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An artificial neural network (ANN) approach with response surface methodology (RSM) technique has been
applied to model and optimize the removal process of Brilliant Green dye by batch electrocoagulation process. A
multilayer perceptron (MLP) - ANN model has been trained by four input neurons which represent the reaction
time, current density, pH, NaCl concentration, and two output neurons representing the dye removal efficiency
(%) and electrical energy consumption (kWh/kg). The optimized hidden layer neurons were obtained based on a
minimum mean squared error. The batch electrocoagulation process was optimized using central composite
design with RSM once the ANN network was trained and primed to anticipate the output. At optimized condition
(electrolysis time 10 min, current density 80 A/m2, initial pH 5 and electrolyte NaCl concentration 0.5 g/L), RSM
projected decolorization of 98.83% and electrical energy consumption of 14.99 kWh/kg. This study shows that
the removal of brilliant green dye can be successfully carried out by a batch electrocoagulation process. Therefore,
the process is successfully trained by ANN and optimized by RSM for similar applications.
1. Introduction

Industries like textiles, leather, paper, pulp, printing, and dyeing are
major consumers of synthetic dyes. Such industries produce large
quantities of colored wastewater which cause significant adverse effects
on the environment. In receiving water bodies, the dyes present in
assan).
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wastewater cause unesthetic appearance, prevention of sunlight pene-
tration resulting in underdeveloped aquatic plant growth and toxicity to
aquatic life [1, 2]. It is, therefore, necessary to treat the wastewater,
particularly to decolorize the wastewater before discharging it into the
surface water bodies. Various techniques have been practiced for dye
removal, i.e., adsorption [3], chemical coagulation [4], membrane
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Figure 1. Structure of Brilliant Green dye.

Table 1. General characteristics of Brilliant Green dye.

Chemical formula C27H33N2.HO4S

λmax 626 nm

Molar mass 482.64 g/mol

Index No. 42040
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processes [5], biodegradation [6], and advanced oxidation processes [7].
Coagulation, adsorption, and membrane processes produce concentrated
dye sludge posing a disposal problem. Membranes are known for their
problem of “flux decline” [8, 9]. Biodegradation processes require a
favourable environment, free from toxicity [10]. Advanced oxidation
processes such as UV photolysis, electrochemical oxidation, Fenton
processes, and their combinations suffer from the limitations of high cost,
high energy consumption, and secondary pollutant generation [11]. The
electrocoagulation process overcomes the limitations of these existing
treatment processes [12]. Processes like adsorption, although competi-
tive with electrocoagulation, needs an adsorbent (mostly activated car-
bon) adding to the cost of treatment. Moreover, activated carbon
adsorption process results in the formation of a large amount of sludge.
Because of its cost-effectiveness and simplicity, the electrocoagulation
procedure has received much interest. The method eliminates the addi-
tion of chemicals and reduces the sludge generation [13].

The electrocoagulation process involves the in-situ generation of co-
agulants by metal ions produced from electro-dissolution of a sacrificial
anode [14]. The metal ions formed cause the flocculation and sedimen-
tation of pollutants. Cathodic action also aids in the removal of pollutants
by the formation of hydrogen gas, causing floatation or by deposition of
the pollutant on the cathode surface [15]. Usually, Fe and Al are utilized
as electrodes. Various contaminant species have been removed using
electrocoagulation are: sulfide [16], phosphates [17], fluoride [18], and
dyes such as Acid Red 14 [19], Reactive Black-5 [20].

The majority of articles in the literature focus solely on the pollutant's
removal efficiency. On the contrary, as the electrocoagulation process is a
current induced approach, the removal should be optimized with the
energy consumption to achieve cost reduction for industrial application.
An artificial neural network (ANN)- response surface methodology
(RSM) combination is an emerging reproducible process modelling and
optimization technique used by a few researchers [21, 22] for dye
removal, to save time and cost of experimentation. For future comparable
applications, the process must be simulated and optimized. The current
study successfully integrates two essential components, colour removal
efficiency (%) and electrical energy consumption, to illustrate the effi-
ciency and cost-effectiveness of the electrocoagulation method. In addi-
tion, an ANN is used to represent the process. The data from the ANN
model is then used to optimise the process using the RSM.

