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Abstract: A new solid-contact potentiometric ion-selective electrode for the determination of
SCN− (SCN-ISE) has been described. Synthesized phosphonium derivative of calix[4]arene was
used as a charged ionophore. The research included selection of the ion-selective membrane
composition, determination of the ISEs metrological parameters and SCN-ISE application for
thiocyanate determination in human saliva. Preparation of the ISEs included selection of a plasticizer
for the ion-selective membrane composition and type of the electrode material. The study was carried
out using ISE with liquid internal electrolyte (LE-ISE) and solid-contact electrodes made of glassy
carbon (GC-ISE) and gold rods (Au-ISE). The best parameters were found for GC sensors for which the
ion-selective membrane contained chloroparaffin as a plasticizer (S = 59.9 mV/dec, LOD = 1.6× 10−6 M).
The study of potentiometric selectivity coefficients has shown that the thiocyanate-selective sensor
could be applied in biomedical research for determination of SCN− concentration in human saliva.
The accuracy of the SCN− determination was verified by testing 59 samples of volunteers’ saliva by
potentiometric sensors and UV-Vis spectrophotometry as a reference technique. Moreover, SCN−

concentrations in the smokers’ and non-smokers’ saliva were compared. In order to investigate the
influence of various factors (sex, health status, taken medications) on the thiocyanate level in the
saliva, more extensive studies on a group of 100 volunteers were carried out. Additionally, for a
group of 18 volunteers, individual profiles of SCN− concentration in saliva measured on a daily basis
for over a month were collected.

Keywords: thiocyanate ion-selective electrodes; potentiometry; thiocyanate in human saliva;
ionograms; calix[4]arene

1. Introduction

Human saliva is one of the body fluids, produced by the salivary glands. The whole saliva is
a complex fluid consisting of saliva—an exocrine secretion, gingival fluid and serous exudate [1].
The main role of saliva is to maintain oral homeostasis and to facilitate the initial digestion and
swallowing of food [2]. The components of saliva are water, enzymes, proteins and inorganic ions,
bacteria, nasopharynx and epithelium [1]. There are three main pairs of salivary glands: parotid,
sublingual and submandibular, which produce 95% of saliva volume. The remaining 5% is produced
by the tongue glands and other oral glands. In total, healthy salivary glands produce 1–1.5 L of saliva
per day [3]. Saliva production is controlled by two mechanisms: blood filtrate into the glands cavity
and the proteins’ and proteoglycans’ secretion by secretory part cells [4]. At first, saliva is isotonic,
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but when it flows through the striated duct, Na+ and chloride ions are more reabsorbed comparing to
the secretion of K+, HCO3

− and SCN−, making the fluid hypotonic.
The non-traumatic and facile way of saliva sample collection drives the interest of its possible

usage in diagnostics [5,6]. In the last two decades, scientists have been engaged in seeking the
correlation between the saliva composition and various diseases. The relationship between salivary
composition and volume has been demonstrated for several diseases, such as chronic kidney disease
(CKD) [7], oral enamel erosion [8], cystic fibrosis (chloride ions concentration) [9], multiple sclerosis
(IL-1ß concentration) [10], graft versus host disease (GVHD) manifesting in reduced production of
saliva [11], diabetes and HIV. Comparison of the saliva ionic composition from patients suffering from
CKD and healthy people proved that the level of K+ and HCO3

− is significantly higher in all examined
patients [12]. In addition, patients who had nausea (one of the symptoms of uremia due to CKD) had
a higher Na+ concentration than those who did not report those complaints. Dryness in oral cavity
that occurred in most CKD patients was associated with higher Ca2+ level. Clear differences in the
concentration of some saliva ions were also shown in the group of patients with malignant parotid
gland cancer [13,14]. The content of Ca2+ ions was reduced, and the concentration of Mg2+ ions was
almost twice as high as compared to healthy people. Interestingly, in the plasma of patients tested for
cancer, the concentration of Ca2+ ions was higher than in healthy people. In a study conducted on a
group of smokers, it was proved that the exposure to tobacco smoke increases the concentration of
Ca2+, NO3

- and SCN− ions in saliva.
Thiocyanates take part in the detoxification process of human organism. The thiocyanates

are formed in human liver as a result of decomposition of toxic cyanates [15]. The saliva is the
body fluid, which contains the highest concentration of SCN– ions, typically from 0.5 to 2 mM [16].
The determination of thiocyanates concentration could be useful in detection of oral cavity inflammation,
smokers parametrizing [17] or monitoring the cancer patients during chemotherapy [14,18–22].

