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Abstract: Pharmacokinetics and pharmacodynamics are areas in pharmacology related to differ-
ent themes in the pharmaceutical sciences, including therapeutic drug monitoring and different
stages of drug development. Although the knowledge of these disciplines is essential, they have
historically been treated separately. While pharmacokinetics was limited to describing the time
course of plasma concentrations after administering a drug-dose, pharmacodynamics describes the
intensity of the response to these concentrations. In the last decades, the concept of pharmacoki-
netic/pharmacodynamic modeling (PK/PD) emerged, which seeks to establish mathematical models
to describe the complete time course of the dose-response relationship. The integration of these
two fields has had applications in optimizing dose regimens in treating antibacterial and antifungals.
The anti-infective PK/PD models predict the relationship between different dosing regimens and
their pharmacological activity. The reviewed studies show that PK/PD modeling is an essential
and efficient tool for a better understanding of the pharmacological activity of antibacterial and
antifungal agents.

Keywords: PK/PD modeling; antibacterial; antifungal; pharmacotherapeutic treatment

1. Introduction

The discovery and production of antimicrobials in the early twentieth century is
one of the most outstanding achievements of public health since infectious diseases were
considered one of the leading causes of the high mortality rates [1]. Bacterial infections
have a higher prevalence in intensive care units (ICU) and are one of the leading causes
of mortality in these units, both in the adult and pediatric populations [2,3]. Furthermore,
antibiotic resistance has been considered an expanding global crisis. Resistant bacteria have
several mechanisms that prevent the proper action of the antibacterial [4].

Fungal infections have increased considerably in recent years and are associated with
high mortality and morbidity rates, mainly in immunocompromised patients. Limitations
in antifungal treatment, such as fungal resistance, unwanted side effects due to drug toxicity,
and reduced spectrum of action, contribute to the aggravation of this type of infection [5].

Therefore, drug development with different mechanisms of action against bacteria
and fungi is of paramount importance. The administration in the correct dose and dosage
according to the specificity of each population is also a necessity, mainly due to the increased
resistance of these microorganisms to most existing antimicrobials [6,7]. Another critical
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tool for improving pharmacological treatment is therapeutic drug monitoring (TDM).
TDM refers to the individualization of a patient’s dosage regimen to attain drug plasma
levels within the therapeutic range. TDM is also recommended for drugs with marked
interindividual pharmacokinetic variability, no matter their therapeutic index [8].

Pharmacokinetics and pharmacodynamics knowledge is applied in the research and
development of drugs and TDM. In fact, many candidate molecules fail in drug develop-
ment because they have undesirable pharmacokinetic characteristics, such as very short or
very high half-life (t1/2), poor absorption, or extensive first-pass metabolism. This leads,
for example, to rationality in promoting changes in the compound’s chemical structure
to improve these kinetic parameters [9]. Furthermore, pharmacotherapeutic monitoring
assumes a direct relationship between administered dose, plasma concentrations, and
pharmacological effects (the expected response). It only happens for drugs with a better
relationship between plasma concentration and response, favoring the pharmacodynamic
interpretation in TDM [10].

The areas of pharmacokinetics and pharmacodynamics had been treated in an isolated
way: pharmacokinetics was limited to describing the time course of drug concentrations
in different body fluids after administration of a dose, while pharmacodynamics had
a description of the intensity of the response drug according to their concentrations at
the site of action. However, pharmacokinetic studies only make sense if there is prior
knowledge of an association between drug concentrations and their effects (therapeutic
or adverse). In contrast, pharmacodynamic studies do not consider the time course of the
concentration-effect relationships by assuming that drug concentrations at the site of action
remain constant [11].

Thus, the concept of pharmacokinetic/pharmacodynamic modeling (PK/PD) emerged
by applying mathematical models to describe the relationship between dose and drug
response measured over time. The PK/PD models have a pharmacokinetic and a pharma-
codynamic component; that is, they combine models of the first (e.g., mono and bicom-
partmental) with models of the second (e.g., model with fixed, linear, maximum effect,
maximum sigmoidal effect) and, also, its data and correlations can be treated separately or
simultaneously [11,12].

PK/PD models can potentially benefit all phases of drug development, including
preclinical and clinical phases I, II, III, and IV. During phase I clinical trials, PK/PD models
can support optimal dose and dosage regimen definition, in addition to potential biomark-
ers; accelerate the selection of candidate compounds; and assist in the prediction of oral
bioavailability, the potency of the new drug (EC50), and its intrinsic activity, saving time
and money in the development of the new drug. The developed model can then be im-
proved and integrated with Phase I clinical studies, in which drug-drug interactions and
the safety profile (toxicity) are evaluated. During phases II and III, PK/PD modeling is
used to simulate clinical outcomes; assess the impact of covariables on the model (such
as subpopulations of patients and comorbidities), and mainly confirm the dose-response
relationships in the studied populations [13] as well as it can contribute to the technological
development of new drug delivery systems [14].

Antimicrobials are associated with both the success (cure of infection) and the failure of
the therapy (adverse effects, antimicrobial resistance, inability to resolve the infection), and
the choice of appropriate dosage and dose translates into a rational decision in the clinical
practice. The integration between pharmacokinetics and pharmacodynamics has been ad-
dressed in several studies aiming to use PK/PD models in rationalizing and individualizing
dose regimes with antimicrobials. When using PK/PD modeling in pharmacotherapy, the
results allow better decisions regarding the best antimicrobial for a patient and estimate the
probability of success with the chosen posology and dose, contributing to the dissemination
of antimicrobial resistance [15,16].

The use of PK/PD modeling in the developing antibacterials is considered a suitable
approach that enables the optimization of study designs, reduced costs, and a shorter
duration of clinical studies. In addition, the results obtained from studies with PK/PD
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modeling serve as support in the clinical area, in decision-making in situations with patients
from specific populations who present higher variability in pharmacokinetics or due to
the complexity in the treatment of infections caused by pathogens considered highly
resistant [17,18].

Considering the positive impacts of the application of PK/PD models and simulations in
drug development and precision medicine, this work aimed to review the main topics related
to this field of pharmaceutical knowledge, the main approaches, and the future of PK/PD
modeling concerning antimicrobial drug therapy. The concept and mathematical rationale of
PK/PD models using the time-kill curves approach were reviewed for anti-infectives.

