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Inteins are nature’s escape artists; they facilitate their excision
from flanking polypeptides (exteins) concomitant with extein
ligation to produce a mature host protein. Splicing requires
sequential nucleophilic displacement reactions catalyzed by
strategies similar to proteases and asparagine lyases. Inteins
require precise reaction coordination rather than rapid turn-
over or tight substrate binding because they are single turnover
enzymes with covalently linked substrates. This has allowed
inteins to explore alternative mechanisms with different steps
or to use different methods for activation and coordination of
the steps. Pressing issues include understanding the underlying
details of catalysis and how the splicing steps are controlled.

The first intein sequence was published 25 years ago (1). In
those early days of gene analysis, it was hard to decipher why the
Saccharomyces cerevisiae Sce VMA1 vacuolar ATPase gene was
so large. Two years later two groups showed that a section of the
VMA1 gene was absent in the mature ATPase (2, 3). They chal-
lenged existing fundamental beliefs about gene expression by
predicting that an internal section of this protein was removed
by protein splicing instead of RNA splicing and that a single
gene encoded two stable proteins: the host protein (extein) and
the intervening protein (intein) (4). All attempts to demon-
strate RNA splicing failed. In vivo time courses suggested pro-
tein splicing (5, 6), which was definitively established as a new
method of gene expression when the elusive precursor protein
was isolated by cloning a Pyrococcus species DNA polymerase
intein between two unrelated proteins, resulting in tempera-
ture-dependent splicing (7). This first example of in vitro splic-
ing revealed important mechanistic insights: splicing occurs
when the intein and the first C-extein residue are embedded in
a heterologous host protein, inefficient splicing can result in
off-pathway single splice site cleavage (Fig. 1), splicing can be
controlled, and splicing proceeds through a slowly migrating
branched intermediate with two N termini.

We consider inteins to be single turnover enzymes because
they use the same strategies as classical enzymes to perform

catalysis (8). Splicing occurs in the absence of any known cofac-
tor, chaperone, or energy source. All that is required is proper
folding of the intein in the precursor to align nucleophilic residues
and residues that assist catalysis (Fig. 2), leading some to call
inteins nature’s escape artists (9). Because inteins utilize groups of
similar nucleophiles, subtle variations in the reactivity of these
amino acids require different sets of assisting residues. As a result,
some residues facilitating catalysis may still be unknown.

There are three classes of inteins based on sequence signa-
tures and splicing mechanisms (10). The standard class 1 intein
splicing mechanism (Fig. 3) consists of 1) an acyl rearrangement
to convert the N-terminal splice site peptide bond from an
amide to a (thio)ester, 2) a transesterification to form a
branched intermediate, 3) Asn cyclization resolving the
branched intermediate by cleaving the C-terminal splice site,
and 4) a second acyl shift to form an amide bond between the
ligated extein segments (5–7, 11–16). Off-pathway cleavage
occurs when coordination of the steps is perturbed by mutation
or by expression between foreign exteins (Fig. 1). This may
result from an increase in the cleavage rate at that splice site, a
decrease in the reaction rate of another step, or interference
with a mechanism-linked conformational change required to
promote a downstream step.

As the number of sequenced inteins increased, sequence
alignments revealed four splicing motifs termed blocks A, B, F,
and G (Fig. 2) (17–20). Although not conserved in their
entirety, several positions in each motif contain highly con-
served groups of similar amino acids. The nucleophiles for each
step are: Cys1 or Ser1 in step 1; Cys�1, Ser�1, or Thr�1 in steps
2 and 4; and the intein C-terminal AsnG:7 in step 3 (see Fig. 2 for
residue nomenclature). Known assisting residues include posi-
tions 7 and 10 in block B (ThrB:7 and HisB:10), the intein penul-
timate HisG:6, and the less conserved positions 4 and 13 in block
F (Fig. 2). Position F:4 is most commonly Asp, followed by Cys
and then Trp, and F:13 is most commonly His (10, 20).