The thiocyanates concentration could be determined by photometric [15,23–25] or chromatographic
methods [26–29]; in all cases, however, the analytical methods involve complicated measuring systems
and/or complicated procedures of samples preparation, because of the complex composition of the
saliva matrix [30,31]. As an alternative, the potentiometric method applying ion-selective electrodes
(ISEs) has been proposed. The majority of thiocyanate selective ionophores presented in the literature
are based on porphyrins [32–37] and phthalocyanines [38–40]. Some other macrocyclic compounds such
as aza-macrocycles [41–43], crown ethers [44] or calix[4]arenes [45] were also reported. The second most
exploited systems are organic and metalloorganic non-macrocyclic complexes [46–62]. All presented
ionophores are characterized by good selectivity over chlorides, but the low selectivity over two other
ions present at high levels in human saliva, namely HCO3

− and H2PO4
−. This hinders their application

in medical analytics. The comparison of metrological parameters of ISE with different ionophores and
electrodes construction reported in the literature is presented in Table S1.

The main advantage of potentiometry over the other methods is the ability to perform
measurements directly in the sample, even an opaque one. The development of technology, as well
as application of modern sensor materials, has led to the situation in which ISEs have become one
of the basic tools used in diagnostic laboratories [63]. Currently, medical analyzers are equipped
with modules for determination of selected ions, such as Na+, K+, Li+, Ca2+, Mg2+, Cl− and H+ ions,
mainly in body fluids such as blood and urine [64]. Since our priority is application of the sensors
in bioanalysis and their technology allowing for miniaturization, then our research concerns sensors,
being a type of coated wire electrodes (CWEs), and that could be used for measurements in biological
samples. The description of the complexity of the problem of such determinations, namely anions in
biological samples, can be found in the article by Lo Nostromo [65].

In this paper, characterization and comparison of ISEs with an ion-selective membrane based on
tetrakis-(4-diphenylmethylphosphonium-butoxy)-tetrakis-p-tert-butylcalix[4]arene tetra-thiocyanate
is reported. Described here solid-contact ion-selective electrodes are a type of CWEs,
in which an electroactive species is entrapped in a thin polymeric layer deposited directly
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onto metallic or non-metallic conductor, forming a non-symmetrical potentiometric half-cell
(solution|membrane|conductor) [66]. The research was carried out using three different SCN-ISE
designs: classic with liquid internal electrolyte (LE-ISE), and solid-contact using glassy carbon (GC-ISE)
and gold (Au-ISE) as the base electrode materials. The various compositions of the ion-selective
membrane have been studied in terms of the type of plasticizer. The metrological parameters of all
types of the developed SCN-ISE were determined. The miniaturized Au-ISEs were used to determine
SCN− in volunteers’ saliva samples. The results of the potentiometric and of the UV-Vis analysis
were compared.

2. Materials and Methods

2.1. Chemicals

The ionophore, tetrakis-(4-diphenylmethylphosphonium-butoxy)-tetrakis-p-tert-butylcalix[4]-
arene tetrathiocyanate (Figure 1) was synthesized at Faculty of Chemistry of Gdansk University of
Technology according to the procedures given elsewhere [67]. PVC (high molecular weight poly(vinyl
chloride)), tetrahydrofuran (THF), 2-nitrophenyl octyl ether (o-NPOE), bis-(butylpentyl)adipate (BBPA)
and chloroparaffin were selectophore grade and obtained from Sigma-Aldrich (Merck KGaA, Darmstadt,
Germany). The sodium salts: Cl−, Br−, I−, ClO4

