating that the cursor-hitting movement was a highly
automated muscle movement with low sensorimotor complexity. However, the trial-to-trial
transfer was expected to be influenced by sleep deprivation, indicating that the formation
of the trial history needed high-level cognitive processes, which could be damaged by
sleep deprivation.

2. Experiments 1A and 1B
2.1. Participants

Experiment 1A (Exp1A) included 42 participants (21 males, Mage = 22.13 years,
SD = 2.46). All participants were right-handed and had normal or corrected-to- normal
vision. Prior to the experiment, they provided informed consent, which was approved by
the Ethical Committee of the Department of Psychology, Nanjing University. After at least
10 days, the same participants were asked to complete the cursor-hitting task. Thirty-six
participants were left to undergo Experiment 1B (15 males, Mage = 21.61 years, SD = 2.32).

2.2. Apparatus and Procedure

Materials. The Positive and Negative Affect Schedule (PANAS) was used to assess the
emotional state of the participants prior to each round [24]. The scale consisted of 20 words
describing emotions. The participants were asked to read each word and then rate the
intensity of elicited emotion on a 5-point scale (1 = not at all, 5 = very consistent).

Apparatus. Participants used a 13.3-inch laptop (Samsung 910S3L, 29.6 cm × 16.6 cm)
with the resolution set to 1024 × 768.The viewing distance was set to approximately 50 cm.
A white rectangular target, either small (8.6 cm × 1.1 cm) or large (8.6 cm × 2.3 cm), was
presented in the gray background. At the bottom of the screen was a white start box
(3 cm × 4 cm). The layout is presented in Figure 1.

J. Clin. Med. 2022, 11, x FOR PEER REVIEW 3 of 11 
 

 

conditions when the target sizes were presented either blocked or alternately. In Experi-

ment 2 (Exp2), the same was conducted on the participants after 7 days under conditions 

of sleep deprivation before they left the confined space. Participants were allowed 8 h of 

sleep every 24 h over a 7-day testing period. The participants in both Exp1 and Exp2 were 

tested 10 days later to provide baseline data. We predicted that the task performance was 

not affected by sleep deprivation, indicating that the cursor-hitting movement was a 

highly automated muscle movement with low sensorimotor complexity. However, the 

trial-to-trial transfer was expected to be influenced by sleep deprivation, indicating that 

the formation of the trial history needed high-level cognitive processes, which could be 

damaged by sleep deprivation. 

2. Experiments 1A and 1B 

2.1. Participants 

Experiment 1A (Exp1A) included 42 participants (21 males, Mage = 22.13 years, SD = 

2.46). All participants were right-handed and had normal or corrected-to- normal vision. 

Prior to the experiment, they provided informed consent, which was approved by the 

Ethical Committee of the Department of Psychology, Nanjing University. After at least 10 

days, the same participants were asked to complete the cursor-hitting task. Thirty-six par-

ticipants were left to undergo Experiment 1B (15 males, Mage = 21.61 years, SD = 2.32). 

2.2. Apparatus and Procedure 

Materials. The Positive and Negative Affect Schedule (PANAS) was used to assess 

the emotional state of the participants prior to each round [24]. The scale consisted of 20 

words describing emotions. The participants were asked to read each word and then rate 

the intensity of elicited emotion on a 5-point scale (1 = not at all, 5 = very consistent). 

Apparatus. Participants used a 13.3-inch laptop (Samsung 910S3L, 29.6 cm × 16.6 cm) 

with the resolution set to 1024 × 768.The viewing distance was set to approximately 50 cm. 

A white rectangular target, either small (8.6 cm × 1.1 cm) or large (8.6 cm × 2.3 cm), was 

presented in the gray background. At the bottom of the screen was a white start box (3 cm 

× 4 cm). The layout is presented in Figure 1. 

  

Figure 1. The target used in Experiment 1 was either a small rectangle or a large rectangle. The 

displays were presented either blocked or alternately. Thus, 4 kinds of movement from the current 

trial to the next trial were identified: large-to-large (L:L), small-to-small (S:S), small-to-large (S:L), 

and large-to-small (L:S). 

Procedures and design. Each trial began with the presentation of a start box. Partici-

pants moved the mouse to hit the start box with a cursor until a target was presented. 

They were then asked to hit the white rectangular target as soon as it appeared and as 

precisely as possible. They moved the cursor back toward the start box and waited for the 

next target. Movement time (MT) was defined as the time that the participants moved the 

cursor from the start box to the target. The intertrial time interval was 3 s between the 

presentation of the target in the current trial to the presentation of the target in the next 

trial. The participants were allowed 10 to 12 practice trials to ensure that they knew how 

to perform the task. If the cursor fell outside the target more than twice, the trial was 

marked as an error, and the participants had to perform the task again. 