Inteins come in many flavors. Most inteins are large chimeras
containing both a splicing domain and the same type of endo-
nucleases that mediate intron mobility (Fig. 2) (20 –22). Other
inteins are naturally occurring mini-inteins that are as small as
134 residues and lack an endonuclease domain (20). Studies of
both native and engineered mini-inteins helped define the
intein splicing domain (20, 23–27). Intein genes may also be
split between motifs B and F; however, the expressed precursor
protein fragments rapidly assemble to splice in trans by the
same mechanisms used in cis-splicing inteins (28 –32). Both
naturally occurring and engineered split inteins have found
great utility in biotechnology applications (33). Intein splicing
domains may have been derived from ancient enzymes because
they are small and are closely related by structure, conserved
motifs, and enzymatic activities to Hedgehog autoprocessing
domains, which activate essential signaling proteins for meta-
zoan development (34, 35). Inteins are also related to bacterial
intein-like (BIL)2 domains (36 –39).
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Establishing a universal mechanism for all inteins at the
atomic level is unlikely because the methods used to promote
each rearrangement and the roles played by the assisting resi-
dues vary. Instead, we will discuss both the canonical and the
alternative protein splicing mechanisms, and general strategies
for catalysis and coordination of the steps. Detailed mechanism
reviews are available (8, 9, 40), and intein structure, molecular

dynamics, evolution, and applications are covered in compan-
ion reviews in this series (21, 33, 41).

The Class 1 Splicing Mechanism: Step 1

Conversion of amide bonds to enzyme-linked thioesters or
esters, as in step 1 of protein splicing, is a common method of
catalysis used by proteases and autoprocessing enzymes includ-
ing glycosyltransferases and pyruvoyl enzymes (8, 9, 40).
Although protein splicing employs a series of bond rearrange-
ments rather than the bond cleavage facilitated by proteases,
inteins use similar strategies to destabilize the peptide bond to
favor (thio)ester formation, including catalytic bond strain,
general acid/base catalysis, and an oxyanion hole to stabilize the
tetrahedral intermediate.

Most residues involved in catalysis assemble near the center
of the disk-shaped HINT (Hedgehog-intein) fold of the intein
splicing domain (34). For example, residues near the N-termi-
nal scissile bond include ThrB:7 and HisB:10 in a type I �-turn
and AspF:4 in a �-strand. Experimental data show that ThrB:7,
HisB:10, and residue F:4 affect N-terminal splice site reactions,
as do flanking extein residues (13, 14, 20, 42–51). HisB:10 is the
most conserved intein residue (20). Of the two inteins without
HisB:10, one is a degraded pseudogene (52), and the other (the
Thermococcus kodakaraensis Tko CDC21-1 intein) uses Lys58

to activate the N-terminal splice site by possibly stabilizing the
initial N–S acyl shift tetrahedral intermediate (53). Lys58 lies
outside the conserved intein motifs (53) and is one residue
beyond a newly identified position (22 residues past HisB:10)
that potentially activates the N-terminal nucleophile (40).
N-extein residues were shown to influence the equilibrium
position between amide and ester in the Sce VMA intein (44)
and to affect N-terminal reactions by van der Waals contacts
with Pyrococcus horikoshii Pho RadA intein residues (46). The
Nostoc punctiforme Npu DnaE intein �2 C-extein residue also
affects splicing, possibly by filling space at the active site to
optimally align catalytic residues (48, 49).

