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Background: Assessments of the soil microbiome provide valuable insight to
ecosystem function due to the integral role microorganisms play in biogeochemical
cycling of carbon and nutrients. For example, treatment effects on nitrogen cycling
functional groups are often presented alongside one another to demonstrate how
agricultural management practices affect various nitrogen cycling processes. However,
the functional groups commonly evaluated in nitrogen cycling microbiome studies range
from phylogenetically narrow (e.g., N-fixation, nitrification) to broad [e.g., denitrification,
dissimilatory nitrate reduction to ammonium (DNRA)]. The bioinformatics methods
used in such studies were developed for 16S rRNA gene sequence data, and how
these tools perform across functional genes of different phylogenetic diversity has
not been established. For example, an OTU clustering method that can accurately
characterize sequences harboring comparatively little diversity may not accurately
resolve the diversity within a gene comprised of a large number of clades. This study
uses two nitrogen cycling genes, nifH, a gene which segregates into only three distinct
clades, and nrfA, a gene which is comprised of at least eighteen clades, to investigate
differences which may arise when using heuristic OTU clustering (abundance-based
greedy clustering, AGC) vs. true hierarchical OTU clustering (Matthews Correlation
Coefficient optimizing algorithm, Opti-MCC). Detection of treatment differences for each
gene were evaluated to demonstrate how conclusions drawn from a given dataset may
differ depending on clustering method used.

Results: The heuristic and hierarchical methods performed comparably for the more
conserved gene, nifH. The hierarchical method outperformed the heuristic method
for the more diverse gene, nrfA; this included both the ability to detect treatment
differences using PERMANOVA, as well as higher resolution in taxonomic classification.
The difference in performance between the two methods may be traced to the AGC
method’s preferential assignment of sequences to the most abundant OTUs: when
analysis was limited to only the largest 100 OTUs, results from the AGC-assembled
OTU table more closely resembled those of the Opti-MCC OTU table. Additionally, both
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AGC and Opti-MCC OTU tables detected comparable treatment differences using the
rank-based ANOSIM test. This demonstrates that treatment differences were preserved
using both clustering methods but were structured differently within the OTU tables
produced using each method.

Conclusion: For questions which can be answered using tests agnostic to clustering
method (e.g., ANOSIM), or for genes of relatively low phylogenetic diversity (e.g.,
nifH), most upstream processing methods should lead to similar conclusions from
downstream analyses. For studies involving more diverse genes, however, care should
be exercised to choose methods that ensure accurate clustering for all genes. This will
mitigate the risk of introducing Type II errors by allowing for detection of comparable
treatment differences for all genes assessed, rather than disproportionately detecting
treatment differences in only low-diversity genes.

Keywords: bioinformatics, mother, nitrogen cycling, microbiome, nitrogen fixation, dissimilatory nitrate reduction
to ammonium, OTU clustering, microbial ecology

INTRODUCTION

Microbial community structure is important to characterize
because it can influence many ecosystem processes (Graham
et al., 2016). For assessments of overall microbial community
composition, the 16S rRNA gene is typically used because it is
highly conserved across prokaryotes and generally not subject
to horizontal gene transfer. Given the ubiquity of 16S rRNA
assessments within microbiome research, the bioinformatics
pipelines used to process raw amplicon sequence data were
developed with a focus on 16S rRNA gene sequence data
specifically. Over the last decade, the approaches used to
preprocess sequences, cluster unique sequences into OTUs, and
assign taxonomic classification have been continually expanding
and improving. However, side-by-side comparisons of 16S rRNA
datasets resulting from pipelines which differ in only one or two
key steps have demonstrated that upstream processing decisions
(e.g., clustering of sequences) can influence conclusions about
differential abundance, composition, taxonomic identity, and
richness and diversity measures (Chen et al., 2013; Nguyen et al.,
2016; López-García et al., 2018).

As a complement to overall community composition, studies
focusing on specific microbially mediated ecological processes
often characterize functional groups relevant to the process
being investigated. These functional groups fall along a diversity
spectrum ranging from processes which are performed by a
comparatively narrow selection of taxa, or phylogenetically
“narrow” processes, to those which can be performed by a large
variety of taxa, or “broad” processes (Schimel and Schaeffer,
2012). The same bioinformatics tools developed for 16S rRNA
gene sequences are used to process diagnostic gene sequences for
these types of functional groups as well. Though efforts have been
made to identify discrepancies among results generated from
different processing methods using 16S rRNA gene sequence
datasets, the impact of processing choices on downstream
community analyses for functional genes of varying diversity has
not yet been explored.