−, SCN−, NO3
−, SO4

2−, CO3
2−, H2PO4

−, acetate,
benzoate were of analytical grade (Avantor Perfomance Materials S.A., Gliwice, Poland). All aqueous
solutions were prepared with ultra-pure water (18.2 MΩ·cm).
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Figure 1. Molecular formula of tetrakis-(4-diphenylmethylphosphonium-butoxy)-tetrakis–p-tert-
butylcalix[4]arene tetrathiocyanate.

2.2. Equipment

The EMF measurements were carried out at 20 ◦C, using Precision Electrochemistry EMF Interface,
EMF-16 Lawson Labs Inc. A double-junction electrode Orion ROSS Ultra 800500U D/J from Thermo
Scientific®(Waltham, MA, USA) was used as a reference electrode. The calibration of electrodes
was carried out with the system of automatic biurets TITRONIC®Universal (Schott Instruments,
Germany), controlled by PC computer. The UV-Vis measurements were carried out on UV300
UV-Visible Spectrometer Unicam. The Ag/AgCl Phillips electrodes bodies of ISE-561 type (Glasblaserei
Moeller AG, Zurich, Switzerland) were applied to build the classical ion-selective electrodes with
liquid electrolyte (LE-ISE). A base for the glassy carbon electrodes ISE constituted the bodies produced
by Mineral (Warsaw, Poland). The gold electrodes were made from a 500-µm Au wire, which was
placed in a poly(methyl methacrylate) casing. The overall diameter of the Au-ISE with case was 2 mm
and the GC-ISE 6 mm. Detailed description of the construction is given in our previous reports [68–70].

2.3. Thiocyanate-Solid State Ion Selective Electrodes (SCN-ISE)

The thiocyanate selective membranes were composed of 2.1 wt.% ionophore, 30.7 wt.% PVC,
and 67.2 wt.% plasticizer (mass of membrane 200 mg). All the components were dissolved in 1.5 mL
of THF. To form an ion-selective membrane, the membrane cocktail was poured into a glass ring of
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24 mm in diameter. The solutions were left for slow solvent evaporation (for 24 h), giving the master
membrane of a thickness of about 0.1 mm. Several membranes of a 7-mm diameter were cut out from
the master membranes and incorporated into Ag/AgCl electrodes bodies of ISE-561 type. The solution
of 1 mM KCl was used as an internal electrolyte. The surfaces of GC electrodes (diameter of 2 mm)
were prepared by polishing with sandpapers of growing grit from 600 to 4000. The final polishing was
performed with Al2O3 powder (grain size 0.3 µm). The surfaces of GC electrodes were chemically
cleaned by sequential washing with solutions: 1 M KOH in MeOH, deionized water, 1 M HNO3,
and again with deionized water [71]. The 30 µL of previously described membrane solution was
poured directly on the prepared GC surface and left for 24 h to evaporate and form a membrane. After
that time, to complete Bakker protocol on the determination of unbiased selectivity coefficients which
is generally applicable independent of the nature of primary or interfering ions [72], the prepared GC,
Au and LE membrane electrodes were left in a 1 mM KCl water solution for the next 24 h. Surfaces of
gold electrodes were prepared using an analogous procedure to that for GC electrodes. Due to the
much smaller diameter of the Au electrodes (500 µm), the volume of the applied membrane was 3 µL.
The studies were repeated several times over the period of four months. The calibration curves were
determined by EMF measurement of ion concentration, during gradual dilution of stock solutions
from 100 to 0.1 µM. The given low detection limits are taken as the activity of thiocyanates at the point
of intersection of the extrapolated linear midrange and final low concentration level segments of the
calibration plot [73,74]. The selectivity coefficients were determined by a separate solution method
(SSM) [75] and a fixed interference method (FIM) [76,77].