Some inteins distort the N-terminal scissile bond generating
catalytic strain to accelerate step 1. Adjacent extein residues
and block B residues help form this strained local conforma-
tion, as evidenced by both structural and biochemical stud-
ies. A crystal structure of the Sce VMA intein displays bond
angle distortions near the N-terminal splice junction (54).
The Mycobacterium xenopi Mxe GyrA intein crystal struc-
ture has a cis-peptide bond linking the N-extein and intein,
and NMR data suggest a lack of amide bond resonance that is
resolved when HisB:10 is mutated (42, 55). HisB:10 is in hydro-
gen bond distance to the amide nitrogen of the N-terminal
scissile bond in several inteins, suggesting that it plays a role
in coordinating the scissile bond (54 –57). A similar role was
observed for ThrB:7 in a Synechocystis species Ssp DnaE
intein structure (58).

A second strategy is to accelerate the rate at which the amide-
ester equilibrium is reached by activating the N-terminal
nucleophile via thiol deprotonation (experimentally detected as
a lower pKa), stabilizing the tetrahedral intermediate, and/or
influencing how the tetrahedral intermediate is resolved. Likely
contributors again include ThrB:7, HisB:10, and AspF:4. A close
look at the Mycobacterium tuberculosis Mtu RecA intein pro-

FIGURE 1. Potential intein reactions. Protein splicing results in ligation of
the N-extein (EN) and C-extein (EC), as directed by the intein (I). When inteins
are mutated or inserted in heterologous contexts, off-pathway reactions can
occur resulting in N-terminal, C-terminal, or double cleavage products that
are unable to splice. Off-pathway N-terminal cleavage can occur in both the
linear and the branched (thio)ester intermediates. Off-pathway C-terminal
cleavage occurs when cyclization of the intein C-terminal residue precedes
branch intermediate formation.

FIGURE 2. Precursor domains and conserved motifs. A, a precursor with an
intein containing a homing endonuclease domain (gold) is depicted with
intein splicing domain motifs (red) listed above and conserved residues that
participate in catalysis listed below. Residues in intein motifs are numbered
based on their position within each motif (green) as defined in InBase (20).
Residues specific to class 2 or 3 inteins are in lowercase, and only a subset of
residues found at A:1 is depicted. Motifs A, B, F, and G have also been called
N1, N2, C2, and C1, respectively (17–20). Motifs C, D, E, and H are specific to
certain homing endonucleases and are not shown. To simplify discussion of
inteins in various precursors, residues in each part are numbered independ-
ently. Intein residues are numbered from the N to C terminus beginning with
1. Residues in the N- and C-exteins (blue) are numbered from the splice site
outwards and include a minus sign for N-extein and a plus sign for C-extein
residues. B, folding of the precursor forms the intein active site and initiates
protein splicing. Homing endonuclease domains in larger inteins fold sepa-
rately from the intein and extein domains. Association of extein fragments
can influence precursor folding and active site architecture. X represents an
oxygen or a sulfur atom.
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vides several lines of evidence to support these strategies. NMR
and quantum mechanical/molecular mechanics studies suggest
that HisB:10 may deprotonate the thiol of the N-terminal Cys1 to
drive formation of the tetrahedral intermediate and then
donate the proton to the Cys1 �-amino group to resolve the
tetrahedral intermediate as a thioester (59). These roles are sup-
ported by changes in the pKa of HisB:10 from neutral to acidic
during splicing (60). Similarly, a Mtu RecA intein structure
shows AspF:4 in position to hydrogen bond to the thiol of Cys1

to deprotonate this nucleophile (61). Moreover, the pKa of the
Mtu RecA intein AspF:4 is elevated and the pKa of Cys1 is lower
than normal, but both pKa values return to normal when either
residue is mutated (59). Taken together, these studies support a
proposed proton transfer network in the Mtu RecA intein that
assists deprotonation of the Cys1 nucleophile and the forward
resolution of the tetrahedral intermediate (59 – 61). However,
studies of the Synechocystis sp. PCC6803 Ssp DnaB intein with
an unnatural N-terminal residue indicate that activation of this
nucleophile is not essential for linear thioester formation (62),
emphasizing the unique active sites and catalytic strategies uti-
lized by individual inteins.