2. Basic Aspects of PK/PD Modeling

The rationale behind PK/PD modeling is to promote the union between the phar-
macokinetics and pharmacodynamics of a drug so that it is possible to establish a dose-
concentration-response relationship and predict the complete time course of a dose. For
this, kinetic and pharmacodynamic models are used [19].

In PK/PD modeling, the kinetic model features components describing the time
course of drug concentration obtained in body fluid samples after administration. The
compartmental-type kinetic models are preferably used, as they provide a continuous
profile of the concentration-time relationship. Preference should be given to modeling free
unbound concentrations as they are responsible for the pharmacological effect, especially
if there is suspicion of any non-linearity in the plasma or binding to the tissue that may
interfere in the characterization of the dose-concentration-effect relationship [11].

Among the kinetic models, is the monocompartmental model, in which the human
body is seen as a single central compartment, and the drug is presumed to be distributed
homogeneously and quickly to all tissues. It is considered the simplest kinetic model, as it
does not assume that the organism is composed of several tissues and organs that must
be treated as distinct compartments [20]. Given this, multicompartmental models allow
incorporating two or more compartments in addition to the central (plasma). This model is
based on the ability of the drug to distribute quickly or slowly in some tissues; thus, the
kinetic description is more appropriate when including one or more compartments called
peripheral. However, bicompartmental models are more used since many drugs follow
this kinetics [21].

The PK/PD modeling uses pharmacodynamic models, which relate the concentration
to the response. In simpler models, it is assumed that the drug’s effect is directly related to
the concentration at the effect’s site, and the drug’s plasma concentrations are in equilibrium
with the free concentration at that site (steady-state). This condition applies to drugs with
direct and reversible action. However, it is recommended to measure the concentration at
the action site, where the drug interacts with its receptor [19].

To obtain the concentration at the effect site, some approaches can be used: to develop a
model that incorporates variations in plasma concentrations over time, thus simulating the
concentrations at that site and connecting it to the response; or maintain a constant plasma
concentration through continuous intravenous infusion, and relate it to the response [22].
Currently, in addition to the use of blood plasma, other methodologies are being used to
represent exposure at the site of action, such as microdialysis, use of bronchoalveolar lavage
sample, use of positron emission tomography, or use of a sample of cervical or vaginal
fluid, among others [23].

The direct response pharmacodynamic models are the fixed-effect model, linear model,
log-linear model, maximum effect model (Emax), and the maximum effect sigmoid model
(sigmoid Emax model) [19], the last two being the most used in PK/PD modeling [24]. The
sigmoid Emax model is shown in Equation (1):

E =
Emax × Cn

EC50 + Cn (1)
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It is an expansion of the Emax model. Theoretically, it reflects the increase in the
interactions between the drug and its receptor, when more molecules bind to the same
receptor. In this equation, E represents the measured effect, Emax is the maximum effect
possible, C is the concentration of the drug, EC50 is the concentration of the drug necessary
to produce 50% of effect and n is the slope factor [19,21,24].

3. Use of PK/PD Models with Antimicrobials

Studies showed that a relation between pharmacokinetics and pharmacodynamic
parameters allows an assessment of the potency and efficacy of the antibacterial and
antifungal agents. Consequently, it will enable a great understanding of the interactions
between the antimicrobials and infecting agents [15,25]. The most used approaches to
develop PK/PD models with antimicrobials are minimum inhibitory concentration (MIC)
and the use of the time-kill curves [24].

3.1. MIC-Based Approach

The minimum inhibitory concentration (MIC) is one of the most used pharmacody-
namic parameters to measure the effectiveness and potency in studies with antibacterial
and antifungals [15]. The definition of MIC is the lowest concentration of an antimicrobial
that prevents the visual growth of a microorganism in agar or broth after 16–20 h of incuba-
tion with a standardized inoculum containing approximately 5 × 105 colony-forming units
(CFU) per milliliter [26].

Antimicrobials, in general, have three main patterns of activity. In the first scenario,
the death of microorganisms is dependent on concentration. It presents extended persistent
effects, and this pattern indicates that higher concentrations would kill more quickly, which,
in pharmacokinetic terms, would refer to the parameters peak serum (Cmax) and area under
the concentration-time curve (AUC). In the second scenario, the microorganism death is
time-dependent with minimal or no persistent effects. So, higher drug concentrations
would not have a better killing effect than the lower ones, implying an approach to keep
them above the MIC for a sufficient time for microbial elimination. Lastly, there are
time-dependent antibiotics with a prolonged post-antibiotic effect (PAE). In this case, it
is essential to optimize the AUC value [16]. For some resistant bacteria, the values of
mutant prevention concentration (MPC), the drug concentration required to suppress the
growth of first-generation mutant bacteria, and the mutant selection window (MSW), which
describes the antibiotic concentration between the MIC and the MPC, have been used to
target antibiotic exposures needed to minimize the development of resistance [27].

When combining the pharmacodynamic (MIC) and kinetic parameters described
above (Cmax and AUC), the PK/PD indices appear (Figure 1), created to evaluate the
efficacy and optimize the therapeutic regimens [15].

Despite providing a remarkable prediction about the potency of an antibiotic against a
pathogen, the PK/PD indices do not give enough information about the time course of the
drug’s activity. Another critical parameter is ignored when using MIC alone: persistent
effects [28]. According to Mouton et al. [29], these include the PAE in vitro, which is the
period of suppression of bacterial growth after exposure and subsequent artificial removal
of the antimicrobial; in vivo PAE, which measures the time of bacterial growth when
plasma concentrations in the serum or at the infection site fall below the MIC (sub-MIC);
and the post-antibiotic sub-MIC effect (PASME), which seeks to know whether sub-MIC
concentrations affect PAE in vitro (for example, prolonging this period). These effects are
seen in most concentration-dependent antibiotics.