The electrocoagulation process works by electro-oxidation of Fe
anode, which produces Fe(OH)n, (here the value of n could be 2 or 3) as
explained in Eqs. (1), (2), (3), and (4) [23].

At anode:

4Fes →4Feþ2
ðaqÞ þ 8e� (1)

4Feþ2
ðaqÞ þ 10H2OðlÞ þO2 →4FeðOHÞ3ðsÞ þ 8Hþ

ðaqÞ (2)

At cathode:

8Hþ
ðaqÞ þ 8e� → 4H2ðgÞ (3)

Inclusive Reaction:

4FeðsÞ þ 10H2OðlÞ þO2ðgÞ →4FeðOHÞ3ðsÞ þ 4H2ðgÞ (4)

With subsequent coagulation and settling, the Fe(OH)n(s) forms a com-
plex with the pollutant or adsorbs it. The metal oxides produced by the
anode material form hydroxide - metallic complexes i.e., Fe2(OH)24þ and
Fe2(OH)45þ which are responsible for complications of the pollutants
[24]. Other complexes involved in the adsorption of pollutants including
Fe(OH)2þ, Fe(OH)2þ, Fe(OH)4- , Fe(H2O)4(OH)2þ, Fe(H2O)5(OH)2þ, and
Fe2(H2O)6(OH)44þ [25].

An electrocoagulation technique was used to treat a synthetic Bril-
liant Green (BG) dye solution in this investigation. The influence of four
factors on the process was investigated: time, current density, pH, and
concentration of the supporting electrolyte (NaCl). This study optimized
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two essential responses: decolorization efficiency and electrical energy
usage. The data from preliminary experiments were added to an ANN and
the stimulated data from the trained ANN was optimized using RSM.

An ANN mechanism is based on simulation with a human brain. i.e.,
ANNs are stimulated by biological neural systems. A computational
model of natural neurons is called an artificial neuron. Each ANN is made
up of artificial neurons that are grouped into layers and connected in a
parallel manner. An ANN network is made up of inputs that are multi-
plied by weights to keep the intensity of the signal's constant, and then
computed by a mathematical function that defines the neuron's activity.
Weights are assigned to the signals of each neuron during an ANN
training. For this study, the backpropagation method is used. Back-
propagation is a learning mechanism which utilizes a gradient descent
method while training the network. The training of a backpropagation
algorithm works in the following steps: input forward feeding followed
by error estimation, backpropagation, and adjustment of weights to the
input variables. The RSM is an optimization and design technique based
on statistics with two sets of variables named as independent and
dependent. The relationship between these two sets of variables is
analyzed and presented by RSM. Among the various classes of RSM,
central composite design (CCD) is the most appropriate model for linear
as well as non-linear relations amongst the independent and dependent
variable/response. Moreover, in this study, central composite design was
used instead of the Box- Behnken design because the ANN responses were
available by modelling, and they readily provided the additional data to
feed for axial and centre points in the CCD. The CCD being a robust
technique, is successfully used recently for optimization by researchers
for adsorption of heavy metals on multi-wall carbon nanotubes [26, 27],
graphene oxide [28, 29], and oxidative removal of dye by Fenton's re-
agent [30].