The Class 1 Splicing Mechanism: Step 2

The second step has proven the most challenging to study as
it is difficult to isolate branched intermediates. Mutations that
should result in accumulation of branched intermediates often
result in decay to N-terminal cleavage products, especially
when a thioester linkage is present (13). Ester-linked branched
intermediate formation is reversible, which can result in accu-
mulation of precursor rather than intermediate (7). Several
studies suggest that the intein promotes step 2 by controlling
the protonation state of the �1 nucleophile. For example, the
pKa of Cys�1 in the Mtu RecA intein is depressed to 5.8,
increasing its nucleophilicity at physiological conditions (63).
Furthermore, quantum mechanical simulations suggest that
Cys�1 in the Mtu RecA intein may be deprotonated by AspF:4

and that this deprotonation may be driven in part to stabilize
the positive charge on the �-amino group of Cys1 in the linear
thioester intermediate (64). Step 2 is strictly coupled to step 1 in
class 1 inteins, although the exact mechanism has yet to be
determined (13–15, 65). It is possible that linear thioester for-
mation removes elements that are masking the reactive thiol of
the �1 residue or induces a conformational change to align
active site residues for transesterification (see below).

The Class 1 Splicing Mechanism: Step 3

Evidence for the third step of splicing includes loss of C-ter-
minal splice site cleavage after mutation of the intein C-termi-
nal AsnG:7 and the detection of excised inteins with C-terminal
succinimide residues (11–15). The intein must catalyze Asn
cyclization, because in other systems it results in side-chain
deamidation rather than peptide bond cleavage (66), and com-
putational modeling suggests very high energy barriers in non-
catalyzed models of cleavage by Asn cyclization (67).

Several strategies have been proposed for enzymatic activa-
tion of step 3 including three coupled modes of catalysis: 1)
HisF:13 increases the nucleophilicity of the C-terminal AsnG:7

by deprotonation, 2) the tetrahedral intermediate is stabilized
by charged HisF:13 and HisG:6 residues, and 3) the electrophilic-
ity of the backbone amide may be increased by HisG:6 (55, 57,
67– 69). Alternatively, given that C-terminal cleavage is favored
at low pH (65, 70, 71), protonation of the backbone amide nitro-
gen of the scissile peptide bond may have precedence over
deprotonation of the Asn side-chain amide (72). Separate stud-
ies suggest two other modes of catalysis: change in the local
environment near the scissile bond that depends on branched
ester formation (69) and destabilization of the scissile bond by a
polarizable adjacent C-extein residue (73).

HisF:13 and HisG:6 are not required for Asn cyclization in all
inteins (28, 56, 74, 75). Mutation of HisF:13 in a class 2 intein had
no effect (76), and �5% of functional inteins have an alternate
G:6 residue (20, 28, 56, 74, 75). Splicing can be enhanced by
“reverting” back to HisG:6 in some inteins, whereas a HisG:6

actually impairs splicing in other inteins (28, 74, 75, 77). These
differences may reflect different positions along the evolution-
ary path to overcoming loss of HisG:6.

Some inteins lacking AsnG:7 have similar residues (Asp and
Gln) that can undergo cyclization to cleave the C-terminal
splice site (20, 71, 78 – 80). For both the Pyrococcus abyssi and

FIGURE 3. The intein-mediated class 1 protein splicing mechanism. Class 1
inteins with a C-terminal Asn and a Cys, Ser, or Thr at the first position in
both the intein and the C-extein splice using the standard four-step pro-
tein splicing mechanism depicted in this figure. Inteins with C-terminal
Glu, Gln, or Asp use this same mechanism except for Glu, Gln, or Asp
cyclization in step 3, although other mechanisms are possible. Succinim-
ide hydrolysis can also produce iso-Asn. X represents an oxygen or a sulfur
atom. For clarity, tetrahedral intermediates and residues facilitating each
step are omitted. Although the definition of an intein is the excised
sequence (4), for brevity we will include the C-extein nucleophile when
discussing mechanisms.
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the Methanoculleus marisnigri Pol II inteins, splicing with a
C-terminal Gln is slow, but is improved with substitution to
Asn (71, 78, 79). On the other hand, the Chilo iridescent virus
ribonucleotide reductase (CIV RNR) intein can splice with a
native C-terminal Gln more efficiently than with Asn (80). As in
the case of inteins lacking HisG:6, it is likely that these variant
inteins represent different stages in evolving optimal activity
after an initial mutation removed a catalytically important res-
idue. Retaining a slow or inefficient step 3 may not be detrimen-
tal when it does not lead to off-pathway N-terminal cleavage.