The MIC-based approach has guided antimicrobial dosage and served as a tool for
doctors to make rational decisions, but this approach does have limitations. As only
the free fraction of a drug (not bound to plasma proteins) has a pharmacological effect,
it must reach the infection site to promote pharmacological killing. However, the MIC-
based approach often disregards the effect of protein binding and tissue drug distribution,
leading to therapeutic failure or antibiotic resistance [15]. Another limitation is the use
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of static concentrations in this modeling. When establishing the MIC value, a single one-
time point is considered (between 16–20 h of incubation). It indicates only one point
of concentration in which there is no visual growth. Moreover, there is interlaboratory
variability in determining MIC, as it involves laboratory-dependent aspects, such as dilution
factors and operator interpretation of what constitutes visual colony growth. Finally, static
concentrations do not reflect in vivo conditions in which drug concentrations fluctuate
between doses [15,30].
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3.2. Use of Time-Kill Curves

A different approach to assessing the effectiveness of antimicrobials is to measure the
count of viable microorganisms (MO) as a function of time and drug concentration. Over
time, the microbiological killing will be observed to a greater or lesser extent depending on
the concentration value and compared with the controlled growth (absence of antibiotics).
The time-kill curves (TKC) are then generated, graphically plotting the amount of MO ver-
sus time (CFU/mL vs. time), thus allowing to compare the effects of different concentration
profiles, in addition to providing a much more detailed PK/PD ratio than the simple use of
the MIC value [31].

TKCs can be obtained both in vitro and in vivo. In vitro models are divided into two
types: the static concentration model, in which the concentration of the antibiotic is kept
constant, and the dynamic concentration model, in which various concentrations are used
to simulate in vivo conditions, such as the natural decay by the drug’s half-life, fluctuations
between the central and peripheral pharmacokinetic compartments, and the measurements
of the free fraction at the infection site. On the other hand, the other type of model simulates
concentrations obtained in vivo in a scenario of intravenous infusion with a constant flow
rate [15].

The TKC models obtained in vivo are based on animal infection models already widely
used in developing new agents and optimizing antibiotic therapy. The most commonly
used models are thigh infection, pneumonia, pyelonephritis/kidney infection, peritoni-
tis/septicemia, meningitis, osteomyelitis, and endocarditis. The basic premise is that the
effectiveness of an antimicrobial in an animal model will be matched in humans. Nev-
ertheless, it is known that there are essential differences in the pharmacokinetics of an
antimicrobial in humans and animals, in such a way that it is necessary to simulate human
PK parameters in animal models, namely the reduction of drug elimination and the control



Antibiotics 2022, 11, 986 6 of 20

of intravenous infusion. Most models incorporate the PK/PD indices seen previously, but
a PD model can be adapted that adequately models the death curves [32].

Two main types of models govern the microbial population dynamics in the modeling
of TKC: the compartmental (or semi-mechanistic) model and the logistic growth model. In
the first, Equation (2) describes bacterial growth and death:

dN
dt

=
(

kgrowth − kdeath

)
× N (2)

where N is the bacterial population, kgrowth and kdeath are the first-order rate constant for
bacterial synthesis and the first-order rate constant for bacterial death, respectively, and
dN/dt is the number of microorganisms in a culture medium as a function of time. This
equation considers that the bacterial population is always homogeneous, which, in practice,
is not true because, under the effect of the antibiotic, there is a tendency to select resistant
strains [30].

Nolting et al. [33] used a modified model to evaluate the effects of piperacillin on
Escherichia coli using a single-compartment in vitro dilution model with concentration
profiles similar to those found in humans (use of static and dynamic concentrations). Thus,
the authors adapted the experimental data using the Equation (3), which is commonly used
in the evaluation of the beta-lactam pharmacodynamics [15]:

dN
dt

=

(
ko −

kmax×Ch

ECh
50 + Ch

)
× N (3)

where EC50 is the potency of the drug, ko is the equivalent of kgrowth, N is the number of
bacteria in CFU/mL; C is the concentration of the drug, kmax is the maximum kill rate
constant, and h is the Hill factor previously described. It is noticed that the expression
kmax×Ch

ECh
50+C

is equivalent to kdeath, except that the latter implies natural cell death, whereas the

former represents the effect of the antibiotic. To the equation, the authors also added an
exponential correction factor, in the form of (1 − e−zxt), where z is a constant that considers
the fact that, at the beginning of the experiment, bacterial growth has not yet been in the
log phase [33] resulting in Equation (4):

dN
dt

=

(
ko −

kmax × Ch

ECh
50 + Ch

)
.
(
1 − e−zxt)× N (4)

The logistic growth model is based on the human population dynamics, which says
that there is a maximum capacity in the number of individuals supported by an environ-
ment. Similarly, in an in vitro assay, the number of bacteria does not grow indefinitely, as
nutrients and space for growth are limited. Thus, Equation (5) predicts this behavior, which
was proposed by Mouton and collaborators [34].

dN
dt

=

{
ko ×

(
1 − N

Nmax

)
× N − kmax ×

Ch

Ch × ECh
50

}
× N (5)

where Nmax is the maximum amount of microorganisms multiplied until reaching a plateau
(stationary phase), where the multiplication speed decreases and the net growth is zero.

More complex models have emerged to simulate new conditions. In addition to the de-
lay in bacterial growth (compensated by the exponential correction factor) and its saturation
Nmax, there can be a delay in killing the three situations simultaneously. Treyaprasert and
collaborators [35] used the complex model showed in Equation (6) to determine the activity
of the azithromycin against strains of Streptococcus pneumoniae, Haemophilus influenzae, and
Moraxella catarrhalis. The authors added the exponential correction factor (1 − e−yxt), where
y describes the delay in kill:

dN
dt

=

[
ko ×

(
1 − N

Nmax

)(
1 − e−zt)−( kmax × Ch

ECh
50 + Ch

)(
1 − e−yt)]× N (6)
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PK/PD studies have recently been carried out, including antimicrobial resistance and
a different approach when considering the plateau in the stationary phase. Some equations
do not consider the emergence of resistant strains or the decrease in the speed of microbial
multiplication. To overcome this, a study implemented the idea of separating bacteria into
two interconnected compartments: growing population (S) and resting population (R). In
the log phase, most of the bacteria would be in (S), while, as the number of bacteria reached
the plateau, there would be a transformation from the stage (S) to (R); this flow is called
kSR. There could also be an inverse flow so that the population dynamics, in the absence of
antibiotics, were described in the Equations (7) and (8), according to Nielsen et al. [36]:

dS
dt

= kgrowth × S − kdeath × S − kSR × S + kRS × R (7)

dR
dt

= kSR × S − kRS × R − kdeath × R (8)

where dS/dt and dR/dt are the number of bacteria in stages (S) and (R) as a function of
time; kSR and kRS are constant transfers between the compartments; kgrowth and kdeath
have been described previously. Then, the authors incorporated the drug’s effect, in the
form of a sigmoidal model, into these two equations and evaluated the in vitro effect of
constant concentrations of several antibiotics, including vancomycin, moxifloxacin, and
benzylpenicillin, against Streptococcus pyogenes.