2.4. Saliva’s Sampling and Measurement Protocol

Saliva samples were taken from volunteers using a specially prepared kit. The sampling kit
contained a string pouch, a 5 mL sterile syringe (Polfa SA Lublin, Lublin, Poland) and a 3 cm2 piece
of parafilm to secure the syringe outlet. A sticker with an identification code was attached to the
syringe. Thirty minutes before the sample was taken, the volunteers could not eat and drink, and
about 2 mL of saliva was collected from each one. After collection, the samples were centrifuged
(6 min, 6000 rpm), and then immediately used for the determination of SCN−. To eliminate the
effect of the day time on the measurement results, the samples were collected between 10 and 11 a.m.
Saliva samples were taken from 100 volunteers. For 18 volunteers, saliva samples were collected
each day for over a month. The group of 100 volunteers were students aged 20–25. Before saliva
sampling, each volunteer had to respond to the anonymous survey (Supplement). Based on the
surveys, it was possible to correlate the levels of measured SCN− with specific aspects of health and
lifestyle. The entire study group included 68% men and 32% women. Over half of the respondents
reported the feeling of general fatigue. Thirty percent of the respondents reported that they suffer
from various types of chronic diseases. The largest group were volunteers with allergic (23%) and
pulmonary (20%) diseases. Volunteers taking medications or dietary supplements constituted 69%
of the group. The most commonly used medicaments were those from the over-the-counter (OTC)
group (32%) and supplements (30%). Contraceptives were taken by 17% of the women. Daily oral
hygiene was declared by 95% of respondents, and the use of oral care liquids 27%. The daily volume
of fluids consumed fluctuated between 2 and 2.5 L, and the most frequently consumed fluid was water.
UV-Vis spectrophotometry was used as a reference method for SCN− determination. A part of saliva
supernatant was prepared according to the procedures reported in [15] and then analyzed by the
spectrophotometric method, described therein, in particular with measuring of the absorbance of the
solution at 447 nm against the Fe(NO3)3 stock solution.
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3. Results

3.1. SCN-ISE Parameters

In order to obtain the best composition of the ISE membrane for thiocyanate detection, the influence
of three plasticizers, o-NPOE, BBPA and chloroparaffin, was investigated. The type of plasticizer may
affect the metrological parameters of ISEs. A change of the plasticizer polarity has an influence on
the selectivity and sensitivity of the ion-selective membrane as it affects the dielectric constant of the
membrane and ion-ionophore complex binding constant [78]. For each plasticizer, the LE-ISE and
GC-ISE electrodes were prepared and their characteristics were determined (Figure 2). Among the
tested electrodes, those containing BBPA in the membrane composition were characterized by the
worst parameters. In the case of LE-ISE (BBPA), the sensitivity was −47.7 ± 3.8 mV/dec while detection
limit expressed as a logarithm log(aSCN) was equal to −4.67. In the case of GC-ISE (BBPA) electrodes,
the parameters were −61.9 ± 3.2 mV/dec and −4.82, respectively. As can be seen in Table 1, the best
sensor parameters among studied electrodes, revealed those with chloroparaffin as a plasticizer.
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Table 1. The comparison of SCN-ISEs parameters for three types of the electrodes: LE, GC and Au.

ISE Type S (mV/dec) Low Limit of Detection (logaSCN− ) Lifetime (Month)

LE-ISEBBPA −47.4 ± 3.8 −4.67 < 1
GC-ISE BBPA −61.9 ± 3.2 −4.82 < 1

LE-ISE o-NPOE −60.6 ± 1.7 −5.20 3
GC-ISE o-NPOE −60.4 ± 1.2 −5.20 3

LE-ISE Chloroparaffin −55.5 ± 2.1 −5.20 3
GC-ISE Chloroparaffin −59.9 ± 0.3 −5.80 3
Au-ISE Chloroparaffin −53.3 ± 2.1 −5.50 3

In the case of LE-ISE, the obtained detection limit expressed as log(a) was equal −5.2 with
sensitivity −55.5 ± 2.1 mV/dec, whereas the parameters of GC-ISE electrode were even better and
equaled to −5.8 and 59.9 ± 0.3 mV/dec, respectively. Au-ISE sensitivity reached −53.3 ± 2.1 mV/dec
and was the least favorable as compared to other constructions.

