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Abstract

Plant Na+/H+ antiporter (NHX) genes enhance salt tolerance by preventing excessive

Na+ accumulation in the cytosol through partitioning of Na+ ions into vacuoles or

extracellular transport across the plasma membrane. However, there is limited

detailed information regarding the salt stress responsive SlNHXs in the most recent

tomato genome. We investigated the role of this gene family’s expression patterns in

the open flower tissues under salt shock in Solanum lycopersicum using a genome-

wide approach. A total of seven putative SlNHX genes located on chromosomes

1, 4, 6, and 10 were identified, but no ortholog of the NHX5 gene was identified in

the tomato genome. Phylogenetic analysis revealed that these genes are divided

into three different groups. SlNHX proteins with 10–12 transmembrane domains

were hypothetically localized in vacuoles or cell membranes. Promoter analysis

revealed that SlNHX6 and SlNHX8 are involved with the stress-related MeJA hor-

mone in response to salt stress signaling. The structural motif analysis of SlNHX1,

�2, �3, �4, and �6 proteins showed that they have highly conserved amiloride

binding sites. The protein–protein network revealed that SlNHX7 and SlNHX8

interact physically with Salt Overly Sensitive (SOS) pathway proteins. Transcrip-

tome analysis demonstrated that the SlNHX2 and SlNHX6 genes were substantially

expressed in the open flower tissues. Moreover, quantitative PCR analysis indi-

cated that all SlNHX genes, particularly SlNHX6 and SlNHX8, are significantly upre-

gulated by salt shock in the open flower tissues. Our results provide an updated

framework for future genetic research and development of breeding strategies

against salt stress in the tomato.
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1 | INTRODUCTION

Salt stress is considered one of the most important abiotic stress fac-

tors that negatively affects plant growth and development and causes

serious yield losses in important crop species (Deinlein et al., 2014;

Nataraja & Parvathi, 2016). Global warming has accelerated as well as

expanded the land that limits the planting of important crop species

due to high levels of salinity, which are thought to affect more than
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6% of existing farmland and about 20% of irrigated land around the

world (Munns & Tester, 2008). The adverse effects of salt can vary,

depending on the developmental stages of a plant such as germina-

tion, early growth, and flowering or seeding stages (Chandna

et al., 2013). Salt stress could affect essential biological processes

including photosynthesis, water relationship, and nutrient uptake

(Parihar et al., 2015). High concentrations of salt in the soil initially

cause slower growth by reducing leaf and root growth, and then it

becomes toxic to plant cells, leading to physiological disorders and cell

death (Munns, 1993; Parihar et al., 2015). Plants under salt stress con-

ditions accumulate high concentrations of Na+ and Cl� ions in the

chloroplasts, inhibiting photosynthesis and decreasing chlorophyll

content (Chutipaijit et al., 2011; Zhang et al., 2005). Over time,

increased Na+ concentrations in plant tissues become toxic, and this

toxicity directly affects intracellular K+ homeostasis (Shabala &

Cuin, 2008). A critical Na+/K+ ratio must be reached in the cell for

effectiveness of many cytosolic enzyme activities (Mahajan

et al., 2008). With an increase in the amount of Na+ in the external

environment, the entry of Na+ ions into the cell also increases,

whereas the uptake of K+ ions into the cell decreases, and accord-

ingly, the Na+/K+ balance is disturbed. This is because Na+ competes

with K+ for the sites where the K+ ion binds (Tester &

Davenport, 2003). Because K+ ions play a direct in activating enzymes

and to neutralizing negative charges of proteins, cells need high con-

centrations of K+ ions for the stabilization of protein synthesis

(Harrewijn, 1979; Marschner, 1995; Pandolfi et al., 2012). Further-

more, some plants show a positive correlation between K+ content

and yield (Ashraf & McNeilly, 2004; Bandeh-hagh et al., 2008;

Valiollah, 2013).

To date, it has been demostrated that many ion transporters play

important roles in maintaining the pH and ion homeostasis of plant

cells in the presence of salt stress (Hamamoto et al., 2015; Pardo

et al., 2006; Ward et al., 2009; Yamaguchi et al., 2013). The Na+/H+

antiporter (NHX) gene family, a subfamily of ion transporters, plays an

important role in salt stress tolerance by controlling cellular pH and

Na+ ion balance in plants (Brett et al., 2005; Van Zelm et al., 2020).

The first plant NHX1 gene was identified in Arabidopsis thaliana

(Gaxiola et al., 1999). The NHX gene family in A. thaliana includes

eight members, which are divided into three subgroups (Brett

et al., 2005). The AtNHX1 (A. thaliana NHX1), �2, �3, and �4 are

referred to as Vac class NHXs on the vacuole membranes (Aharon

et al., 2003), whereas AtNHX5 and AtNHX6, which are in the Endo

class of NHXs, are located on the endosomal region (Bassil

et al., 2011). The amiloride binding domain (FFIYLLPPI) is located at

the N-terminal of TM3 (transmembrane-3), and this domain, known as

an inhibitor of NHX activity, is a characteristic feature of vacuolar class

NHX members (Counillon et al., 1993; Yamaguchi et al., 2003). The

AtNHX7 and AtNHX8 are found in the plasma membranes (PMs) and

are referred to as PM class (Shi et al., 2000). AtNHX7 (AtSOS1) is regu-

lated by Serine/threonine Protein Kinase (SOS2) and Calcineurin B-like

Calcium-Binding Protein (SOS3) in the Salt Overly Sensitive (SOS) signal-

ing pathway (Qiu et al., 2002). In response to salt stress, intracellular

Ca2+ increases, which triggers the activation of the SOS signaling

pathway (Manishankar et al., 2018). SOS3 activates the SOS2 protein

kinase, and the SOS2-SOS3 complex then activates SOS1/NHX7 by

phosphorylation to efflux Na+ ions out of the cell (Halfter et al., 2000;