A further study was based on this approach and included adaptive resistance in a new
PK/PD model. As is known, adaptive resistance (AR), although reversible, is a condition
refractory to the bactericidal effect of an antimicrobial, being well documented in the
use of aminoglycosides [37]. Thus, Mohamed et al. [38] developed a new PK/PD model
and evaluated the activity of gentamicin against Escherichia coli through in vitro time-kill
curves with static and dynamic concentrations. The authors then introduced the AR as two
compartments, one active ARon and another dormant ARoff. During modeling, its presence
modulated the maximum effect (Emax or kmax) by the Equation (9):

Emax = Emax(0) ×
(

1 − ARon

ARon + AR50

)
(9)

Emax(0) is the maximum effect achieved in the absence of AR, and AR50 describes the
value of ARon when Emax is reduced by half. Finally, the authors finalized the PK/PD
model (Equation (10)), incorporating the previous approach:

dS
dt

= kgrowth × S −
(

kdeath +
Emax × Ch

ECh
50 + Ch

)
× S − kSR × S (10)

3.3. In Vitro Pharmacodynamic (PD) Models

In vitro PD models represent one of the pillars in the conduct of PK/PD studies,
and several have been developed to allow the study of death curves. The models are
divided into static and dynamic models, with each type having different characteristics.
Static models are easier to obtain; they present constant concentrations throughout the
observed time but do not allow changes in drug or culture medium nor for measurement
of post-antibiotic effects. On the other hand, the dynamic models apply changes in the
concentration of the drug, which allows an extension of the observed period from 24 h to
more than 72 h, if necessary. It is thus possible to measure single and multiple doses [39].
Figure 2 shows the classification of the in vitro models:
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MIC is considered a parameter and a method, as it determines the lowest concen-
tration that prevents a microorganism’s visual growth. However, as has been seen, it
refers only to an outcome measure linked to a single concentration value, presenting the
disadvantages already discussed. The flask model consists of some flasks with the standard
bacterial/fungal inoculum is present, immersed in medium, and in which different concen-
trations of the antibacterial or antifungal are added depending on the corresponding MIC
(e.g., 0.25 × MIC; 1 × MIC; up to high values such as 64 × MIC). The flasks are incubated at
a controlled temperature and at predetermined times, samples are taken and subsequently
plated, then counting the viable cells are counted as a function of time. Although these
methods describe antimicrobial behavior, these models are unreliable because they do not
account for clinical outcomes [15,31].

Unlike the two previous models, dynamic models aim to simulate in vivo conditions
and may present bacterial or fungal losses (called an open-type, as there can be exchanges
between the MO’s and the environment) or not (a closed-type model, in which this exchange
is not possible) [40].

In dilution models, the principle of changing the concentration of the drug is to replace
it with pure medium or add a medium volume to the bottle. Replacement means removing
a defined volume from the in vitro model and adding an equal volume containing only
the medium. In addition, the replacement can be manual, with syringe manipulation, or
automatic, which is more practical as it involves peristaltic pumps. It is possible to add a
filter to the system to avoid bacterial or fungal loss [40].

The dilution models can be further subdivided into models with one, two, or more
compartments. One- compartment models consist of a central reservoir containing the
organism, a diluent reservoir, and a disposal reservoir. The drug is administered in the cen-
tral reservoir, and elimination is achieved by pumping a drug-free medium into the central
reservoir; this configuration is necessary to mimic the pharmacokinetics of antibacterial
and antifungal in patients (for example, the simulation of the half-life) [39].

The diffusion or dialysis model implies a closed system with no loss of bacteria or
fungi. This model provides for the presence of a semipermeable membrane, permeable
to the antibacterial or the antifungal, but not to the microorganisms, which separates two
compartments: central (C) and peripheral (CP). Initially, the drug is in the first compartment
and the microorganism is in the second. A volume containing only medium is continuously
pumped into (C) so that the medium in (CP) is continuously renewed by diffusion, and
changes in the drug’s concentration occur. The diffusion models can still be subdivided
according to the type of membrane used. The primary examples of artificial barriers are
cellulose acetate, polycarbonate, and polysulfone. For natural membranes, cell membranes
and agarose gel are used [40].
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4. Studies with PK/PD Models in Antibacterial and Antifungal

A literature review was conducted using PubMed to identify PK/PD models describ-
ing the time course of antibiotic and antifungal effects in vitro or in vivo. Inclusion criteria
were limited to models based on: (i) antibacterial compounds; (ii) antifungal compounds;
and (iii) time-kill curves data. Only results in the English language were considered.

A summary of all manuscripts evaluated is shown in Table 1.

4.1. Antibacterials

The use of PK/PD modeling contributes to the optimization of antibacterial dosage
regimens, enabling a better understanding of the relationship between the drug and the
microorganism, and the development of better dosage strategies for certain specific popula-
tions, as shown in the studies below:

4.1.1. Beta-Lactams
Penicillins

The bactericidal activity of piperacillin against Escherichia coli was evaluated in a study
with immunocompromised infected rats. The authors used a PK/PD model to assess this
activity: modified sigmoidal Emax, previously developed [33]. This model was considered
adequate to evaluate the profile of bacterial reduction as a function of time to show the
bactericidal effect of piperacillin. In this study, a comparison was performed between the
parameters obtained through in vitro and in vivo models. With the results obtained, the
importance of performing both models to assess the activity of a drug was highlighted
since the in vitro model allows an understanding of the factors that can influence the
pharmacological effect of the drug in the in vivo model [41].

Cephalosporins

In a study performed with ceftazidime, PK/PD modeling was applied to characterize
bacterial death concerning ceftazidime concentrations [34]. Pharmacokinetic and pharmaco-
dynamic data were obtained from another previously performed in vitro study that evaluated
the efficacy of ceftazidime against three different strains of Pseudomonas aeruginosa [63].

In this study, the PK/PD model developed was a modified sigmoidal Emax model,
which was necessary to add some factors, such as the maximum number of bacterial growth
allowed by the system, adaptation, and resistance rates thus to characterize a better form
the bactericidal activity of ceftazidime in the in vitro model. From the developed model, it
was possible to assess the bactericidal activity of cedtazidime against P. aeruginosa through
an appropriate description of the relationship between antibacterial concentrations and
bacterial death [64].