The differences in SCN-ISE metrological parameters based on charged calix[4]arene derivatives
result from ISEs construction including LE-ISE and coated wire electrodes (CWE) type Au and GC-ISE,
where two kinds of interfaces are present: symmetrical—solution|membrane|internal solution and
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asymmetrical—solution|membrane|conductor, respectively. Therefore, the main problem related to
the CWE type of sensors is to establish the thermodynamically well-defined, reversible potential, that
depends on charge transfer mechanism at the conductor–membrane interface [66]. The charge transfer
is determined by the properties of the conducting material. Then, different types of CWE constructions
(Au and GC) with the same membrane composition showed some differences in their metrological
parameters. In addition, plasticizers have a significant influence on the ISEs potentiometric response.
This phenomenon is associated with a change in the electrical properties and lipophilicity of the
ion-selective membrane that affect ISEs’ parameters.

The lifetime of the electrodes was determined by recording their potentials and by plotting the
calibration curves for each week. In the case of ISE electrodes plasticized with o-NPOE or chloroparaffin,
no significant changes in the sensitivity were observed for three months. After that time, however, a
gradual decrease of electrodes sensitivity was observed.

The determined selectivity (FIM) of LE-ISE containing chloroparaffin in the membrane follows the
series: ClO4

− > SCN− ≥ I− > NO3
− > Benzoate− > Br−> Acetate− > HCO3

− > Cl− > H2PO4
−, while the

selectivity pattern of GC-ISE with the same plasticizer was: ClO4
− > SCN− ≥ I− > NO3

− > Acetate− =

Br− > Benzoate− = HCO3
− = Cl− = H2PO4

−. The selectivity coefficients of the SCN-ISE were compared
in Table 2.

Table 2. Potentiometric selectivity coefficients for SCN-ISE with chloroparaffin as a plasticizer
determined by SSM and FIM methods.

ISE Type
Separate Solution Method logKpot

SCN/j (SD ± 0.1)

Cl− H2PO4− HCO3− Ac− Bz− NO3− Br− I− SCN− ClO4−

LE-ISE −3.2 −4.5 −3.4 −3.1 −2.0 −1.6 −2.0 −0.2 0.0 0.7
GC-ISE −4.0 −4.0 −3.9 −2.1 −3.8 −1.6 −2.5 −0.3 0.0 0.7
Au-ISE −3.8 −4.2 −3.0 −2.4 −3.6 −2.0 −2.6 0.2 0.0 0.8

Fix Interference Method log Kpot
SCN/ j (SD ± 0.1)

LE-ISE −3.9 −4.6 −3.4 −2.7 −2.0 −1.8 −2.1 −0.4 0.0 0.6
GC-ISE −3.9 −4.2 −3.9 −2.2 −3.9 −1.8 −2.2 −0.5 0.0 0.5
Au-ISE −3.8 −4.4 −3.6 −2.3 −3.6 −1.8 −2.2 −0.4 0.0 0.6

The selectivity coefficients were determined for all tested electrodes. The work parameters
predestine the LE-ISE, GC-ISE and Au-ISE containing chloroparaffin as the electrodes for analytical
applications. Considering the possibility of using SCN-ISE in biomedical applications, an analysis of the
required selectivity coefficients was performed. The analysis included the physiological concentrations
of individual anions in human saliva. The following equation was used for the calculations [77]:

log(Kpot req.
SCN/ j ) =

aSCN

a
zSCN

zj

j

·

(pSCN/ j

100%

) zSCN
zj (1)

where log(Kpot req.
SCN/ j ) – required potentiometric selectivity coefficient, aSCN - ion activity for SCN− (value

adopted for calculations SCN− = 1 mM), aj - activity of interfering ion, zSCN,j - charge of SCN− and
interfering ion, pSCN,j - relative error (expressed in %) for potentiometric measurements assumed
here to be ±2.5%. Table 3 compares the values of the selectivity coefficients (Au-ISE) for individual
interfering ions with the calculated values of required selectivity coefficients.
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Table 3. Comparison of required potentiometric selectivity coefficients and obtained for the developed
solid-contact SCN-ISE, and ranges of selected anions concentration in human saliva.