Liu et al., 2000; Shi et al., 2003). Previous reports have documented

six NHX genes in Medicago truncatula (Sandhu et al., 2018), nine NHX

genes in Capsicum annuum (Luo et al., 2021), five NHX genes in Beta

vulgaris (Wu et al., 2019), six NHX genes in Vitis vinifera (Ayadi

et al., 2020), 10 NHX genes in Glycine max (Chen et al., 2015), eight

NHX genes in Populus trichocarpa (Tian et al., 2017), 10 NHX genes in

Punica granatum (Dong et al., 2021), and eight NHX genes in Actinidia

chinensis were identified (Liu et al., 2023). Such variation among the

NHX gene numbers of plant species indicated that gene duplications

or loss events occurred during species evolution, which also provided

an opportunity to expand the NHX gene family by generation func-

tionally divert new genes (Huang et al., 2022).

As a member of the Solanaceae family, tomato (Solanum lycopersi-

cum) is diploid with 2n = 24 chromosomes (Díez & Nuez, 2008). It is

highly cultivated worldwide and contains invaluable components for

human nutrition such as lycopene, β-carotene, and vitamin C

(Clinton, 2005). Tomato plants exhibit premature cell senescence,

accumulation of Na+ in the leaves, and a decrease in photosystem II

efficiency when exposed to salt stress (100-mM NaCl) (Ghanem

et al., 2012). It has been reported that both leaf area and dry matter

content as well as K+/Na+ ratio of tomato plants decreased along

with increased salt stress (Babu et al., 2012). Salt stress during the

inflorescence development increases flower abortion of tomato plants

and causes a decrease in pollen number and viability (Ghanem

et al., 2009). Moreover, salt stress at the flowering stage has a direct

adverse effect on yield by reducing the number of tomato fruits

(Zhang et al., 2017). Because the importance of the NHX family in reg-

ulating salt tolerance is well established, the roles of several NHX

members in the tomato under salt stress have been reported

(Baghour et al., 2019, 2023; Gálvez et al., 2012; Huertas et al., 2013;

Maach et al., 2020, 2021; OlÍas et al., 2009). Gálvez et al. (2012)

reported that LeNHX1, �2, �3, �4 genes are generally induced by salt

treatment in root, stem, and leaf tissues of salt-sensitive and salt-

tolerant tomato species, and these isoforms are involved in Na+ ion

accumulation in the aerial parts of the plant. Overexpression of the

LeNHX2 (Huertas et al., 2013) and LeNHX4 (Maach et al., 2020) genes in

transgenic tomato plants has been reported to improve salinity toler-

ance. In the tomato, gene expression analyses of tomato NHX genes

under salt stress in previous reports were mainly limited to root, leaf, or

stem tissues, and there were also no reports focusing on determining

the expression patterns of NHX genes in flower tissues under salt stress.

Recently, Hussain et al. (2022) have reported the identification of seven

NHX genes in the tomato using a genome-wide approach. Herein, we

have discussed and reviewed the findings of Hussain et al. (2022) related

to the SlNHX genes in the tomato.

In the present study, we identified members of the NHX gene

family based on a comprehensive genome-wide approach using the

current tomato genome and used bioinformatics tools to reveal phylo-

genetic relationships, synteny analysis, motif analysis, promoter analy-

sis, protein–protein interaction (PPI), and gene structures.
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Furthermore, the gene expression patterns of the identified SlNHX

genes were also analyzed by RT-qPCR in the open flower tissues

obtained at 0, 6, 12, and 24 h after the plants were treated with

240-mM NaCl shock.

2 | MATERIALS AND METHODS

2.1 | Identification and characterization of the
NHX genes in tomato genome

To identify putative NHX genes in tomato, the Pfam ID (PF00999)

number belonging to the NHX gene family was searched in the Phyto-

zome database (Goodstein et al., 2012). In addition, keywords related

to NHX genes, such as sodium/hydrogen exchanger, and Na+/H+ anti-

porterI were also searched in the Sol Genomics Network (Fernandez-

Pozo et al., 2015). The presence of the NHX domain genes was also

confirmed by the Hidden Markov Model (Cook et al., 2018). The pep-

tide sequences of the hypothetical tomato NHX genes were aligned to

the sequences of the NHX genes in Arabidopsis, and the percentage

of identity between the hypothetical tomato NHX genes and the

AtNHX genes was determined. The Arabidopsis Information Resource

(TAIR) database was used to retrieve Arabidopsis NHX protein

sequences (Berardini et al., 2015). The isoelectric point (pl) and molec-

ular weight (MW) of the SlNHX genes were calculated with the

ExPASy tool (Gasteiger et al., 2003). Intracellular localization of SlNHX

genes was predicted with the Plant-mPLoc server (Chou &

Shen, 2010). The peptide sequences of the SlNHX genes were

screened with the TMHMM 2.0 web-based tool to confirm their

transmembrane helix domains (Krogh et al., 2001).

2.2 | Multiple sequence alignment and
phylogenetic analysis

The amino acid sequences of NHX genes of tomato and selected spe-

cies (A. thaliana, G. max, M. truncatula, and V. vinifera) were used for

multiple sequence alignment with the MUSCLE algorithm, and a phy-

logenetic tree was created using MEGA 11 software (Tamura

et al., 2021). A thousand replicates were used to determine the boot-

strap value. The phylogenetic tree was visualized via iTOL (Letunic &

Bork, 2021).

2.3 | Chromosomal localization and synteny
analysis

Sol Genomics Network database was used to visualize and to locate

SlNHX genes on the chromosomes of tomato genome (Fernandez-

Pozo et al., 2015). Phytozome and Ensembl databases were used to

determine the genetic relationship of S. lycopersicum with C. annuum,

S. lycopersicum, and A. thaliana (Cunningham et al., 2022). Fasta and

GFF3 files were downloaded from related databases and analyzed

with One Step MCScanX function in TBtools program (Wang

et al., 2012). Analysis results were visualized via Dual Synteny Plot for

MCScanX function in TBtools software (Chen et al., 2020).