Figure 1. The target used in Experiment 1 was either a small rectangle or a large rectangle. The
displays were presented either blocked or alternately. Thus, 4 kinds of movement from the current
trial to the next trial were identified: large-to-large (L:L), small-to-small (S:S), small-to-large (S:L), and
large-to-small (L:S).

Procedures and design. Each trial began with the presentation of a start box. Partic-
ipants moved the mouse to hit the start box with a cursor until a target was presented.
They were then asked to hit the white rectangular target as soon as it appeared and as
precisely as possible. They moved the cursor back toward the start box and waited for
the next target. Movement time (MT) was defined as the time that the participants moved
the cursor from the start box to the target. The intertrial time interval was 3 s between the
presentation of the target in the current trial to the presentation of the target in the next
trial. The participants were allowed 10 to 12 practice trials to ensure that they knew how to
perform the task. If the cursor fell outside the target more than twice, the trial was marked
as an error, and the participants had to perform the task again.

As shown in Figure 1, large and small targets were presented either blocked or alter-
nately. Thus, four kinds of movements from the current trial to the next trial were identified:
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large-to-large (L:L), small-to-small (S:S), small-to-large (S:L), and large-to-small (L:S). In
the blocked presentation, the small and large targets were displayed separately in 12 trials,
whereas in the alternating presentation, the large and small targets were displayed alter-
nately in 24 trials. Thus, 48 trials (12 × 2 (the current size: large or small) × 2 (the previous
size: large or small) = 48) were performed under each condition, presented in a balanced
order. The participants were allowed to rest for 60 s after each condition. Participants were
required to complete a full round of trials; then, 10 days later, they completed a second
round. PANAS was used to measure the intensity of emotion of the participants prior to
Exp1A and Exp1B. The procedure is presented in Figure 2.
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2.3. Results

The day vs. 10 days later under the standard condition (Figure 3). A 2 (time: the first
measurement vs. the second measurement) × 2 (previous size: large vs. small) × 2 (current
size: large vs. small) repeated measures ANOVA was conducted using MT. The main effect
of the current size was significant, F(1,35) = 836.078, p < 0.01, and ηp

2 = 0.960, and the MT of
hitting the small target was longer than that of hitting the larger target, which conformed to
Fitts’ Law. The main effect of the previous size was also significant, F(1,35) = 49.917, p < 0.01,
and ηp

2 = 0.588, suggesting that hitting the large target in the previous trial shortened the
current MT relative to that entailed by hitting the small target previously in both Exp1A
and Exp1B. These results indicate that a trial-to-trial transfer occurred. The main effect of
time was not significant (F(1,35) = 0.018, p = 0.894, and ηp

2 = 0.001), which showed that
neither the practice nor the time exerted an effect on the performance. Similarly, other
interactions showed no significance (F(1,35)max = 0.298, pmin = 0.589, and ηp

2 = 0.008).
Changes in emotion under the standard condition. The positive affect (M ± SD: Exp1A:

25.75 ± 7.62; Exp1B: 25.11 ± 7.17) and negative affect under a standard condition and
10 days later were assessed (M ± SD: Exp1A: 13.44 ± 4.42; Exp1B: 14.47 ± 6.31). The paired
t-test showed no significant difference between the first measurement and the second
measurement (positive affect between the 1st and 2nd trials: t = 0.366, p = 0.716; negative
affect between the 1st and 2nd trials: t = 0.730, p = 0.471).
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Figure 3. Results of Experiment 1A and 1B. In Exp1A, the movement time of L:L is significantly
shorter than that of S:L, and the movement time of L:S is significantly shorter than that of S:S. Similar
observations in Exp1B are noted. ** p < 0.01.

3. Experiments 2A and 2B

Exp1A and Exp1B verified the existence of the trial history under the standard condi-
tion and showed that the task performance was not affected by the practice trials. Exp2A
and Exp2B were conducted to determine whether the trial-to-trial transfer and task perfor-
mance (i.e., movement time) were influenced under the conditions of sleep deprivation for
an extended time.

3.1. Participants

Six adults were initially recruited in Experiment 2 but only 5 completed all of the
data collection. Five adults (3 males, Mage = 27.2 years, SD = 1.94) participated in Exp2A
and Exp2B. All participants were right-handed and had normal or corrected-to-normal
vision. The participants stayed in a closed room with sleep deprivation for 7 days. Written
informed consent was obtained from all participants, and the experiment was conducted in
accordance with the guidelines approved by the Ethics Committee of China Institute of
Marine Technology and Economy.

3.2. Apparatus and Procedure

Experimental stimuli were presented on a 14-inch laptop (ASUS laptop, 31.2 cm × 17.5 cm)
in Exp2. Other settings, such as the experimental materials, resolution, and cursor-hitting
task, were identical to those in Experiment 1. PANAS was used to measure the emotional
state of the participants 1 d before the participants were placed under the condition of sleep
deprivation and on the last day of sleep deprivation. Exp2A and Exp2B used the same
procedure as Exp1, except that the participants in Exp2A were initially instructed to stay in
a confined room with sleep deprivation for 7 days. The same participants were recruited
again to participate in Exp2B after 10 days without sleep deprivation.