The Class 1 Splicing Mechanism: Step 4

Step 4 consists of two finishing steps, neither of which is
necessarily catalyzed by the intein. The intein C-terminal ami-
nosuccinimide is slowly hydrolyzed to Asn or iso-Asn (11–13),
and the (thio)ester linking the extein segments reverts to the
amide. Experiments with model peptides demonstrate that the
rate of conversion from a (thio)ester to an amide is faster than
the overall rate of splicing (81). This final acyl shift is thermo-
dynamically favorable and is not influenced by the presence of
the intein (11, 69).

Variant Splicing Mechanisms: Class 2 Inteins, Class 3
Inteins, and BILs

The robustness of intein-mediated protein splicing is illus-
trated by the array of acceptable modifications to the standard
four-step mechanism. BILs lack the C-extein �1 nucleophile
and are therefore unable to form the block G branched inter-
mediate (36 –38). Both class 2 and class 3 inteins can still splice,
although they lack a Ser1 or Cys1 nucleophile and are thus
unable to form the linear (thio)ester intermediate (Fig. 4).

To date, all class 2 inteins are orthologs of the Methanococcus
jannaschii Mja KlbA intein (20, 77). They all have SerG:6 instead
of the more common HisG:6 and Ala1. Class 2 inteins bypass the
first step of splicing with Cys�1 directly attacking the N-termi-
nal splice site amide bond, resulting in the same block G
branched intermediate as in class 1 inteins. Thereafter, they
follow the standard splicing pathway (76, 77). How class 2
inteins activate the N-terminal splice site for direct attack by
Cys�1 and why class 1 inteins cannot (13–15, 65) remains to be
fully determined. A possible explanation comes from the NMR
structure of the Mja KlbA intein where a slight widening of its
active site as compared with class 1 inteins allows the Cys�1

nucleophile to approach the N-terminal splice site without for-
mation of a linear (thio)ester intermediate (76). The same three
residues (ThrB:7, HisB:10, AspF:4) that activate class 1 N-terminal
splice sites are also required in class 2 inteins (76, 77). Mutation
of HisB:10 and AspF:4 block splicing and drastically reduce both
N-terminal and C-terminal cleavage (76, 77). ThrB:7 and HisB:10

are positioned near the backbone nitrogen of Ala1, and model-
ing of an active conformation showed AspF:4 hydrogen bonding
to the Cys�1 thiol to possibly activate it by deprotonation (76).

Class 3 inteins have a remarkable mechanism that includes
two branched intermediates (Fig. 4) (10, 82, 83). Cys is con-
served at position F:4 in all class 3 inteins. It directly attacks the
N-terminal splice site amide bond, resulting in the N-extein
linked by a thioester to CysF:4, yielding a block F branched inter-
mediate. Next, the N-extein is transferred to the side chain of
Cys�1 to form a standard block G branched intermediate. Tori
et al. (10) hypothesized that the position of CysF:4 in the intein
active site allows it to substitute for the loss of the intein N-ter-
minal nucleophile, in conjunction with two other positions that
are conserved in all class 3 inteins. Monophyletic class 3 inteins
appear to have arisen in a phage gene and spread to helicase
genes in numerous organisms (52, 82). Thus the evidence sug-
gests that both class 2 and class 3 inteins arose from single
events.