In a study with cefaclor, the pharmacodynamics of this antibacterial were evaluated in
an in vitro model, in which the bacterial species: Escherichia coli, Moraxella catarrhalis, and
Haemophilus influenzae were exposed to concentrations corresponding to tissue concentra-
tions found in humans, after oral administration. The PK and PD parameters obtained
were included in the PK/PD model, which allowed the realization of different dosages for
the different formulations of cefaclor: immediate-release and extended-release [44].

Cefditoren presents broad-spectrum bacterial activity against various gram-positive
and gram-negative bacteria, for example, Staphylococcus aureus and Streptococcus pyogenes [65].
Matsumoto and collaborators [43] used PK/PD modeling to assess the bactericidal activity
of this third-generation cephalosporin against Streptococcus pneumoniae and Haemophilus
influenzae, which are considered the main etiologic agents of respiratory infections in the
pediatric population. The modeling allowed the pharmacodynamic characterization of
cefditoren, which mainly showed concentration-dependent and time-dependent activity
against S. pneumoniae and H. influenzae, and to show time-dependent activity against a
specific strain of S. pneumoniae. It demonstrates that antibacterials may have different
activity patterns for strains of the same species [43].
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Table 1. Summary of time-kill curves studies using PK/PD model to evaluate antibacterial and antifungals drugs.

Author Drug Class PD
Model Bacteria/Fungal Contribution of PK/PD Modeling

DE ARAUJO et al.,
2011 [41]

Piperacillin Beta-lactam—Penicillin In vivo Escherichia coli

To model the killing effect of piperacillin against Escherichia coli in immunocompromised infected rats.

To compare the PK-PD parameters obtained in vivo with those determined by simulating in vitro against E. coli the
free tissue levels of piperacillin expected at the infection site in humans.

BERGEN et al.,
2017 [42]

Meropenem Beta-lactam—Carbapenem In vitro
Pseudomonas To quantify and characterize the relationships between meropenem concentrations, bacterial killing, and regrowth

over time for a wide range of studied renal functions and do-sing regimens.Aeruginosa

MATSUMOTO et al.,
2014 [43]

Tebipenem pivoxil Beta-lactam—Carbapenem In vitro
Streptococcus pneumoniae To predict the clinical bacteriological efficacy of antibiotics and examine the pharmacodynamics characteristics of

antibiotics against bacterial strains.Haemophilus influenzae

MOUTON; VINKS;
PUNT, 1997 [34] Ceftazidime Beta-lactam—

Cephalosporin In vitro Pseudomonas aeruginosa To characterize in vitro bacterial killing rate as a function of ceftazidime concentrations over time.

de LA PEÑA et al.,
2004[44] Cefaclor

Beta-lactam—
Cephalosporin In vitro

Escherichia coli

To describe the PK/PD relationship of Cefaclor with an appropriate mathematical model and to simulate the
pharmacodynamic effect of any given dose and dosing regimen on any of the bacterial strains.

Moraxella catarrhalis

Haemophilus influenzae

Streptococcus pneumoniae

MATSUMOTO et al.,
2014 [43]

Cefditoren pivoxil Beta-lactam—
Cephalosporin In vitro

Streptococcus pneumoniae To predict the clinical bacteriological efficacy of cefditoren pivoxil and to examine the pharmacodynamic
characteristics of antibiotics against bacterial strains.Haemophilus influenzae

MOHAMED et al.,
2011 [38] Gentamicin Aminoglycoside In vitro Escherichia coli To develop a PK/PD model to describe the time course of the bactericidal activity of gentamicin against

Escherichia coli.

ZHUANG et al.,
2015 [45] Gentamicin Aminoglycoside In vitro

Staphylococcus aureus (MRSA)

To establish the posological regimen of Gentamicin for patients with ESRD.Staphylococcus aureus (MSSA)

Pseudomonas aeruginosa

SOU et al., 2021 [46] Tobramycin Aminoglycoside In vivo Pseudomonas aeruginosa

To characterize in a semi-mechanistic mathematical model in an attempt to provide a description of biofilm
development and drug effects on bacteria in different states in vivo.

To evaluate the effect of different dosing regimens with tobramycin

IQBAL et al.,
2020 [47] Moxifloxacin Fluoroquinolone In vitro

Staphylococcus aureus To develop and evaluate a pharmacometrics approach integrating clinical PK data from (unbound) plasma and
target tissues (muscle and skin) of fluoroquinolone moxifloxacin against Staphylococcus aureus and Escherichia coli in

infected patients using microdialysis, as well as in vitro time-kill and resistance development.Escherichia coli

LIM et al., 2014 [48] Vancomycin Glycopeptide In vitro MRSA To evaluate vancomycin’s pharmacokinetics (PK) and pharmacodynamics (PD) and explore its optimal dosing
regimens by modeling and simulation.
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Table 1. Cont.

Author Drug Class PD
Model Bacteria/Fungal Contribution of PK/PD Modeling

LYONS, 2014 [49] Rifampicin Rifamycin In vitro Mycobacterium tuberculosis To quantitatively explore trade-offs between therapeutic and adverse effects of optimal dosing, such as rifampicin
in TB-infected mice.

LYONS; LENAERTS,
2015 [50] Rifampicin Rifamycin In vivo Mycobacterium tuberculosis To simulate drug therapy’s PK/PD properties for experimental TB and determine the PK/PD index that best

correlates with efficacy.

GOUTELLE et al.,
2011 [51]

Rifampicin Rifamycin In vivo
Mycobacterium To set up a prototype mathematical model of TB treatment by rifampicin based on pharmacokinetics,

pharmacodynamics, and disease submodels.Tuberculosis

TREYAPRASET
et al., 2007 [35]

Azithromycin Macrolide In vitro

Streptococcus
pneumoniae/penicillin-intermediate

To describe the PK/PD relationship of azithromycin against different strains.S. pneumoniae/penicillin-sensitive

Haemophilus influenzae

Moraxella catarrhalis

SCHEERANS et al.,
2015 [52] Linezolid Oxazolidinone In vitro

Staphylococcus aureus To measure and compare the antibacterial effect of linezolid against S. aureus and E. faecium in a static in vitro
infection model and characterize the underlying PK/PD relationship via a mathematical PK/PD model.Enterococcus faecium

BOISSON et al.,
2014 [53] Colistin Polypeptide In vitro Pseudomonas aeruginosa To assess the effect of the route of administration on the antimicrobial effect of colistin within the lung.