Interfering Ion
Selectivity Coefficient
for Au-ISE log(Kpot

SCN/j)

Required Selectivity
Coefficient log(Kpot req.

SCN/j )

Representative Interfering
Ion Concentration in
Human Saliva (mM)

Cl− −3.9 −3.1 30 [79]
HCO3

−
−3.6 −3.1 30 [80]

H2PO4
−

−4.4 −2.6 10 [81]
AcO− −2.4 −1 0.24 [31]
Bz− −3.2 1 2.5 × 10−3 [82]

NO3
−

−1.8 −1.3 0.76 [31]
Br− −2.2 2.8 4 × 10−5 [82]
I− −0.4 4.2 1.4 × 10−6 [83]

ClO4
− 0.6 3.3 1.3 × 10−5 [84]

The required selectivity coefficient depends on the ratio of main and interfering ion concentration.
Obviously, the higher concentration of target ions results in the interfering ions having a smaller
effect on the electrode response. In terms of practical usage of ISEs in clinical analysis, the ratio of
concentrations of main ion to interfering ion present in the biological sample is very important, as
shown in the Introduction. Assuming the statement given above, the most interfering ion is Cl− which
is present in saliva at 20–60 mM level (representative 30 mM) [79]. The second important interferent
is HCO3

− whose concentration in human saliva is also about 30 mM [80]. Taking it into account,
the required selectivity coefficient for those ions should be −3.1 or more negative. The selectivity
coefficient for Cl− and HCO3

− ions determined for Au-ISE was −3.9 and −3.4, respectively. Despite the
unfavorable selectivity for ClO4

− and I−, the presented electrodes can be applied in the potentiometric
bio-measurements, because the concentrations of mentioned interfering anions in saliva are at very
low levels, in particular at 1.3 × 10−8 M and 1.4 × 10−9 M, respectively [82,83]. These differences in the
ion concentrations, at least three orders of magnitude, are enough to allow the proper determination of
thiocyanates. Therefore, both types of the developed solid-contact ISEs can be successfully used for
direct determination of thiocyanates in saliva samples.

It should be underlined here, that majority of papers states the possibility of saliva samples analysis
but surprisingly only some of them presents selectivity coefficients for bicarbonates [43,48,52,56,61],
which is an important anionic component of saliva. Moreover, in the vast majority of the reports, given
values of the selectivity coefficients are determined by SSM method, despite other recommendations
given by IUPAC [85].

3.2. SCN− Determination in Human Saliva

Both metrological parameters of Au-ISEs and GC-ISE, such as lower detection limit and sensitivity,
together with the selectivity coefficients allow reliable measurement of SCN− concentration in the
presence of other anions present in human saliva (Table 3). The SCN− concentration in the saliva
of healthy, non-smoking person is in the range of 0.5−2 mM (representative 1 mM), while it can be
several times higher, e.g., for smokers. Therefore, before studies the sensors were calibrated in the
range of 0.1−10 mM. Figure 3 shows the GC-ISE Au-ISE and LE-ISE responses to SCN− concentration
changes from 0.1 to 10 mM. All types of sensors were used to analyze the saliva sample collected from
the same volunteer. Figure 3 clearly shows the consistency of the obtained results for both sensors.
Moreover, the level of thiocyanates determined by the reference colorimetric method was equal to
0.82 mM, which is absolutely in agreement with the data obtained by potentiometric method (GC-ISE
0.9 mM; Au-ISE 0.8 mM; LE-ISE 0.8 mM). Response time (t99) for GC-ISE, Au-ISE and LE-ISE was 51,
31 and 71 s, respectively.
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Figure 3. Potentiometric responses of GC-ISE (blue line), Au-ISE (red line) and LE-ISE (green line) to
the rapid change of SCN− ion concentration from 0.1 to 1 mM, and next to 10 mM, and then exposure to
saliva sample (A) for a non-smoking person and (B) for a smoker. Mean value of SCN− concentration
determined by all type sensors is equal to (A) 0.8 ± 0.1 mM and (B) 2.8 ± 0.1 mM.