2. Material and methodology

2.1. Materials and experimental set-up

BG dye (Glaxe laboratories ltd. India, 95% purity) was used as the
target pollutant. BG dye is an organic hydrogen sulfate salt. The BG dye's
distinctive schematic structure is represented in Figure 1 and Table 1
shows its general characteristics. The reactor setup is represented in



Figure 2. Experimental reactor set-up.
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Figure 2. A polyacrylic reactor of 500 ml capacity consists of one pair of
Iron (Fe) as anode and stainless steel as cathode, both with the size of 5.5
cm � 5.0 cm x 0.3 cm. At 1.5 cm inter-electrode spacing, both the anode
and the cathode are parallel to each other. A DC power supply of 32V,
magnetic stirrer (Janki impax, India), and pH meter (Toshcon, India)
were used during the experiments.
2.2. Batch experimental process and analytical techniques

BG dye was dissolved in distilled water to make a 10 g/L synthetic dye
stock solution. Stock solution (2.5 ml) was diluted to 500 ml to obtain 50
mg/L concentrated solution. All the experiments have been carried out at
a constant temperature of 30 �C. Synthetic wastewater containing dye
(500 ml) was added to the reactor for each batch experiment, and the
reactor was powered by a DC power source. All preliminary experiments
were carried out by varying one parameter at a time for the following
parameters: current density, pH, and the concentration of the supporting
electrolyte (NaCl). The samples were collected at constant time intervals
and left to settle for 30 min and filtered by Whatman filter paper no 1.
The absorbance of BG dye was measured by spectrophotometer (Shi-
madzu UV-1800). The dye removal efficiency in percentage (%) is ob-
tained by Eq. (5). Where, Abs0 is the solution's initial absorbance and Abst
is the solution's ultimate absorbance after treatment at time (t).

Color removalð%Þ¼
�
Abs0–Abst

Abs0

�
� 100 (5)

Electrical energy consumption is calculated according to Eq. (6) and
3

Eq. (7); where, electrical energy (KWh) is denoted by Ec, applied voltage
(Volt) is denoted by U, I is the current (Ampere), tEC is reaction time
(hours), C₀ is initial dye concentration (mgL�1), Rdye is the dye removal
efficiency, V is the volume of sample that has been treated.

Ec ¼ UItEC (6)

Ec

�
kWh
kgdye

�
¼U � I � tEC � 1000�

V � �
C0 � Rdye

�� (7)

2.3. Artificial neural network modelling

A multilayer perceptron (MLP) is a feed-forward type ANN made up
of layers of neurons used in this work. The independent variable inputs
are represented by the first layer of neurons. It is possible to determine
the relative effect of each input neuron and its intricate interconnections
on the observed outcome. The MLP in this work has four input neurons
that indicate response time, current density, pH, and NaCl concentration,
as well as a single hidden layer of neurons and two output neurons that
represent dye removal efficiency (%) and electrical energy consumption.
Hundred numbers of data sets were fed, where 70% of the data sets will
be employed for training and the remaining 30% for testing and vali-
dation. The trial and error method was utilized to determine the digit of
neurons required in the hidden layer, with the goal of minimizing the
divergence between forecasts and experimental findings. In the present
study, TANSIG and PURELIN activation functions were utilized from the
input to the hidden layer mapping and from the hidden layer to the
output layer mapping, respectively.



Table 2. Range and levels of independent parameters.

Independent Variables Range and levels

-α -1 0 1 þα

Electrolysis Time (x1, minutes) 3 6 9 12 15

Current Density (x2, A/m2) 40 60 80 100 120

pH (x3) 2 4 6 8 10

Electrolyte concentration (NaCl) (x4, g/L) 0.2 0.3 0.4 0.5 0.6

Figure 5. Validation performance plot.
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2.4. Response surface methodology

The impact of four primary influencing parameters: electrolysis
duration, current density, pH, and electrolyte concentration, on two re-
sponses, colour removal efficiency and electrical energy consumption
was estimated by means of second order central composite design.
Table 2 shows the input parameter ranges that were determined based on
preliminary experimental work. There were five levels for each param-
eter: the center point, two axial points (�α), two factorial points (�1).
The responses were supplied from the created ANN model's output.