ARANZANA-
CLIMENT et al.,

2020 [54]

Polymyxin B +
Minocycline Polypeptide + Tetracycline In vitro Acinetobacter baumannii To develop a semi-mechanistic PK/PD model based on extensive in vitro time-kill experiments and determine the

resistant bacterial count of Polymyxin B + Minocycline against Acinetobacter baumannii.

BIAN et al., 2019 [55] Colistin +
Meropenem

Polypeptide +
Beta-lactam—Carbapenem In vitro Acinetobacter baumannii To develop a semi-mechanistic PK/PD model to optimize the colistin and meropenem combination against

carbapenem-resistant Acinetobacter baumannii.

MOHAMED et al.,
2016 [56]

Colistin +
Meropenem

Polypeptide +
Beta-lactam—Carbapenem In vitro Pseudomonas aeruginosa

To develop a pharmacokinetic/pharmacodynamic (PK/PD) model that describes the in vitro bacterial time-kill
curves of colistin and Meropenem alone and in combination for one wild-type and one Meropenem resistant strain

of P. aeruginosa.

KHAN et al.,
2018 [57] Ciprofloxacin Quinolone In vitro Escherichia coli To predict in vitro mixed-population experiments with competition between E. coli wild-type and three

well-defined E. coli-resistant mutants when exposed to ciprofloxacin.

THABIT et al.,
2018 [58] Eravacycline Tetracycline In vivo Enterobacteriaceae To assess the correlation of the ƒAUC/MIC index with the efficacy of eravacycline in an animal infection model

and to determine its magnitude using Enterobacteriaceae.
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Table 1. Cont.

Author Drug Class PD
Model Bacteria/Fungal Contribution of PK/PD Modeling

NIELSEN et al.,
2007 [36]

Benzylpenicillin
Cefuroxime

Erythromycin
Moxifloxacin
Vancomycin

Beta-lactam—Penicillin
Beta-lactam—
Cefalosphorin

Macrolide
Fluoroquinolone

Glycopeptide

In vitro Streptococcus pyogenes To develop a semimechanistic PK/PD model to evaluate the antibacterial activity of different drugs against
Streptococcus pyogenes through a time-kill curve experiment.

LI et al., 2008 [59] Voriconazole Azole In vitro

Candida albicans To develop a pharmacokinetic/pharmacodynamic (PK/PD) mathematical model that fits voriconazole time-kill
data against Candida isolates in vitro and to use the model to simulate the expected kill curves for typical

intravenous and oral dosing regimens.
Candida glabrata

Candida parapsilosis

LI et al., 2009 [60] Voriconazole Azole In vitro

Candida albicans

To fit dynamic time-kill data and simulate the expected kill curves in vivo.Candida glabrata

Candida parapsilosis

WANG et al.,
2018 [61] Voriconazole Azole In vitro Aspergillus fumigatus To identify a way to design an optimal prophylactic antifungal regimen through the cellular PK/PD model.

VENISSE et al.,
2008 [62]

Caspofungin Echinocandins
In vitro Candida albicans To evaluate the fungicidal and fungistatic activity of caspofungin and fluconazole against Candida albicans.

Fluconazole Azole

PK—pharmacokinetics; PD—pharmacodynamic; MRSA—Methicillin-resistant Staphylococcus aureus; MSSA—Methicillin-susceptible Staphylococcus aureus; ESRD—End-Stage Renal
Disease; TB—tuberculosis.
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Carbapenems

Tebipenem pivoxil, an orally administered carbapenem prodrug, was approved in
Japan in 2009 [66]. In a study, PK/PD modeling of this antibacterial was performed to assess
the clinical bacteriological efficacy and pharmacodynamic characteristics of S. pneumoniae
and H. influenzae in the pediatric population. The PK data of this population were obtained
from a population pharmacokinetic model performed in a previous study [67], and the PD
data were obtained through static time-kill curves generated from an in vitro model. From
the PK/PD modeling application, the study demonstrated that tebipenem pivoxil had both
concentration-dependent and time-dependent activity for both bacteria. The approach was
considered an adequate tool to predict bacteriological efficacy in vivo [43].

Lately, several studies have addressed the increasing resistance of microorganisms to
beta-lactam antibacterials. One of the mechanisms associated with this resistance is the
presence of beta-lactamase enzymes in the structure of some bacteria, which contributes
to the increase of therapeutic failures in treatment with drugs of this class. It is necessary
to conduct more in-depth studies on the relationship between the in vitro and in vivo
susceptibility of resistant microorganisms, especially in specific populations [68]. Many
authors have been developing studies with PK/PD modeling on combining a beta-lactam
with another class or with a drug that can inhibit beta-lactamase, to improve its activity. In
this type of study, it is crucial that during the development of the PK/PD model, parameters
are added that characterize the resistance mechanism of microorganisms and the time-
course of bacterial growth since using this approach, the results obtained collaborate
with the better decision-making, in reduced time and offer the possibility of carrying out
simulations of clinical trials evaluating the effectiveness of the combination to be used [69].

4.1.2. Aminoglycosides

A study performed with gentamicin used PK/PD modeling through a modified
sigmoid Emax model to determine a dosing regimen of gentamicin considered more suitable
for patients with End-Stage Renal Disease (ESRD). The authors evaluated the activity of
gentamicin against three different bacterial strains: MRSA, MSSA, and P. aeruginosa. The
model developed allowed a more detailed description of the action of gentamicin compared
to the previously defined PK/PD index and, through simulations, provided more precise
information regarding the dose regimen to be indicated to patients with ESRD [45].

PK/PD modeling was performed in a study with a rat disease model of chronic lung
infection, and from this model, both PK and PD parameters were obtained. In this study,
the efficacy of tobramycin against P. aeruginosa was evaluated in different states: agar,
planktonic, biofilm, and latent state. The PK/PD modeling proved to be a good and robust
approach for using this model in the developing drugs for pulmonary administration.
Additionally, it allowed the evaluation of different dose regimens to treat this type of
infection with tobramycin [46].