2.4 | Conserved motif and gene structure analysis
of SlNHX members

The Multiple Expectation Maximization for Motif Elicitation (MEME)

Suite tool was used to identify conserved motifs in the amino acid

sequences of the SlNHX gene family (Bailey et al., 2015). The TBtools

software’s Gene Structure View was used to show schematic repre-

sentation of the SlNHX gene structure.

2.5 | Calculation of Ka/Ks and cis-regulatory
element analysis

The Ks (synonymous) and Ka (non-synonymous) substitution of each

duplicated gene pair were calculated using the Computational Biology

Unit database (Siltberg & Liberles, 2002). The upstream 1500-bp

region of the SlNHX genes was selected for analysis of cis-regulatory

elements on the promoters and predicted using the PlantCARE tool

(Lescot et al., 2002).

2.6 | Transcriptome profiling of SlNHX genes

The TomExpress RNA-Seq platform provided transcriptome data for

the “Microtom” cultivar’s roots, flowers, leaves, and flower buds tis-

sues (Zouine et al., 2017). The results were displayed by using TBtools

software after the data values were obtained as the normalized mean

count per base of each SlNHX gene.

2.7 | Three-dimensional (3D) structure analysis and
PPI of SlNHX proteins

The 3D structures of SlNHX proteins were created by using the

I-TASSER tool (Yang & Zhang, 2015). The outputs of the I-TASSER

modeling results were visualized by using the RCSB Protein Data

Bank 3D Viewer (Berman et al., 2000). The prediction of the PPI net-

work of SlNHX proteins was performed by using the STRING data-

base (Jensen et al., 2009).

2.8 | Growth conditions of plant material and salt
stress treatment

Tomato seeds (S. lycopersicum L., cv. Microtom) were sown on wet fil-

ter paper in plastic dishes and allowed to germinate in the dark at

25�C for 1 week. Germinated seeds were transferred to pots

(125 � 73 mm) containing peat soil and perlite (3:1) in a plant growth
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chamber with 25 ± .5�C temperature, 65 ± 5% humidity, and 18/6 h

(day/night) photoperiod (350 μmol m�2 s�1). The commercial liquid

fertilizer (Black Diamond) was applied with irrigation as needed while

no pesticide was used. Because the toxic effects of salt were not

observed in the open flower tissues in our preliminary experiments

using different concentrations of NaCl (60, 120, and 180 mM), the

240-mM NaCl salt shock was applied to the plants as at the flowering

stage. Furthermore, previous reports support the suitability of high

salt concentration in the tomato Microtom cultivar (Bacha

et al., 2017). Open flower tissues were collected from three biological

replicates at 0 (control), 6, 12, and 24 h after salt shock treatment and

were immediately stored at �80�C until total RNA extraction.

2.9 | Total RNA isolation and cDNA synthesis

Total RNA was isolated from open flower tissues by using the GF-1

Total RNA Extraction Kit, followed by DNase treatment to eliminate

genomic DNA contamination. The quality of the isolated RNA was

checked with both gel electrophoresis and a NanoDrop One (Thermo

Scientific™ NanoDrop™ One Microvolume UV–Vis Spectrophotome-

ters) instrument. The first-strand cDNA was synthesized by using

RevertAid First Strand cDNA Synthesis Kit (Thermo Scientific™).

2.10 | Real time-quantitative PCR (RT-qPCR)

RT-qPCR reactions were carried out using the Ampliqon RealQ Plus

SYBR Green/ROX Master Mix Kit. Gene-specific forward and reverse

primers for members of SlNHX gene family were designed using Mac-

Vector v18.2 software (MacVector Inc., Cary, NC, USA) (Table 1). The

EXPRESSED gene was used as housekeeping for normalization in RT-

qPCR analyses (Choi et al., 2018). The RT-qPCR conditions: initial

denaturation at 95�C for 8 min, 40 cycles of 95�C denaturation for

15 s, 55�C annealing for 30 s, and 72�C extension for 30 s. Three bio-

logical replicates were used for each sample. The relative expression

levels of the SlNHX genes were calculated by the 2�ΔΔCt method

(Livak & Schmittgen, 2001).

2.11 | Statistical analysis

GraphPad Prism 9.3 software (GraphPad Software Inc., San Diego,

CA, USA) was employed to perform statistical analysis. The data were

statistically analyzed using one-way analysis of variance (ANOVA),

and the difference was considered significant when the p value was

less than .05.

3 | RESULTS

3.1 | Identification of SlNHX genes

The amino acid sequences of AtNHXs were used in the alignments to

identify the NHX gene family in the tomato genome. The results

revealed seven SlNHX genes encoding the NHX in the tomato

genome (Table 2), namely, SlNHX1 (Solyc01g067710),

SlNHX2 (Solyc01g098190), SlNHX3 (Solyc10g006080), SlNHX4

(Solyc06g008820), SlNHX6 (Solyc04g056600), SlNHX7

(Solyc01g005020), and SlNHX8 (Solyc04g018100).

Sequence analyses revealed that genomic sequences of SlNHX

genes ranged from 4232 bp (SlNHX3) to 15,997 bp (SlNHX6), the

number of exons in the coding sequence (CDS) ranged from 14 to

23, and the total length of CDS ranged from 1578 bp (SlNHX3) to

3456 bp (SlNHX7) (Table 2). The size of ORF ranged from 526 aa

(SlNHX3) to 1152 aa (SlNHX7) (Table 2). In addition, the size of SlNHX

T AB L E 1 The sequences of Forward (F) and Reverse (R) primers used in RT-qPCR reactions.