The second order model for response variables is represented by Eq.
(8) [31].

y¼ β0 þ
Xk

i¼1

βixi þ
Xk

i¼1

βiix
2
i þ

Xk�1

i�1

�
Xk

j¼1

βijxixj þ ε (8)

The response variable is indicated by y. β0, βi, βii, βij are constant coeffi-
cient, linear coefficient, second order coefficient, and interaction coeffi-
cient, respectively. k is the numbers of independent variables, xi, and xj
symbolize the coded values of the parameters, and n represents the
number of parameters.
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3. Results and discussions

3.1. ANN modelling

A backpropagation algorithm was used, which trains itself with a
large set of input and output data fed into the ANN and computes the
mean squared error [32]. The algorithm was initiated with random
weight assignment, until the minimum error was observed. Corre-
sponding optimum hidden layer neurons were found out. The training
was carried out for 2,000 iterations. The ANNwas tested for hidden layer
37 40 50 60

rons in hidden layer

are error

mbers of hidden layer neurons.

structure.



Figure 6. Regression fit of the trained network.
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neurons between 10 and 60. Figure 3 shows the mean square error vs.
hidden layer neurons. From Figure 3, the optimized hidden layer neurons
were found to be 37 corresponding to the minimummean square error of
0.068. A representation of the MLP diagram for an ANN structure can be
observed in Figure 4. The validation performance plot is provided in
Figure 5. Figure 6 shows the regression fit of the ANN model. The values
of regression coefficients of training, validation, test, and all data com-
bined are close to 1, which indicates a well-trained model.

3.2. Central composite design

The RSM provided the experimental design for the input parameter
range is given in Table 2. Table 3 shows the experimental as well as the
predicted values of the responses, colour removal efficiency (R1), and
electrical energy consumption (R2) for the 30 experimental design runs.
From Table 3, it is observed that most of the predicted values are in
proximity with the experimental values. However, for the response
colour removal efficiency, deviation of the ANN predicted values from
the experimental values of Runs 4 and 9 are slightly higher than other
runs. While for the response electrical energy consumption, the deviation
of the ANN predicted values of Runs 9,13, and 27 seems to be larger.
Similarly, it is observed that the RSM predicted and the experimental
values of run 27 differs higher than other runs for colour removal effi-
ciency. While Runs 3,17, and 22, the RSM predicted value deviation from
the experimental values is larger. The predicted values of Runs 7, 9, 10,
16, 18 differ by minor value from experimental values. The reason for
5

that can be in any predicting model, chances of some data points lying
outside the line also knowns as outliers, formed by the regression
equation cannot be ruled out. Moreover, it is noteworthy to mention that
even after the same inputs the ANN predicts different results for each run.

The analysis of variance (ANOVA) generated from the RSM model is
shown in Table 4. A p-value of the model or variable is desired to be
<0.05. The p-values < 0.005 are considered to be highly significant. For
both the responses R1 and R2, the p-value for the models (<0.0001) are
less than 0.05 indicates that the models are highly significant (Table 4).
For response R1, all the parameters such as electrolysis time (x1), current
density (x2), pH (x3), and electrolyte concentration (x4) are also highly
significant. For response R2 electrolysis time (x1), current density (x2),
and electrolyte concentration (x4) are also highly significant.

From the F-value, the most significant parameter for R1 is current
density, which is followed by electrolysis time, pH, and electrolyte con-
centration. For response R2 the most influencing parameter is electrolysis
time followed by current density, electrolyte concentration, and pH. The
coefficient of determination (R2) shows the extent of influence of the
independent parameters on the response. From the fit statistics in
Table 4, the R2 values for both responses R1 (>0.98) and R2 (>0.96) are
close to 1, which indicates that the independent parameters are largely
influencing the response. The predicted R2 indicates how well the model
predicts unknown data responses, and it should be near to 1 for excellent
models. For both the responses, the predicted R2 values are close to 1. A
close proximity between R2, adjusted R2, and predicted R2 is desired and
is observed for the model.



Table 3. Experimental and predicted values for ANN and RSM.