There are at least two classes of BILs (38). Type A BILs have
C-terminal His-Asn residues like inteins and can splice,
although cleavage products dominate; type B BILs lack similar-
ity to intein block G and catalyze splice site cleavage reactions
uncoupled to splicing (38). The proposed mechanism for type A
BIL splicing involves formation of a thioester bond at the BIL N
terminus (intein step 1) and cleavage at the BIL C terminus by
Asn cyclization (intein step 3). The free amino group on the
C-terminal fragment attacks the N-terminal thioester bond to
ligate the fragments flanking the BIL (36 –38). The Magnetospi-
rillum magnetotacticum BIL did not splice until Tyr�1 was
mutated to Cys (39), suggesting that it is still tuned to act like an
intein. It is likely that BILs arose in the distant past from
mutated inteins or from a common ancestor of inteins.

Regulation of Splicing by Mechanism-linked
Conformational Changes and Kinetic Rates

Although the basic steps in protein splicing were elucidated
in the 1990s, we still lack a consensus for how they are coordi-
nated. Two basic processes are invoked: 1) conformational
changes triggered by a preceding step result in formation of a
robust active site for the next step and 2) differences in kinetic

FIGURE 4. Variations in splicing mechanisms. Inteins missing the standard
N-terminal nucleophile use various strategies to get to the same block G
branched intermediate formed after step 2 in class 1 inteins. Class 2 inteins
form the block G branched intermediate after direct attack on the amide
bond at the N-terminal splice site by Cys�1. Class 3 inteins first form a block F
branched intermediate with CysF:4 as the branch point and then transfer the
N-extein to the �1 residue to form the block G branched intermediate. Once
the block G branched intermediate is formed, class 2 and class 3 inteins follow
the same steps (3 and 4) to complete splicing as in class 1 inteins. Abbrevia-
tions used are: EN, N-extein; EC, C-extein; I, intein; BI, branched intermediate; X,
an oxygen or a sulfur atom.
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rates for each step ensure correct reaction order. Conforma-
tional changes may be as simple as fixing different rotamer
positions, or they may involve larger movements. Evidence for
conformational control can be inferred from the absolute cou-
pling of N-terminal and C-terminal reactions observed in some
inteins where C-terminal cleavage only occurs if preceding
steps have been completed (14, 59, 69, 84, 85).

The most common argument for larger scale movement in
intein active sites comes from intein structures. Only the Sce
VMA intein (86) and the Pho RadA intein (46) structures have
distances between the C-extein nucleophile and N-terminal
scissile bond that are directly compatible with catalysis (3.8 Å).
This distance is much larger (�8 Å) in all other intein struc-
tures to date and requires a conformational change for catalysis
(41). A conformational shift was also proposed in the class 2
Mja KlbA intein where a rearrangement of SerG:6, AsnG:7, and
Cys�1 (G:8) backbone torsional angles could enable a close
approach of the Cys�1 nucleophile to the N-terminal scissile
bond (76). It remains to be determined why inteins display such
an open active site and whether it represents a true conforma-
tion or an artifact of experimental conditions that prevent splic-
ing, including mutations to active site residues and differences
in extein sequence or length.

Movement of side chains during splicing can coordinate the
reaction by the gain or loss of hydrogen bonds and changes in
van der Waals packing interactions to align catalytic residues.
For example, structures of the Pho RadA intein suggest that
AspF:4 hydrogen-bonds to AsnG:7, preventing Asn cyclization
until branched intermediate formation causes reorientation of
the AspF:4 side chain (46). Another example involves coupling
of N- and C-terminal cleavage in the Ssp DnaE intein, which is
proposed to be due to Tyr�1 preventing proper orientation of
ArgB:11 until formation of the linear and/or branched thioester
intermediate results in movement of the Tyr�1 side chain,
allowing the ArgB:11 side chain to reorient and assist Asn cycli-
zation (87). In the Mxe GyrA intein, NMR data show that chem-
ical or conformational changes in the branched intermediate
stimulates Asn cyclization (69).