4.1.3. Macrolides

The bactericidal effect of azithromycin against four strains of different bacterial species
was evaluated by developing a PK/PD model. Treyaprasert and collaborators [35] deter-
mined the time-kill curves of azithromycin against strains of S. pneumoniae, H. influenzae,
and Moraxella catarrhalis using an in vitro infection model using constant concentrations
for six hours. The EC50 values obtained from applying the models for the bacterial species
S. pneumoniae (penicillin-intermediate), S. pneumoniae (penicillin-sensitive), M. catarrhalis,
and H. influenzae were: 0.16, 0.05, 0.12, and 18.50 µg/mL, respectively. Although these
results indicated a low activity of azithromycin against H. influenzae, the authors state that
more studies on this antibacterial’s PK/PD relationships are needed [35].

4.1.4. Rifamycins

Boutelle and collaborators [51] built a mathematical model to simulate the effect of
rifampicin from the first day of treatment of tuberculosis until the last day. The results
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obtained from simulations with a dosage regimen of 1200 mg/day for 20 days demonstrated
that the application of the PK/PD mathematical model allowed a detailed description of the
antibacterial effect against Mycobacterium tuberculosis in the first days of treatment, in which
it was possible to observe the transfer between bacterial populations from the intracellular
environment to the extracellular environment, and lower efficiency of rifampicin in the
intracellular environment. Furthermore, it was possible to relate the pharmacokinetic
variability with the antibacterial effect of rifampicin from the model.

In another study, PK/PD modeling was used to optimize this antibacterial dose in
the treatment of pulmonary tuberculosis. A combination of PK/PD modeling with multi-
objective optimization was performed to solve some problems arising from rifampicin
usage, such as interactions between drugs and toxicity. Combining these two methods
allowed for a more detailed analysis of the simulation of dosing regimens, which may
contribute to greater efficacy in the treatment, reduction of resistance, and reduction of
adverse effects [49].

PK/PD modeling can also be used to determine the best PK/PD index capable of
evaluating the effectiveness of an antibacterial. Lyon and Leanerts developed a PK/PD
model intending to simulate the properties of rifampicin in the treating tuberculosis from
data obtained from a physiologically based pharmacokinetic (PBPK) model and a model
of tuberculosis infection in mice. The model obtained made it possible to mathematically
describe the relationship between the drug, the bacteria, and the host. The simulations
followed the results obtained in the experiments, including the determination of the PK/PD
index [50].

4.1.5. Oxazolidinones

A comparative analysis of the bacterial activity of linezolid against Staphylococcus
aureus and Enterococcus faecium was performed. In this study, to better describe the pharma-
codynamics of linezolid, the authors evaluated the effect of relative bacterial reduction. The
results obtained from the analysis of the time-kill curves and the description by PK/PD
modeling indicated a higher efficacy of linezolid against S. aureus (Emax: 0.744 h−1) com-
pared to E. faecium (Emax: 0.419 h−1) [52].

4.1.6. Fluoroquinolones

A study with moxifloxacin demonstrated that PK/PD modeling can be considered an
excellent approach to determining the susceptibility breakpoint of S. aureus and E. coli. Most
studies use PK/PD indices to determine susceptibility breakpoints. However, the method
has several limitations, as it is based only on plasma exposure and does not consider the
development of resistance. With the developed PK/PD model, it was possible to integrate
clinical PK data, PD data from time-kill curves obtained from an in vitro model, and factors
related to resistance development and determine the susceptibility breakpoints for the
bacteria [47].

To evaluate the activity of ciprofloxacin against three different strains of E. coli, a
PK/PD model was developed based on in vitro time-kill curves experiments, with static
and dynamic concentrations. The application of the PK/PD model in this study enabled the
prediction of bacterial death at different concentrations of ciprofloxacin. However, in the
time-kill experiments with dynamic concentration, it was observed that the different strains
grew again under certain conditions, for example, when the half-life of ciprofloxacin was
0.5 h. So, even with the limitations present in this study, the developed PK/PD model was
considered an efficient approach to evaluate the resistance selection in the environment [57].

4.1.7. Polymyxins

In a study carried out with patients hospitalized in the ICU, PK/PD modeling was used
to predict the antibacterial activity of colistin against P. aeruginosa. The pharmacokinetics
of colistin after aerosol administration (colistin methanesulfonate) was described in this
study. With the simulations performed through the PK/PD model, it was able to predict
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that colistin, after aerosol administration, had a higher antibacterial activity, with an EC50
value equal to 25.3 µg/mL in the resistant bacterial population [53].

The use of PK/PD modeling to assess the antibacterial activity of combined dos-
ing regimens allows for treatment optimization, contributes to increased bacterial death,
and minimizes the development of resistance [70]. The bacterial effect of colistin and
meropenem against Acinetobacter baumanii was evaluated using a semi-mechanistic PK/PD
model to optimize treatment with combination therapy. This study analyzed the activ-
ity of these antibacterials in isolation and combination. It indicated that high doses of
colistin would be necessary to have a more significant bactericidal effect in combined
therapy. However, monitoring the plasma concentrations of colistin is necessary due to its
toxicity [55].

In another study, the bacterial effect of this combination against P. aeruginosa was
evaluated through an in vitro PK/PD model and simulations based on the mathematical
model. With the application of the model, the authors observed the influence of the
variation in the concentration of antibacterials in reducing bacterial death, especially
colistin. The simulations of different dosing regimens concluded that therapy with a high
dose of colistin and meropenem could be an alternative to meropenem resistance [56].

A semi-mechanistic PK/PD model was developed to evaluate the bacterial activity
of polymyxin B in combination with minocycline against Acinetobacter baumanii. Through
simulations of different dosing regimens performed using this model, the most effective
dosing regimen was 1.5 mg/L minocycline + 1 mg/L polymyxin B, whose concentra-
tions contributed to bacterial death. This combination was considered adequate to the
development of resistance presented by the A. baumanii strain [54].

4.1.8. Glycopeptides

PK/PD modeling assessed the efficacy of vancomycin. PK data from hospitalized
MRSA-infected patients were correlated with PD data obtained from an in vitro study in
which time-kill curves were produced at a constant concentration. The PK/PD model
developed proved to be an adequate approach to characterize the relationship between the
concentration of vancomycin and the bactericidal effect against MRSA and allow simula-
tions of different dose regimens. However, this study highlighted some limitations of the
in vitro model used to obtain time-kill curves, such as constant antibacterial concentration
and conditions that do not entirely represent the in vivo environment [48].