Run No. Electrolysis
Time (minutes)
(x1)

Current
Density (A/m2)
(x2)

pH (x3) Electrolyte
concentration g/L (x4)

Colour removal efficiency (R1)
%

Electrical energy consumption (R2) kWh/kg

Exp. values Predicted values Exp. values Predicted values

ANN RSM ANN RSM

1 12 60 4 0.5 85.17 85.19 84.33 6.61 5.32 6.24

2 6 100 4 0.5 95.81 96.45 96.13 12.17 11.04 11.78

3 9 80 10 0.4 95 94.12 95.56 14.03 13.16 11.53

4 6 100 8 0.3 96.23 93.43 96.51 13.26 11.76 14.04

5 6 60 4 0.5 78.95 77.23 79.43 5.85 5.15 4.69

6 15 80 6 0.4 99.23 97.92 96.83 26.6 24.86 26.05

7 9 80 6 0.4 98.1 98.56 98.32 16.15 14.91 16.11

8 9 40 6 0.4 87.63 86.03 87.68 9.04 8.32 9.18

9 9 80 6 0.4 98.27 94.67 98.32 16.12 18.34 16.11

10 9 80 6 0.4 98.88 96.99 98.32 16.02 16.29 16.11

11 3 80 6 0.4 86.23 85.25 84.80 5.87 4.18 5.59

12 6 60 8 0.3 87.59 86.12 87.93 8.67 9.21 9.14

13 12 100 8 0.3 93.12 91.39 92.64 26.7 28.93 28.95

14 6 60 8 0.5 90.06 90.52 90.05 8.87 8.32 9.80

15 12 100 4 0.3 96.43 95.34 95.89 34.68 35.15 35.16

16 9 80 6 0.4 98.2 98.06 98.32 16.13 16.62 16.11

17 9 80 6 0.2 92.43 93.18 92.61 27.71 26.87 24.92

18 9 80 6 0.4 98.27 98.12 98.32 16.12 16.17 16.11

19 12 60 8 0.5 94.3 95.36 95.24 16.08 16.01 15.25

20 6 60 4 0.3 76.98 75.43 77.55 10.12 10.09 10.02

21 9 80 6 0.6 98.02 98.33 98.40 14.14 14.19 14.44

22 9 120 6 0.4 99.98 98.51 99.99 30.5 29.24 27.86

23 6 100 4 0.3 92.99 92.67 93.05 18.22 18.53 20.15

24 6 100 8 0.5 99.56 99.11 99.83 11.05 11.09 11.66

25 12 60 4 0.3 93.13 91.49 92.86 17.86 16.88 18.34

26 12 100 4 0.5 99.91 99 99.56 23.4 23.08 24.02

27 15 80 6 0.4 92.43 93.92 96.83 27.71 25.16 26.05

28 12 100 8 0.5 97.68 97.19 96.55 22.3 21.63 23.80

29 12 60 8 0.3 97.41 96.19 96.53 15.58 15.10 17.37

30 9 80 6 0.4 98.2 97.35 98.32 16.13 15.23 16.11
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For prediction, the second order polynomial models were developed
for the responses from the RSM. The models are representing the inter-
active, quadratic, and main impacts of the independent input variables
on the response variables. Eq. (9) as well as (10) demonstrate the model
for colour removal efficiency (%) and electrical energy consumption,
respectively. The models consider only the significant terms (p > 0.05),
because the insignificant terms do not affect the process. Figure 7 (a) and
(b) show the plot of the predicted values vs. the actual values for response
R1 and R2, respectively. For both the responses, the predicted and the
actual points are close, indicating ‘good’ fit of models.