Accession number Gene name Primer sequence Product size (bp)

Solyc01g067710 SlNHX1 F: GGCTTACCTATCTTACATGCTTGC

R: AGCTCTCAGTCACATTATGCC

gDNA 244

cDNA 113

Solyc01g098190 SlNHX2 F: TCCTCTTCCTCTATGTGGGCA

R: AAACAAAAGCAGCTCTCCCCA

gDNA 314

cDNA 135

Solyc10g006080 SlNHX3 F: CTCAGTGGGATTTTGACCGTC

R: CAATGTCCAACGCATCCATCC

gDNA 522

cDNA 169

Solyc06g008820 SlNHX4 F: ACTGATCGTGAAGTTGCTCTC

R: TGCCAGGTATAGTGTGACATG

gDNA 209

cDNA 128

Solyc04g056600 SlNHX6 F: TCTTGTACGACCTCCACACC

R: GGACTGACTGCAAAGCAAGG

gDNA 192

cDNA 107

Solyc01g005020 SlNHX7 F: CCTGGCGTGCTTATTTCCAC

R: CCCAATTTCTTGCTGGCACC

gDNA 242

cDNA 167

Solyc04g018100 SlNHX8 F: CTTTTGCTTGCTGGACCTGG

R: ACAGCCACAGGATCAGTAGC

gDNA 209

cDNA 140

Solyc07g025390 EXPRESSED (housekeeping) F: GCTAAGAACGCTGGACCTAATG

R: TGGGTGTGCCTTTCTGAATG

gDNA 291

cDNA 183

4 of 17 CAVUSOGLU ET AL.



proteins ranged from 58.5 (kDa, SlNHX6) to 127.5 (kDa, SlNHX7),

whereas isoelectric points (pI) varied from 5.42 (SlNHX6) to 8.55

(SlNHX1) (Table 2). SlNHX proteins had transmembrane domains

ranging from 10 to 12 (Table 2). The amino acid sequences of the

SlNHX genes were aligned with the amino acid sequences of the

AtNHX genes, and the identity of the genes with the AtNHX genes

was determined. The highest identity matrix score (81.6%) was deter-

mined between SlNHX6 and AtNHX6 genes, whereas the lowest

(49.8%) was between SlNHX8 and ATNHX8 genes (Table 2).

3.2 | Phylogenetic analysis

To determine the evolutionary relationships of NHX proteins with

some of other plant species, SlNHXs were compared with A. thaliana

(At, eight sequences), G. max (Gm, eight sequences), M. truncatula (Mt,

six sequences), and V. vinifera (Vv, six sequences). These plant species

were chosen due to their status as model plants and their representa-

tion in several plant families allowing the investigation of the evolu-

tion and diversity of NHX genes. A total of five species were used for

T AB L E 2 Some characteristics of tomato SlNHX genes.

Gene

name

Accession

number

Genomic
sequence

(bp)

CDS

(bp)

ORF

(aa) TM Ch

NHX

class

Subcellular

localization

MW

(kDa) pI

Identity with NHX
protein of Arabidopsis

(%)

SlNHX1 Solyc01g067710 4956 1614 538 10 1 I Vacuole 59.4 8.55 72.5

SlNHX2 Solyc01g098190 5857 1611 537 10 1 I Vacuole 58.7 7.24 75.5

SlNHX3 Solyc10g006080 4232 1578 526 11 10 I Vacuole 59.1 8.48 69.9

SlNHX4 Solyc06g008820 7602 1605 535 10 6 I Vacuole 59.0 6.60 63.1

SlNHX6 Solyc04g056600 15,997 1596 532 12 4 II Vacuole 58.5 5.42 81.6

SlNHX7 Solyc01g005020 13,405 3456 1152 12 1 III CM 127.5 5.89 64.4

SlNHX8 Solyc04g018100 15,127 2952 983 10 4 III CM-vacuole 108.2 5.75 49.8

Abbreviations: CDS, coding sequences; Chr, chromosomal location; CM, cell membrane; MW: molecular weight; ORF: open reading frame; pI: isoelectric

point; TM: transmembrane domain.

F I GU R E 1 Phylogenetic relationships
among Na+/H+ antiporter (NHX) proteins
of tomato and selected species, Solanum
lycopersicum (Sl), Arabidopsis thaliana (At),

Medicago truncatula (Mt), Glycine max
(Gm), and Vitis vinifera (Vv).
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the analysis, as the results of the preliminary phylogenetic analysis

showed that including more plant species in the phylogenetic analysis

led to reduced interpretability. Phylogenetic analysis revealed that

35 SlNHX proteins were divided into three classes based on their pre-

dicted subcellular localization, indicated by different colors using iTOL

program (Figure 1). SlNHX1, �2, �3, and �4 were localized on the

vacuole membranes (Vac class/Class I); SlNHX6 was localized on

the endosomal region (Endo class/Class II); and SlNHX7 and �8 were

localized on the PM (PM class/Class III) (Figure 1).

3.3 | Chromosomal localization, Ka/Ks, and
synteny analysis

Location information of SlNHX genes on the chromosomes was obtained

from the tomato genome. Seven putative SlNHX genes were scattered

on 4 chromosomes. SlNHX3 gene was located on chromosome 10; genes

SlNHX6 and SlNHX8 were located on chromosome number 4; SlNHX1,

�2, and �7 genes were located on chromosome 1, and SlNHX4 gene

was located on chromosome 6 (Figure 2). There were no SlNHX genes

on chromosomes 2, 3, 5, 7, 8, 9, 11, and 12.

The formula T = (Ks/2λ) � 10�6 million years ago was used to esti-

mate the date of duplication events (λ = 1.5 � 10�8) (Blanc &

Wolfe, 2004; Madrid-Espinoza et al., 2019). According to the Ka/Ks

ratio, the selection type is divided into three different groups as

purifying (Ka/Ks < 1), neutral (Ka/Ks = 1), and positive selection (Ka/

Ks > 1) (Table 3) (Lynch & Conery, 2000). The term “tandem
duplication” refers to the presence of two or more genes on the same

chromosome, whereas the term “segmental duplication” refers to the

presence of genes on different chromosomes (Table 3) (Akram

et al., 2020).