As mentioned before, one of the sources of thiocyanates in the human body are the cyanides,
transformed to SCN− during the detoxification process. The highest amount of cyanides enters the
human body with polluted air and tobacco smoke. Therefore, measuring the level of thiocyanates in
saliva allows to distinguish smokers from non-smokers. All three sensor constructions (LE, Au and
GC) were used to determine the SCN− concentration in the saliva samples donated by smokers and
non-smokers. Collected saliva samples were additionally analyzed by the reference UV-Vis method.
The results of the experiment are presented in Table 4. As expected, in the smokers’ saliva the SCN−

concentration was almost seven times as high as recorded for non-smokers. In addition, the results
obtained using three various sensor constructions were consistent with the results of the reference test,
which confirms the possibility of using the developed sensors in biomedical measurements, especially
in human saliva samples.

Table 4. Comparison of SCN− concentrations for non-smokers’ and smokers’ saliva.

Sample
Concentration of SCN− (mM)

LE-ISE GC-ISE Au-ISE UV-Vis

I (non-smoker) 0.85 ± 0.14 0.87 ± 0.09 0.79 ± 0.06 0.82 ± 0.01
II (smoker) 5.31 ± 0.06 5.38 ± 0.05 5.49 ± 0.06 5.50 ± 0.01

In order to compare the accuracy of the SCN− determination, a series of human saliva samples
were analyzed using Au-ISE, along with the reference colorimetric method. Au-ISEs were used as they
show comparable parameters as GC-ISEs, but they are more facile in construction, cheaper and allow a
smaller amount of the sample to be analyzed. It should be underlined here that, in contrast to other
studies, the analyzed saliva samples were neither diluted nor was the pH adjusted. The measurements
were performed directly in the saliva sample. Moreover, existing clinical analyzers are mainly based
on gold sensors. Therefore, the miniaturized Au-ISEs are convenient for a single measurement, as well
as a potential part of the multiplex analysis. Therefore, the more extensive research was carried out
using Au-ISEs.

The first analysis was performed on a group of saliva samples collected from 59 volunteers,
including four smokers (as they declared in the survey). Figure 4 presents a box-plot comparing the
statistical parameters (median, 25 and 75 percentiles, maximum and minimum values) of thiocyanate
concentrations determined by the potentiometric method and by the reference UV-Vis analysis.
The results obtained by both methods coincided with each other, and the mean and relative median
error for SCN− level (n = 59) for the potentiometric method relative to the spectrophotometric method
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was about 2%. In Figure 4, two outliers can be seen. Two out of four declared smokers manifested
increased SCN− content (above 2 mM) in their saliva samples.Sensors 2020, 20, x FOR PEER REVIEW 9 of 15 
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spectrophotometry reference method (left box), (n = 59).

In the second study, Au-ISE were used to determine the thiocyanate concentration in 100 saliva
samples, each sample donated by one non-smoking volunteer. All volunteers had to respond to the
questionnaire. Table S2 (ESI) summarizes the collected information and is divided into subgroups of
volunteers depending on responses declared in the survey and the mean SCN− concentration along
with the standard deviation for individual subgroups. The statistical analysis based on an analysis of
variance (ANOVA) did not show statistically significant differences between individual subgroups.
In some cases, the subgroup size was too small to be able to perform the correct analysis (e.g., in the
case of chronic diseases, taken medications or the last time to brushing teeth). However, taking
into account differences in mean values and standard deviations for individual subgroups, it can be
concluded that the SCN− concentration is a personal feature and depends primarily on the specific
case. In order to gain a detailed insight into the long-term fluctuations of SCN− concentration, a group
of 18 (11 women and seven men) volunteers have been examined for 30 days. The daily collected saliva
samples (except non-working days) were immediately analyzed in terms of SCN− concentration, using
Au-ISEs. Figure 5 shows exemplary ionograms for a man and a woman from the group subjected
30-day study.