Colour removal efficiency (%) ¼ 98.32 þ 3.01 x₁þ 3.20 x₂ þ 1.84 x₃ - 2.62 x₄ -
3.12 x₁ x₂ - 1.68x₁ x₃ -1.73 x₂ x₃ - 1.88 x₁2–1.06 x₂2–1.61 x₃2–0.7041 x₄2 (9)

Electrical energy consumption (kWh/kg)¼ 16.11þ 5.12 x₁þ4.67 x₂þ1.46 x₄þ
1.67 x₁ x2-1.31x₂ x₃ þ 1.50 x₃ x₄ þ 0.6026x₂2–1.01 x₃2 þ 0.8913 x₄2 (10)
3.3. The impact of operational conditions on the efficiency of colour
removal

Figures 8 and 9 illustrate three-dimensional response surface plots for
colour removal rate of brilliant green dye. It shows the impact of four
independent parameters on colour removal efficiency by varying two of
them while keeping the other two fixed and at the table's central value.
6

At pH 6, and a NaCl content of 0.4 g/L, Figure 8 depicts the combined
influence of time along with current density on colour removal efficiency.
The colour removal efficiency increases as time and current density in-
crease. As the reaction time increases, the amount of Fe ions produced at
the anode increases. As a result, more Iron hydroxides are produced. This
promotes the destabilization of the dye molecules followed by floccula-
tion and precipitation. With the increase in current density, the hydrogen
gas generated at the cathode also increases, aiding the coagulation pro-
cess. Similar results were observed by Verma (2017) [1]. During the
electrocoagulation process negatively charged colloidal particles are
neutralised by generated metal ions [33]. Increased current density en-
hances the neutralization of colloidal particles.

Figure 9 depicts the effect of pH and NaCl concentration on colour
removal at electrolysis time of 9 min and current density of 80 Am�2.
From Figure 9, it can be illustrated that the surface plot is comparatively
flat. With increasing pH and NaCl concentration, there is a slight increase
in colour removal. The pH affects both the ionisation of the dye mole-
cules and the surface characteristics of the adsorbent. BG dye is a cationic
and its adsorption is favoured at pH > pHpzc (pH at point of zero charge)
[34]. As a result, it is found that increasing the pH from 4 to 8 improves
colour removal efficiency. Increase in NaCl (electrolyte) concentration
causes increase in the solution conductivity resulting in more concen-
tration of metal ions released from the anode. This might be the apparent
cause for the increased efficiency of colour removal with NaCl concen-
trations. Figure 10 shows the response surface plot for the influence of



Table 4. The analysis of variance (ANOVA).

Source Colour
removal
efficiency, % (R1)

Electrical energy
consumption,
kWh/kg (R2)

df F-value p-value df F-value p-value

Model 14 31.91 <0.0001 14 38.59 <0.0001

x₁ 1 111.15 <0.0001 1 239.2 <0.0001

x2 1 112.82 <0.0001 1 178.49 <0.0001

x3 1 26.74 0.0001 1 0.4451 0.5148

x4 1 23.06 0.0002 1 56.24 <0.0001

x₁ x2 1 71.31 <0.0001 1 15.27 0.0014

x₁ x3 1 20.65 0.0004 1 0.0031 0.9565

x₁ x4 1 0.1624 0.6927 1 2.63 0.1259

x2 x3 1 21.96 0.0003 1 9.33 0.008

x2 x4 1 0.6659 0.4273 1 3.13 0.0971

x3 x4 1 0.0253 0.8757 1 12.22 0.0033

x₁2 1 53.58 <0.0001 1 0.0612 0.8079

x₂2 1 13.78 0.0021 1 3.32 0.0885

x₃2 1 19.39 0.0005 1 5.63 0.0315

x₄2 1 6.09 0.0261 1 7.26 0.0166

Fit Statistics

R2 0.99 0.97

Adjusted R2 0.9964 0.9478

Predicted R2 0.9919 0.8162

Figure 8. Response surface plots showing the effect of current density Vs stime
on colour removal efficiency.
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NaCl concentration against contact time on colour removal efficiency.
Figure 11 shows the response surface plot for the influence of pH versus
current density on colour removal efficiency.