To better understand the evolutionary relationships of the SlNHX

genes, comparative syntenic schemes were constructed between

S. lycopersicum, C. annuum, and A. thaliana genomes. The SlNHX1,

SlNHX2, SlNHX3, and SlNHX7 genes showed collinear relationships

with A. thaliana and C. annuum (Figure 3). SlNHX4, SlNHX6, and

SlNHX8 genes did not show a synteny with the genomes compared

(Figure 3).

3.4 | Gene structure and conserved motif analysis

The exons and introns of SlNHXs genes were analyzed by using

TBtools. Vac class SlNHX1, �2, �3, and �4 genes provided 14 exons

and 13 introns (Figure 4). Endo class SlNHX6 had 22 exons and

21 introns, whereas PM class SlNHX7 and SlNHX8 genes showed

23 exons and 22 introns and 22 exons and 21 introns, respectively

(Figure 4). Among the SlNHXs genes, SlNHX6 had the largest genomic

sequence length at 15997 bp, whereas SlNHX3 had the shortest with

F I GU R E 2 The chromosomal distribution of SlNHX gene family members in the tomato genome.
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4232 bp. The NHX domain (PF00999) was also confirmed by using

the Hidden Markov Model (HMM).

Parameter settings related to motif analysis: the maximum num-

ber of motifs was 16, and the optimum aa width was set to 6–50 in

length. The MEME tool was used to investigate the conserved motifs

of SlNHX genes, and the conserved motifs were determined in differ-

ent colors (Figure 5a). Analysis results revealed that there were

10 conserved motifs in SlNHX family members, and these conserved

motifs ranged from 21 to 50 amino acids in length (Figure 5a).

Whereas motif 1 was found in all members of SlNHX, motifs 2, �3,

�4, �5, �6, �7, and �9 were found in the members of SlNHX1, �2,

�3, and �4 (Figure 5a). Motif 10 was also found in members of

SlNHX6, �7, and �8, whereas Motif 8 was found in all members

except in SlNHX7 and SlNHX8 genes (Figure 5a). The amiloride binding

site [FFIYLLPPI], which is a characteristic feature of NHX proteins,

was fully conserved in SlNHX1, �2, and�3 genes, whereas it mostly

retained in SlNHX4 and SlNHX6 genes. The amiloride binding site was

absent in SlNHX7 and SlNHX8 genes (Figure 5b).

3.5 | Analysis of cis-regulatory elements of
SlNHX genes

Analysis of cis-regulatory elements in the 1500 bp upstream promoter

region of SlNHX genes was performed with the PlantCare tool

(Figure 6). The results indicated that the SlNHX genes family contained

T AB L E 3 Ka/Ks ratio, duplication, selection types, and divergence time of SlNHX genes.

Gene pairs Ka Ks Ka/Ks Duplicated type Selection type Time (million year ago)

SlNHX7-SlNHX8 .183 .402 .456 Segmental Purify 3.011

SlNHX3-SlNHX4 .132 .417 .316 Segmental Purify 3.126

SlNHX1-SlNHX2 .068 .407 .166 Tandem Purify 3.054

Abbreviations: Ka, the number of nonsynonymous substitutions per non-synonymous site; Ks, the number of synonymous substitutions per synonymous

site.

F I GU R E 3 Comparative synteny analysis of Na+/H+ antiporter (NHX) genes in Solanum lycopersicum, Arabidopsis thaliana, and Capsicum
annuum genomes. (a) Syntenic relationship among SlNHX genes in S. lycopersicum and A. thaliana. (b) Syntenic relationship among SlNHX genes in
S. lycopersicum and C. annuum. The gray lines in the background represent the synteny pairs of the whole genome, whereas the red lines indicate
the synteny of SlNHX gene pairs and their corresponding positions on each chromosome.
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a total of 502 cis-regulatory elements, and they were classified in

a total of 32 types, which were mainly related to light-responsible

elements, development-related elements, hormone-responsible

elements, promoter-related elements, site-binding-related elements,

and environmental stress-related elements (Figure 6). Of those, the

CAAT and TATA-boxes of promotor-related elements were too com-

mon and were included an average of 12.14 and 55.71 times, respec-

tively, in the defined promotor regions of all SlNHX genes and did not

provide a unique pattern as cis-regulatory elements, respectively (data

not shown). On the other hand, the light-responsible elements included

3-AF1 binding site, AT1-motif, ATCC-motif, ATC-motif, ACE, AE-box,

Box 4, chs-CMA1a, GA-motif, GATA-motif, G-Box, GT1-motif, G-box,

I-box, LAMP-element, MRE, and TCT motif (Figure 6a). Development-

related elements included O2-site, CAT-box, and circadian motifs

(Figure 6a,b). Hormone-responsible elements included ABRE, TGACG-

motif, GARE-motif, TATC-box, and CGTCA-motif (Figure 6a,b). Site-

binding-related elements included AT-rich element, Box, and

Unnamed_1 (60K protein binding site). Environmental stress-related

elements included LTR, MBS, TC-rich repeats, and ARE (Figure 6a,b).

The ABRE (ABA, the abscisic acid), TGACG-motif (MeJA), GARE-motif

(GB, Gibberallin), TATC-box (MeJA), and CGTCA-motif (MeJA) were

determined to be hormone-related cis-acting regulatory elements (data

not shown). Of those elements, MeJA-related cis-acting regulatory ele-

ments (twice of TGACG-motif and CGTCA-motif and single TATC-box)

were located on the SlNHX6 (data not shown).