The obtained results indicate that both the mean SCN− concentration and fluctuations are the
individual features and depend on many factors (including health, physical effort, the environment and
the quality of the air). Therefore, the dynamics of these changes vary significantly for the tested group.
The ESI includes other ionograms, presenting SCN− fluctuation in the saliva of individual volunteers.
They confirm the individual nature of these fluctuations, which is independent of, for example, sex.
The fluctuation of SCN− for W3 and M3 (Figures S1 and S2) are characterized by the highest dynamics,
which may result from, among others, the lifestyle, intensity of effort or diet. Analogous behavior has
been previously observed for other ions, Na+, K+, Cl− [68,69]. In contrast, fluctuations recorded for
volunteers W10 and M7 (Figures S1 and S2) are characterized by the lowest dynamics during the month,
which can be interpreted as results of volunteers leading a stable and standardized life. The study
showed the existence of many intermediate cases, examples of which are volunteers W4, W5, W9, M2,
M5, M6 (Figures S1 and S2), for which a single change in SCN− concentration in relation to the monthly
mean value was observed. The described changes may be accidental, e.g., related to dehydration,
stress as well as a change in the environmental situation; being in the vicinity of smokers or staying
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longer in the vicinity of a busy street and inhaling air containing a greater content of cyanides, which
are later processed into the body to less toxic thiocyanate.
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4. Conclusions

Potentiometric sensors in the form of solid-contact ion-selective electrodes for the determination
of thiocyanate in human saliva were described. The comparison of metrological parameters for three
constructions (LE-ISE, GC-ISE, Au-ISE) showed that the most advantageous parameters were obtained
for glassy carbon sensors as the electrode material (S = 59.9 mV/dec, LOD =1.6 × 10−6 M). In addition,
the phosphonium derivative of calix[4]arene as an ionophore enabled direct SCN− measurement in
human saliva samples. The SCN-ISE presented in the work shows more favorable selectivity coefficients
in relation to ions occurring at high levels in human saliva (Cl−, HCO3

−, H2PO4
−). The values of

logarithms of the selectivity coefficients confirm that the phosphonium derivative of calix[4]arene can
compete with the ionophores based on the porphyrin ring, despite the logarithm of the selectivity
coefficients for ClO4

− has positive value. Despite slightly worse metrological parameters, Au-ISE was
used for extensive research on human saliva, mainly due to the shorter response time and comparable
parameters with GC-ISE. A reference study has explicitly confirmed that the results obtained with
potentiometric sensors are consistent with the results obtained using the UV-Vis reference method.
Further research confirmed the significant effect of smoking on the concentration of thiocyanate in
human saliva. Despite the salivary analysis of 100 volunteers, no statistically significant differences
in SCN− concentration between individual subgroups have been seen. The analysis carried out on a
group of 18 volunteers for 30 days confirmed the individual nature of the SCN− ions fluctuation, which
may be due to many external factors (passive smoking, diet, chronic diseases, taken medications).
The usefulness of the constructed sensors for determining SCN− concentration in human saliva samples
was finally confirmed.

Supplementary Materials: The following are available online at http://www.mdpi.com/1424-8220/20/10/2817/s1,
Table S1. Comparison of the metrological parameters of different SCN-ISE reported in the literature (listed in
chronological order). Reference numbering is in accordance with Reference list in the main manuscript. Table S2:
Comparison of the mean concentrations of SCN− in the relation of responses given in the survey. Figure S1:
Monthly ionograms showing fluctuations of SCN− concentration for selected women. Figure S2. Monthly
ionograms showing fluctuations of SCN− concentration for selected men.
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