Kinetic data can provide further insight into how inteins con-
trol the steps of splicing. Asn cyclization is the slowest step for
most inteins studied to date, including the Pab Pol II intein (71),
the split Ssp DnaE intein (32, 49, 88), and the Mxe GyrA intein
(69). In the Pab Pol II intein, substitution of GlnG:7 with the
more common AsnG:7 accelerated C-terminal cleavage by
20-fold and the overall splicing reaction by 3-fold. The naturally
split Npu and Ssp DnaE inteins have been extensively investi-
gated as model systems for intein kinetics because it is easy to
initiate reactions by mixing fragments (29, 32, 48, 49, 87–90).
Ssp DnaE intein studies demonstrate that association between
the fragments is not rate determining (32). Whereas Asn cycli-
zation is the slow step for the Ssp DnaE intein, all steps occur
with similar rates in the Npu DnaE intein (32, 49). Although the
Ssp DnaE intein splices with overall rates similar to standard
inteins, the Npu DnaE intein splices very rapidly, with a half-life
of 1 min or less (30, 89). Recently discovered split inteins from
metagenomic samples can splice even more rapidly (91).

The class 2 Mja KlbA intein was studied using a semisyn-
thetic intein precursor that could be induced to splice with a

redox switch (92). Branched intermediate formation was com-
parable with the rate of Asn cyclization, and a clear rate-limit-
ing step was not identified.

In all of these inteins, the rates of Asn cyclization are compa-
rable or slower than preceding steps, ensuring that Asn cycliza-
tion will not precede extein ligation, which occurs during
branched intermediate formation. Kinetic control comple-
ments coordination strategies involving conformational
changes. This was shown experimentally in the Mxe GyrA
intein, where the rate of C-terminal cleavage increased 10-fold
when a branched intermediate was present (69).

Conditional Protein Splicing

Inteins have evolved to tightly regulate the steps of splicing.
This is essential as inteins interrupt highly conserved domains
of proteins important to their host organisms, including DNA
polymerases and helicases (93). However, no evidence has been
discovered for a physiologically relevant role for conditional
protein splicing. This suggests that modern inteins are likely
molecular parasites and that efficient, traceless splicing is
essential for their maintenance in the host genome. However,
inteins can be engineered to be sensitive to changes in light, pH,
temperature, or redox state and to be responsive to the addition
of small molecules (33, 94). Even unmodified inteins can be
controlled under specific conditions. For example, inteins from
thermophilic organisms display temperature-dependent splic-
ing in heterologous precursors (7, 78, 95), both cis-splicing and
trans-splicing inteins are sensitive to inhibition by divalent cat-
ions (87, 88, 96 –98), and disulfide bonds involving active site
Cys residues sensitize splicing to cellular oxidation state (79, 99,
100).

Conclusions

Remaining mechanistic challenges include deciphering how
reactions are coordinated and illuminating the diverse ways
that inteins promote catalysis. Going forward, detailed studies
of catalytic mechanisms, intein kinetics, and structures must
occur in the context of native host exteins, which will distin-
guish between physiologically significant observations and
those that may be artifacts of heterologous model systems. Fur-
thermore, detailed studies of multiple inteins will determine
whether catalytic strategies are universal or specific to a subset
of inteins.

The plethora of reactions performed by HINT domain pro-
teins highlights the robust and flexible nature of catalysis when
rapid turnover and substrate binding are not required. This
allows for survival of mutated inteins as long as compensatory
residues are present to permit a low level of splicing and pro-
vides time for the intein to evolve into a more efficient enzyme
by testing new catalytic strategies. Thus the flexibility of inteins,
BILs, and Hedgehog proteins provides a blueprint for modify-
ing enzyme activity by varying nucleophiles and strategies to
activate these nucleophiles.
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