3.6 | PPI prediction

The PPI network was built by the STRING database using the

K-means Clustering algorithm (network is grouped to a predefined

number of clusters) to further investigate the probable role of SlNHXs

during possible interactions with other proteins. Based on the

clustering analysis, the network is divided into three clusters based on

the clustering analysis. Cluster 1 (red Bubble) contains the proteins

CBL10, SlNHX7, CIPK, and Solyc06g051970; Cluster 2 (Green Bub-

ble) contains the proteins SlNHX1, SlNHX2, SlNHX4, SlNHX6,

Solyc07g014680, and Solyc08g065360; and Cluster 3 (Blue Bubble)

contains the proteins SlNHX3 and SlNHX8. The analysis results

showed that the proteins SlNHX7 and SlNHX8 hypothetically inter-

acted with Calcineurin B-like (CBL) and CBL-interacting protein

kinases (CIPK) (Figure 7). Solyc07g014680 (Putative High-affinity K+

transporter 1) interacted with all proteins in the network. In addition,

Solyc06g051970 (Calcineurin B-Like Protein 4) also interacted with all

proteins apart from CBL10 (Calcineurin B-like Protein 10) in the

tomato genome network.

3.7 | Three-dimensional (3D) structure prediction
of SlNHX proteins

The 3D model structures of SlNHX proteins were obtained by using

the I-TASSER tool and visualized using the PDB 3D Viewer (Figure 8).

The C-score was used to estimate the confidence of the models cre-

ated in the analysis for SlNHX proteins (Roy et al., 2010). The C-score

is a confidence score for estimating the quality of predicted models by

I-TASSER (Yang et al., 2013). The C-score generally varies in the range

of [�5, 2], and the higher the score, the higher the reliability of the

model (Yang et al., 2013). TM-score was proposed to scale for mea-

suring the structural similarity between two structures, and it ranges

from 0 to 1 and a value of 1 indicating a perfect match between the

two constructs (Zhang, 2008). The root-mean-square deviation

(RMSD) varies between 0 and 30 angstrom (Å) (Roy et al., 2010). The

analysis results revealed that C-scores of the SlNHX proteins ranged

from �1.33 to .35 (Table 4). The modeling estimate of the SlNHX4

protein gave the highest C-score at .35, whereas the SlNHX7 and

SlNHX8 proteins had the lowest C-score at 1.33 (Table 4). The length

of the NHX domain in SlNHX proteins ranged from 418 (SlNHX3) to

404 (SlNHX6) amino acids (Table 4).

3.8 | RNA-Seq gene expression profiles of
SlNHX genes

The high-throughput gene expression data analysis was retrieved from

the TomExpress database, and the Microtom cultivar was selected to

determine the expression levels of tissue-specific SlNHX genes. Seven

SlNHX genes and types of tissues including root, flower, leaf, and flower

buds were selected to generate the heatmap using TBtools (Figure 9).

According to expression patterns, all SlNHX genes except the SlNHX1

gene were expressed in all tissues (Figure 9). The SlNHX2 gene was

expressed at high levels in all tissues, whereas the SlNHX1 gene showed

the lowest expression levels (Figure 9). In addition, the heatmap

revealed that the SlNHX2 and SlNHX6 genes were highly expressed in

flower tissue while the SlNHX3 and SlNHX1 genes showed the lowest

expression levels.

F I GU R E 4 The gene structure of Na+/H+ antiporter (NHX) family
member in the tomato. CDS, coding sequence; UTR, untranslated
region. The scale is given as bp.
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3.9 | Expression profiles of the SlNHX genes under
salt shock

Relative expression levels of SlNHX genes were determined in the open

flower tissues collected at the given time intervals (0th, 6th, 12th, 24th

h) after 240-mM NaCl shock was applied. The expression of SlNHX

genes was normalized with the EXPRESSED (Solyc07g025390) gene

(Figure 10). The RT-qPCR data indicated that salt shock significantly

changed the relative expression levels of all SlNHX genes in all given

time intervals with some exceptions (Figure 10). For instance, salt shock

significantly changed the relative expression levels of SlNHX3, SlNHX4,

SlNHX7, and SlNHX8 genes in all given time intervals compared with

control, whereas significant levels of the relative expression levels of

SlNHX1, SlNHX2 and SlNHX6 genes were various based on given time

intervals (Figure 10). An increased relative expression level of the

SlNHX6 gene was delayed until the 12th hour of salt shock, whereas

SlNHX1 and SlNHX2 genes showed early significant upregulations after

6 h of salt shock (Figure 10). Among SlNHX gene family members,

SlNHX1, SlNHX2, and SlNHX8 genes were substantially upregulated in

the open flower tissues at the 6th hour of salt shock, whereas signifi-

cant downregulations were determined for the relative gene expres-

sions levels of SlNHX3 and SlNHX7 genes at the same time interval

(Figure 10). In contrast to the other SlNHX gene family members, the

relative expression levels of SlNHX6, SlNHX7, and SlNHX8 genes were

the highest at the 24th hour of salt shock (Figure 10).

4 | DISCUSSION

Abiotic environmental factors such as salinity directly affect plant

growth and development and cause severe agricultural yield losses

(Van Zelm et al., 2020). The NHX genes are significant in maintaining

Na+ ion homeostasis in plant tissues, and many reports have revealed

that these genes provide salt tolerance to plants (Li et al., 2017). The

availability of high-quality de novo genome assemblies and annota-

tions (ITAG4.0) for the tomato reference genome (SL4.0) has opened

up new opportunities for precision genome-wide studies in the

tomato (Hosmani et al., 2019). In this study, a total of seven NHX

genes were identified in the tomato, but the orthologue of the NHX5

gene was not identified in the tomato genome. Although the

Solyc04g056600 accession showed identity to both AtNHX5 (80.6%)

and AtNHX6 (81.6%) genes of Arabidopsis at the amino acid levels, it

was defined as the SlNHX6 gene in the present study because of its

higher identity score (%81.6) and no presence of AtNHX5 gene orthol-

ogy in the current tomato genome (Table 2). A similar case was also

reported in the M. truncatula genome (Sandhu et al., 2018), suggesting

that the NHX5 gene does not share a common ancestor with

S. lycopersicum and M. truncatula genomes by speciation although

orthologous genes retained the same function in the course of evolu-

tion. Single knockout mutants of the nhx5 and nhx6 genes in

A. thaliana have shown unaltered salt sensitivity, whereas double

knockout mutants of the nhx5 and nhx6 genes have exhibited greater

salt sensitivity than the wild-type plant (Bassil et al., 2011). This sug-

gests that the absence of the AtNHX5 gene orthologue in the tomato

genome may not have a significant effect on the development of salt

tolerance in the tomato (Sandhu et al., 2018). Although Hussain et al.