4.1.9. Tetracyclines

When evaluating the activity of eravacycline against Enterobacteriaceae isolates, the
authors used an infection animal model to assess the relation between the PK/PD index
(ƒAUC/MIC) and the efficacy of this antibacterial. To estimate this relation, the authors
used a sigmoidal Emax model. The results are as follows 5.6 ± 5.0 h−1 e 4.3 ± 4.0 µg/mL.
These results correspond, respectively, for -1-log-kill and EC50, and they were considered
to be acceptable, since there are similarities to the results obtained in a clinical study. The
developed model demonstrates capacity of obtaining clinical efficacy [58].

4.2. Antifungals

PK/PD modeling is considered an essential tool for the new dosage optimization
strategies in treating fungal infections, especially in situations where combined therapy is
the best therapeutic option. This approach contributes to increased clinical efficacy and
reduced adverse effects [71].

Studies with voriconazole used PK/PD modeling to assess its antifungal activity
against some species of fungi and, based on the model obtained, simulations of different
posologies. Li and collaborators [59] developed a mathematical model in which the time-
kill curves data obtained for different species were fitted: Candida albicans, Candida glabrata
and Candida parapsilosis. The time-kill curves were also simulated with pharmacokinetic
parameters obtained from other studies, in which voriconazole was administered IV and
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orally in humans. EC50 values (0.02–0.05 µg/mL) were obtained from the model, which
demonstrated activity with high efficacy against the species strains, and different dose
regimens were simulated for IV and oral dosing regimens [59]. The model developed in this
study was adapted and used to adjust the data from the dynamic time-kill curves obtained
in the in vitro experiment for different strains of C. albicans, C. glabrata and C. parapsilosis.

In this study, the fungal effect resulting from multiple MIC concentrations of voricona-
zole was evaluated, and the model demonstrated that complete inhibition occurs only at
concentrations higher than 4 MIC, indicating a need to review in the clinic from which
serum voriconazole concentrations are being obtained in patients with candidemia [60].

In another study carried out with voriconazole, PK/PD modeling was used to assess
the intracellular antifungal activity of voriconazole against Aspergillus fumigatus in the pro-
phylaxis of invasive pulmonary aspergillosis. In this modeling, extracellular voriconazole
concentrations were considered in 0.0166–64 mg/L. The results showed that the cellular
PK/PD model allowed the assessment of the potency of voriconazole simulated dosing
regimens that can be used in prophylaxis in patients immunosuppressed patients [61].

Venisse and collaborators [62] developed PK/PD models to evaluate the fungicidal
and fungistatic activity of caspofungin and fluconazole against Candida albicans. In the
in vitro PK/PD model, the authors observed a delay in fungal growth in the presence of
fluconazole. In contrast, there was a decay in the Candida albicans population in the presence
of caspofungin. Two mechanistic models with different effect-time profiles were developed,
which allowed the characterization of growth inhibition of C. albicans by fluconazole and
death stimulation by caspofungin. Thus, PK/PD modeling proved to be an adequate
approach to describe the efficiency of these two antifungals.

5. The Use of Pop PK/PD Models

Population pharmacokinetic/pharmacodynamic modeling (Pop PK/PD) consists of
the theoretical understanding of the pharmacology of a drug and the empirical analysis of
experimental data, generating a set of equations capable of describing the PK and PD of
a population of individuals who take this drug [72]. The use of population PK combined
with mechanism-based in vitro models are still growing in the anti-infective field. Most
studies combine the PopPK with PK/PD targets to evaluate the best dosing regimen in a
specific population through PTA analysis [73–76].

This type of modeling was applied in a study with a carbapenem drug. The pharma-
cokinetic profile of Meropenem in plasma and subcutaneous tissue was obtained in a study
with patients with sepsis and without renal dysfunction in which a population pharmacoki-
netic modeling was performed [77]. This population pharmacokinetic model served as the
basis for obtaining free plasma concentration-time profiles in a study that performed the
PK/PD modeling of this antibacterial and aimed to evaluate the effectiveness of different
meropenem dosage regimens. The PD data were obtained through an in vitro model: the
hollow fiber model, in which it was possible to obtain the effect of this antibacterial in
various situations of exposure to P. aeruginosa, and then simulations were performed for
patients with augmented renal clearance, average renal clearance, and renal impairment.
This approach describes the efficacy of different dosages (2, 1, and 0.5 g administered in
infusions of 8 h and 30 min, with 1 g more being administered in cases of renal failure). It
demonstrated the need for further studies with modeling and Monte Carlo simulations to
optimize dosing regimens in patients with high renal clearance [43].

Recently, Icbal and collaborators performed this approach to evaluate tedizolid effect
against Enterococcus spp. They simulated unbound plasma concentration-time profiles of
different dosing schemes against Enterococcus faecalis and two clinical isolates of Enterococcus
faecium in the hollow-fiber infection model. A PopPK approach was connected to the PKPD
model and employed to predict the bacterial kinetics in plasma and target tissues over
5 days of treatment. The authors concluded that the recommended dose of 200 mg/day was
insufficient to suppress bacterial growth in the system, indicating that additional factors
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may contribute to the clinical effect of the drug. These results corroborate to the precaution
of using tedizolid in immunocompromised patients [78].

6. Conclusions

The application of PK/PD modeling allows studies to obtain more reliable and accurate
results, which tend to be used as resources for optimizing treatments for bacterial and
fungal infections. However, there is a notable difference in the number of studies with
PK/PD modeling focused on antibacterials compared to antifungals. Most studies with
antifungals are based only on the PK/PD indices based on the MIC. As MIC measurements
only provide a static effect at a single concentration value, the results of these studies
do not demonstrate the dynamic exposure of the infectious agent to the fraction of free
drug at the effect’s relevant site of action. So, PK/PD modeling is the best approach to
assess the effectiveness of an antibacterial or antifungal, as it establishes a relationship
between drug concentration, effect, and time and consequently provides more meaningful
and complete information. Therefore, more studies with PK/PD modeling are needed to
assess the activity of antifungal agents and thus contribute to optimizing treatments for
fungal infections. In addition, PK/PD modeling on antibacterials and antifungals can play
an essential role in pharmacogenetics and model-informed precision dosing to improve
patient care and diminish the toxic effect of these drugs in special populations.
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