Participants maintained sleeping and waking periods with normal 8 h of sleep for
three nights prior to the experiment. To exclude the influence of different daily activities,
the sleep deprivation experiment was conducted in a confined space, with each participant
having a separate resting area and a public activity area (Figure 4). The participants were
allowed to carry only paper books and materials when they entered the confined space. The
space was equipped with a good ventilation system, and adequate food and water were
supplied regularly. The room was illuminated with less natural light. The participants were
instructed to perform their normal daily activities with 24 h sleep deprivation, following an
8 h sleep pattern. Then, the participants suffered a new 24 h sleep deprivation period, and
the next sleep–awake cycle started. The participants’ sleep–wake cycles were supervised.
The procedure is presented in Figure 5.
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3.3. Results

Under conditions of sleep deprivation vs. after 10 days without sleep deprivation
(Figure 6). A repeated measures ANOVA on the MT was first carried out for conditions
of sleep deprivation and after 10 days without sleep deprivation. A 2 (Condition: Sleep
deprivation vs. Without sleep deprivation) × 2 (Previous size: large vs. small) × 2 (Current
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size: large vs. small) repeated measures ANOVA was conducted for the MT. The results
indicate that the main effect of the current size was significant, F(1,4) = 117.452, p < 0.01,
and ηp

2 = 0.967, and the MT for hitting a small target was longer than that for hitting a large
target, which conforms to Fitts’ Law. The interaction between the condition and previous
size was significant, F(1,4) = 17.588, p = 0.014, and ηp

2 = 0.815. The results of the simple
effect analysis show that the previous size affects the current MT after 10 days without
sleep deprivation (p = 0.013) but not while under conditions of sleep deprivation (p = 0.672).
Thus, the sleep deprivation affected the trial-to-trial transfer. No significant effect was
found in the two-way interaction between the condition and current size, F(1,4) = 0.069,
p = 0.806, and ηp

2 = 0.017. This finding suggests that sleep deprivation exerted no effect on
task performance. No other significant main effects and interactions were determined—that
is, (F(1,4)max = 3.181, pmin = 0.149, and ηp

2 = 0.443).
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Figure 6. Results of Experiment 2A (Exp2A) and Experiment 2B (Exp2B). In Exp2A, no significant
difference in movement time (MT) is found between L:L and S:L; moreover, the MT of L:S is similar
to that of S:S. However, in Exp2B, the MT of L:L is as marginally significant as that of S:L, and the MT
of L:S is significantly shorter than that of S:S. * p < 0.05.

Difference scores. The difference scores between the blocked and alternating conditions
were calculated to rule out some irrelevant effects and focus on the trial-to-trial effect. The
difference scores (S:L minus L:L and S:S minus L:S) of Exp2A (confined space) and the
difference scores of the three other experiments (Exp1A, Exp1B, and Exp2B) were compared
using paired t-tests or Welch’s t-test (Figure 7). Welch’s t-test is more reliable when the two
samples have unequal variances or sample sizes. It also provides improved control of Type I
error rates [25,26], rendering it suitable for a comparison among Exp2A, Exp1A, and Exp1B.
Welch’s t-test illustrated that the difference scores between S:L and L:L were significantly
different in the comparison between Exp2A and Exp1A (t(13.7) = 3.391, p = 0.005) and
between Exp2A and Exp1B (t(15.1) = 2.907, p = 0.011). No other significant difference was
found (t(4)max = 1.909, pmin = 0.129).

Changes in emotion with sleep deprivation. The positive affect (M ± SD: prior
to Exp2A: 28.90 ± 11.23; Exp2A: 24.13 ± 6.62) and negative affect of the participants
(M ± SD: prior to Exp2A: 12.10 ± 1.24; Exp2A: 10.20 ± 0.45) the day before they started
sleep deprivation and on their last day in the confined space were noted. The paired
t-test indicated a significant difference in the negative affect between the day before the
participants suffered from sleep deprivation and the last day they were in the confined
space (t = 3.167, p = 0.034) but not in the positive affect (t = 1.504, p = 0.207).
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Figure 7. Difference scores in Experiment 1 and Experiment 2. The difference scores in S:L and L:L
are significantly different between Experiment 2A (Exp2A) and Experiment 1A (Exp1A) and between
Exp2A and Experiment 1B. * p < 0.05, ** p < 0.01.