(2022) previously reported seven SlNHXs in the tomato genome as in

the present study, the genes identified are completely different from

each other. Interestingly, the Solyc00g021510 gene, which Hussain

et al. (2022) identified as SlNHX1, is not present in the current tomato

reference genome (SL4.0). The orthologue of AtSOS1 in the tomato

genome was identified as SlSOS1 (CAG30524.1) by Olías et al. (2009),

and this gene is identical to the SlNHX7/SlSOS1 (Solyc01g005020)

gene identified in the present study.

F I GU R E 5 Conserved motif analysis of SlNHXs genes. (a) Conserved motifs of SlNHXs genes, (b) motif 1 was found in all SlNHX genes, and it
had an amiloride binding site [FFIYLLPPI]. The scale showing the sequence length of the proteins was shown below (up to 1000 aa).
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Phylogenetic analysis revealed that 23 out of 35 NHX proteins

and the majority of SlNHX (SlNHX1, �2, �3, and �4) proteins bind to

vacuolar membrane, and the PM and Endo classes contained 6 and

8 proteins, respectively (Figure 1). A similar pattern of cluster was also

reported for other plant species including cotton (Fu et al., 2020),

sugar beet (Wu et al., 2019), and honeysuckle (Huang et al., 2022).

LeNHX2 was previously located in the Endo class (Class II), which

includes AtNHX5 and AtNHX6 (Gálvez et al., 2012; Huertas

et al., 2013; Rodríguez-Rosales et al., 2008; Venema et al., 2003),

whereas the SlNHX2 member identified in this study was located in

the Vac class (Class I), which includes AtNHX1, AtNHX2, AtNHX3, and

AtNHX4 (Figure 1). Similarly, MtNHX2 in the M. truncatula genome

(Sandhu et al., 2018), BvNHX2 in the B. vulgaris genome (Wu

et al., 2019), and PgNHX2 in the P. granatum genome were also local-

ized in Vac class (Dong et al., 2021). As previously reported for other

plant species (Dong et al., 2021; Fu et al., 2020; Huang et al., 2022;

Sandhu et al., 2018; Wu et al., 2019), the SlNHX gene family was

divided into three subgroups (Figure 1) although Hussain et al. (2022)

provided two subgroups for the same gene family designated as N1

and N2. Moreover, Hussain et al. (2022) included the SlNHX1 and

SlNHX2 genes in the same subgroups as AtNHX7 and AtNHX8, which

belong to the PM class.

The transmembrane domain numbers and amiloride binding

domains of SlNHX proteins were similar to most NHX family members

F I GU R E 6 Cis-regulatory elements in the 1500 bp upstream promoter region of SlNHX genes. (a) Predicted cis-acting elements in the
promoters of SlNHX genes, (b) different colored histograms represent categorical cis-acting elements in SlNHX genes.
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F I GU R E 7 Protein–protein interaction (PPI) network of SlNHXs. The lines (gray) represent the shared physical complex, and as the thickness
of these lines increases, the confidence of interaction also increases. Each node represents all the proteins produced by a single, protein-coding
gene locus. Empty nodes represent proteins with an unknown three-dimensional model. Filled nodes show that a three-dimensional model is
known or predicted.

F I GU R E 8 Three-dimensional structure prediction of seven SlNHX proteins.
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of other species reported in the literature (Chen et al., 2015; Dong

et al., 2021; Fu et al., 2020; Huang et al., 2022; Tian et al., 2017; Wu

et al., 2019). The amiloride binding domain is either completely or

highly conserved in plant species such as A. thaliana, M. truncatula,

P. granatum, and P. trichocarpa (Aharon et al., 2003; Dong

et al., 2021). The results of this study showed that the amiloride

binding domain is fully conserved in SlNHX1–3 genes and highly con-

served in the SlNHX4 and SlNHX6 genes, whereas this site is absent in

SlNHX7 and SlNHX8 genes (Figure 5b), which was in agreement with a

previous report (Sandhu et al., 2018). In contrast, the SlNHX1 and

SlNHX2 genes identified by Hussain et al. (2022) do not have an

amiloride binding domain, whereas, interestingly, SlNHX7 has this

domain. Unlike the results reported by Hussain et al. (2022), the

results of the present study were able to fully explore the amiloride

binding domains of SlNHX proteins.

The results of synteny analysis revealed that there are four homol-

ogous pairs between tomato and pepper and four homologous pairs

between tomato and Arabidopsis (Figure 3). These results indicated that

SlNHX genes are phylogenetically related to NHX genes of different

plant species. Generally, the Ka/Ks ratio of SlNHX genes was lower than

1, indicating a selection pressure on protein coding sequences during

the evolution (Table 3) (Hanada et al., 2007). Similar low Ka/Ks ratios

were also reported for honeysuckle (Huang et al., 2022), radish (Wang

et al., 2020) and cotton (Fu et al., 2020). The protein–protein network

of SlNHXs revealed that SlNHX7 and SlNHX8 interact physically with

the CBL and CIPK proteins, unlike the other SlNHX proteins (Figure 6).