3.4. Effect of operating parameters on electrical energy consumption

Figures 12 and 13 shows the three-dimensional surface plots for the
effect of current density with time and effect of pH and NaCl concen-
tration on electrical energy consumption, respectively electrical energy
consumption. The interaction impact of current density combined with
electrolysis time on the electrical energy consumption is demonstrated in
Figure 12. It is evident that when the current density as well as elec-
trolysis duration rises, the electrical energy consumption increases as
well. The reason is the rate of Fe metal ion generation increases with
increase in current density and electrolysis time. The effects of pH along
with NaCl concentration on energy consumption are shown in Figure 13.
It is evident that there is no major effect of pH on electrical energy
Figure 7. Predicted value Vs actual value pl
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consumption, whereas the substantial influence of NaCl concentration on
electrical energy consumption is found. Electrical energy consumption is
decreasing when NaCl concentration is increasing. Similar results were
observed by Singh et al, (2016) [35]. At constant current density, a rise in
salt concentration lowers cell voltage and reduces power consumption
[36].
3.5. Optimization of CCD model

Experiments were performed under the optimized condition i.e.,
contact time 10 min, current density 80 A/m2, and NaCl concentration
0.5 g/L Table 5 shows the experimental results of two responses, dye
removal efficiency, and electrical energy consumption. Predicted values
obtained from the RSM are also reported in Table 5. Figure 14 shows the
Visual decolorization at different time intervals for optimum condition.
3.6. Absorption spectrum under optimum conditions

The UV-vis absorption spectra of the BG dye solution was recorded
under optimum conditions for decolorization treatment as shown in
Figure 15. The spectra display four bands, one in the visible region (626
nm) due to BG dye and three in the UV-visible region (350, 305, and 255
ot for (a) Response R1 (b) Response R2.



Figure 9. Response surface plot showing the effect of NaCl concentration Vs pH
on colour removal efficiency.

Figure 10. Response surface plot for the effect of NaCl concentration Vs contact
time on colour removal efficiency.

Figure 11. Response surface plot for the effect of pH Vs current density on
colour removal efficiency.

Figure 12. Response surface plots for the effect of current density Vs time on
electrical energy consumption.

Figure 13. Response surface plots for the effect of NaCl concentration vs pH on
electrical energy consumption.
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nm) corresponding to π–π* transitions. Continuous decrease in intensity
of band at 626 nm from 0 min to 10 min indicates the decolorization.
3.7. Kinetic plot under optimum conditions

A kinetic plot was studied for the optimum condition at constant
temperature of 30 �C as shown in Figure 16. According to the first order
equation (Eq. 11), the electrocoagulation process followed pseudo first-
order reaction kinetics. The reaction rate coefficient, k was observed as
shown in Figure 16 where, C0 and Ct are the initial and final dye con-
centration (mg/L) of BG dye before and after time t (minutes), k is the
reaction rate coefficient, and m is the order of reaction.

ln
�
C0

Ct

�
¼ kt (11)

4. Conclusion

The electro coagulation technique was examined for the decolouri-
zation of BG dye solution in this research. A process was influenced by
parameters such as current density, initial pH, electrolysis time, and the



Table 5. Optimized condition.

Time (minutes) Current density (A/m2) pH NaCl concentration (g/L) Dye Removal efficiency
%

Electrical energy consumption (kWh/kg)

Experimental Predicted Experimental Predicted

10 80 5 0.5 98.77 98.83 14.88 14.99

Figure 14. Visual Decolorization at different time intervals at optimum condition.

Figure 15. UV-vis absorption spectra obtained at optimum condition.

Figure 16. First order kinetic plot for Brilliant Green dye removal process.
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electrolyte (NaCl) concentration. An ANN was used to model and train
the process for prediction. The RSM approach was applied to optimize
the procedure, which reduce the time and experimental work. The pro-
cess was effectively modelled using a second order polynomial CCD
design, giving prediction models for two response variables: dye removal
efficiency and electrical energy consumption. For the decolorization of
BG dye solution, the maximum dye removal efficiency (>98%) and
minimal electrical energy consumption (15 kWh/kg) were achieved
under optimum conditions. Overall, the procedure was determined to be
successful in removing the BG dye.
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