4. Discussion

In this study, the effect of sleep deprivation on movement (particularly, trial history
and movement performance) was investigated. The results of Exp1 demonstrate that trial-
to-trial transfer occurred. The trial history was found to influence the current trial under
the standard condition and after 10 days, which was consistent with previous studies in
which the cursor-hitting task was conducted [21,23]. In Exp2, the previous trial exerted no
effect on the current trial under the conditions of sleep deprivation. However, the effect
was observed after 10 days without sleep deprivation. This suggests that sleep deprivation
did not affect task performance but influenced the trial history.

Sleep deprivation affected trial-to-trial transfer in this study, which may partly be
attributed to the interference with the visuomotor memory. Short- or long-term sleep depri-
vation was found to affect cognitive functions, including reaction time, working memory,
and attention [27,28]. For instance, different types of sleep deprivation were reported to
exert visual working memory impairment to different degrees [29]. Sleep deprivation was
also found to affect the perception of action capabilities via the cognitive processing of
inputs [12]. Evidence suggests that a lack of sleep is an important and common factor
leading to fatigue for people who work shifts [30]. Fatigue can further lead to the decline
of psychological, emotional, and other functions [31]. Therefore, although no significant
difference in task performance was found, a change in the visuomotor memory was ob-
served, suggesting that sleep deprivation negatively affected the visuomotor memory and
motor learning.

The trial-to-trial transfer was also likely to be affected by sleep deprivation via emo-
tions. Sleep deprivation can cause fluctuations in emotions [5]. In the current study, sleep
deprivation indeed induced changes in the negative affect. The negative affect caused
by sleep deprivation might directly relate to the trial-to-trial transfer. High emotional
arousal was suggested to facilitate the smoothness of movement [8] and was favorable
for an intimate relationship between emotions and the motor system [32,33]. Meanwhile,
emotion was expected to influence the working memory [34,35], but the mechanism by
which emotions affect the visuomotor memory has yet to be determined. Therefore, another
possibility was that the negative affect destroyed the transfer by damaging the visuomotor
memory. However, the current study is insufficient because the cursor-hitting task and
emotion measurement were only performed on the day before the participants suffered
from sleep deprivation and their last day with sleep deprivation. The continuous changes
in participants under conditions of sleep deprivation over a period of 7 days could not
be determined.
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The current results find that sleep deprivation did not affect automated muscle skills
but harmed the visuomotor memory, leading to the disappearance of the effect of the
trial history. This was consistent with the processing efficiency model, which emphasizes
that individuals initiate performance protection strategies under cognitive anxiety, thus
concealing the influence of stress on task performance [36]. The compensatory response
proposed by Frenda and Fenn also explains the current results, emphasizing that the brain
can compensate for certain impairments brought on by sleep deprivation [37]. As a result,
optimal performance may be maintained, which is consistent with our results. In addition,
previous studies on soldiers have found that the reaction time and the accuracy of discrim-
ination between friendly and enemy targets were significantly affected by 72 h of sleep
deprivation despite stable shooting accuracy [38]. In contrast, some previous studies have
shown that sleep deprivation exerted no effect on highly automated sensorimotor skills,
such as handwriting kinematics and grip strength, but influenced handwriting performance
in complex perceptual–motor tasks [39]. It is worth mentioning that handwriting kinemat-
ics is a highly automated sensorimotor skill, while hitting movements require real-time
information for programming. The previous studies of our lab found that people would
activate the corresponding motor programming based on the features of the objects [22].
One possible explanation for the conflicting results is that sleep deprivation impaired the
ability to adjust according to the features of the objects and the trial-to-trial transfer.

The effect of the trial history was observed again after 10 days without sleep depriva-
tion, indicating that cognitive impairment caused by sleep deprivation could be recovered.
This finding was in accordance with previous research of Moore et al., showing that the
cognitive reserve of astronauts in a sleep restriction cohort could recover to baseline after
days [40]. The main limitation of the current study is that the period of 7 days for sleep de-
privation might not be the shortest time for the absence of the trial-to-trial transfer. Whether
or not the effect of the trial history would disappear after a shorter period of isolation
remains a question for future experiments. For example, a follow-up study with different
times of sleep deprivation would further explore how increasing the time of exposure
to sleep deprivation influences the trial-to-trial transfer of the cursor-hitting movement.
Additionally, the number of participants in Exp2 is low, which might have an influence on
the statistical confidence and should be considered when conducting future experiments.

In summary, the current study investigated whether movement was affected by sleep
deprivation, as well as determined the mechanism underlying this effect. The results show
that sleep deprivation did not affect the task performance but influenced the trial history.
Sleep deprivation ensured performance via a performance protection strategy but led to the
decline in the visuomotor memory, as reflected in the disappearance of the effect of the trial
history. Potential threats to human behavior under conditions of sleep deprivation exist
due to the decline of cognition ability. The current study suggests that potential cognitive
impairment must be considered under conditions of sleep deprivation even if the task
performance is not influenced by sleep deprivation.
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