It was previously shown that the NHX7 gene, which provides tolerance

by transporting Na+ ions under salt stress in plants, was activated as a

result of the interaction between CBL and CIPK proteins (Weinl &

Kudla, 2009). Comparably, the interaction of CIPK and CBL proteins

with NHX7 was also predicted in plant species such as poplar, sugar

beet, and pomegranate (Dong et al., 2021; Tian et al., 2017; Wu

et al., 2019). These results revealed that SlNHX7 and SlNHX8 genes

could play a more important role than the other SlNHX genes in

responses to salt stress in the tomato genome.

The results of RT-qPCR revealed that SlNHX6 and SlNHX8 genes

showed significant and elevated upregulation by salt stress in the open

flower tissues as the stress expanded to 24 h, and an early salt stress

response (at 6th h) was provided by the SlNHX1 and SlNHX2 genes

(Figure 10). These results were comparable with RNA-Seq gene expres-

sion profiles of SlNHX genes determined in different tissues (Figure 9).

A similar gene expression pattern of SlNHXs could also be possible in

other tissues at various developmental stages of tomato (Figure 10). In

addition, presence of the higher number of MeJA-related cis-acting reg-

ulatory elements on the promotor regions of SlNHX6 (TATC-box,

TGACG, CGTCA) and SlNHX8 (TGACG, CGTCA), compared with the

other promotors of SlNHXs, may also be attributed to the significant

and elevated upregulation of these genes (Figure 10). These findings

suggested that SlNHX genes in S. lycopersicum might provide

T AB L E 4 Quantitative outputs of I-TASSER modeling for SlNHX proteins and sequence location information of the Na+/H+ antiporter
domain and amiloride binding sites.

Protein C-score TM-score RMSD (Å) Peptide sequence

Na+/H+ antiporter domain

(start to end)

Amiloride binding site

(start to end)

SlNHX1 �.23 .68 ± .12 8.0 ± 4.4 538 29–443 85–93

SlNHX2 �.16 .69 ± .12 7.8 ± 4.4 537 29–442 85–93

SlNHX3 .04 .72 ± .11 7.3 ± 4.2 526 27–444 81–89

SlNHX4 .35 .76 ± .10 6.7 ± 4.0 535 27–442 84–92

SlNHX6 �.16 .69 ± .12 7.8 ± 4.4 532 34–437 89–97

SlNHX7 �1.33 .55 ± .15 12.5 ± 4.3 1,152 29–441 -

SlNHX8 �1.33 .55 ± .15 12.5 ± 4.3 983 55–462 -

Abbreviation: RMSD, root-mean-square deviation.

F I GU R E 9 RNA-Seq gene expression profiles of SlNHX genes in
different tissues.
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orchestrated and time-dependent responses based on the duration and

severity of salt stress (Figure 10). In the LeNHX isoforms induced by salt

treatment, the greatest induction was in the LeNHX4 gene in the leaf

(Gálvez et al., 2012), whereas in the present experiment, the greatest

induction was in the SlNHX8 gene in the open flower tissue (Figure 10).

It has been previously reported that transgenic tomatoes overexpres-

sing LeNHX2 have increased salt tolerance (Huertas et al., 2013). This

gene corresponds to the SlNHX6 gene, which was significantly upregu-

lated at all time intervals after salt shock treatment in the present study

(Figure 10). These findings point to the importance of the SlNHX6/

LeNHX2 gene in improving salt stress tolerance in the tomato. Jabeen

et al. (2022) reported that there was no change in the expression level

of HvNHX1 in the leaf tissue of the Gairdner barley cultivar under

300-mM NaCl compared with the control. A similar finding was

observed for the expression pattern of the SlNHX1 gene at all time

points in the open flower tissue, except at 6 h (Figure 10). A previous

report also showed that all members of MtNHX genes were also upre-

gulated under salt stress in flower tissues in M. truncatula (Sandhu

et al., 2018) although some differences in terms of gene expression

levels stand out in flower tissues of S. lycopersicum and M. truncatula

(Sandhu et al., 2018). For instance, the SlNHX7 gene was highly

expressed in flower tissue after 24 h, whereas low expression profile of

MtNHX7 gene was reported in flower tissue of M. truncatula (Sandhu

et al., 2018). Conversely, the BvNHX5/BvSOS gene in B. vulgaris under

salt stress was significantly upregulated in leaves (Wu et al., 2019).

Moreover, it has been determined that PgNHX genes showed different

functions depending on the tissue in pomegranate roots and leaves

(Dong et al., 2021). Taken together, these results suggested that the

expression patterns of orthologous genes of the NHX family in different

plant species might differentially be tuned in response to salt stress

based on severity of the stress and type of plant tissue.

5 | CONCLUSION

In this study, a total of seven SlNHX genes were identified, and the

phylogenetic analysis provided three classes based on their subcellular

localizations. Members of the SlNHX family were grouped with

SlNHX1–4 on vacuole membranes, SlNHX6 on the endosomal region,

and SlNHX7–8 on the PM. The amiloride binding site domain

[FFIYLLPPI] was fully conserved in SlNHX1–3, whereas this

domain was highly conserved in SlNHX4 and SlNHX6. The cis-acting

element analysis revealed that SlNHX6 and SlNHX8 were involved

with the stress-related hormone MeJA in response to salt stress sig-

naling. The PPI network analysis results indicated that the proteins

SlNHX7 and SlNHX8 hypothetically interacted with the CBL and CIPK

pathway in salt stress response. The RT-qPCR analysis showed that all

SlNHX genes in the open flower tissues were significantly upregulated

under salt shock, although the expression pattern was time depen-

dent. The results pointed out the importance of the SlNHX genes in

relation to salinity stress tolerance in the tomato. Our results suggest

that the SlNHX genes identified using the current tomato genome

information provide novel reference genes for future studies on salt

stress in the tomato.
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