For both 16S rRNA and functional genes, amplicon sequence
data are often generated via Illumina sequencing in the form of
millions of paired-end reads. Generally, primers for amplicon
sequencing are designed to generate forward and reverse reads
which overlap and can be assembled into continuous sequences,
or contigs. The first step in processing raw sequence data for
downstream OTU clustering is therefore merging the two reads
and filtering the resulting contigs for quality control. Modern
sequencing instruments return a quality score for each base in
each sequence, and this quality score, together with agreement
between bases in the overlapping portion of paired reads, is used
to filter out low-quality contigs. These steps can be achieved using
many common bioinformatics software packages, including
Usearch (Edgar, 2013), FLASH (Magoè and Salzberg, 2011),
Mothur (Schloss et al., 2009), or QIIME (Caporaso et al., 2010).
The implementation of these steps is similar among all packages
and allows the user to provide arguments to customize quality
cutoffs as desired. The end result of this stage of preprocessing is
a list of all unique sequences which passed quality filtering.

After quality screening, unique sequences are assigned to an
operational taxonomic unit (OTU), which is most often achieved
by clustering sequences according to some similarity percentage.
The purpose of clustering is twofold: clustering sequences
together by similarity helps to eliminate erroneous sequences
formed during the PCR preamplification step carried out prior to
sequencing, as each of these erroneous sequences should deviate
from one another by only a few bases, thus reducing diversity
to true biological diversity (Hugerth and Andersson, 2017). In
addition, collapsing the full breadth of sequence diversity into
groups within some percentage similarity of one another reduces
the total number of “variables” in downstream analyses, making
them more computationally tractable.

The similarity threshold typically chosen is 97% (Gevers et al.,
2005), as similarity levels lower than this in the 16S rRNA gene
region are considered unlikely to be derived from the same
species and unlikely to achieve 70% DNA-DNA hybridization at
the genome level, a previously common metric for determining
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bacterial species assignment (Gevers et al., 2005). This, however,
can only evaluate the gene region considered, and does not
necessarily reflect 97% similarity across the full length of the
gene. This is also an arbitrary cutoff, as individual taxa may
possess 16S rRNA genes that are more than 97% similar but
still represent ecologically distinct clades based on the remainder
of their genome content (Fox et al., 1992; Gevers et al., 2005).
As sequencing throughput and quality has increased in recent
years, a 99% similarity cutoff for inclusion in an OTU has
become increasingly common (Hugerth and Andersson, 2017).
Acceptable percent similarity cutoffs for OTUs generated from
functional gene sequences have not yet been established, and
97% is still typically used, regardless of the diversity within the
gene’s phylogeny.

Clustering approaches can be reference-based or de novo. The
former uses a reference taxonomic database to classify sequences
into taxonomic bins based on known taxonomy, while the latter
allows the data to “speak for themselves” by assigning sequences
to clusters based on similarity alone (Schloss and Westcott,
2011). Reference-based clustering can be either closed reference,
wherein sequences are mapped to their best possible match
within a database, and those that do not match sufficiently are
discarded, or open reference, where those sequences which do
not match to the reference are then clustered using the de novo
approach. In de novo clustering, approaches may be hierarchical
(based on single, average, or complete linkage) (Schloss and
Handelsman, 2005) or heuristic in strategy. Single-linkage
hierarchical approaches place a sequence into a cluster if it has a
similarity above some threshold to at least one other sequence in
the cluster, while complete linkage conversely requires a sequence
to have a similarity above the threshold to all others in the cluster;
average linkage requires that the average similarity between a
sequence and all others be above the threshold (Hugerth and
Andersson, 2017). Average-linkage de novo clustering has been
demonstrated to produce higher quality OTUs based on the
Matthew’s Correlation Coefficient (MCC), a metric for describing
the ratio of False Positives (FP), False Negatives (FN), True
Positives (TP), and True Negatives (TN) commonly used in
machine learning control theory (Westcott and Schloss, 2015).
However, because it is computationally expensive to run all-
against-all comparisons on datasets containing millions of reads,
heuristic approaches were developed. Among these are the
UPARSE algorithm implemented via USEARCH (Edgar, 2010),
which approximates average-linkage approaches by comparing
a sequence to only one centroid sequence within each cluster.
The choice between true hierarchical clustering and heuristic
clustering therefore represents a tradeoff between computational
speed and accuracy.

The distribution of distances between sequences in clusters
will differ depending on the clustering approach used, even if
using the same similarity cutoff (Hugerth and Andersson, 2017).
Among commonly used modern tools, hierarchical clustering
is available through the “Opti-MCC” method implemented in
Mothur (Westcott and Schloss, 2017), which is now included
as the default clustering method. Heuristic approaches are
available through USEARCH (Edgar, 2013), QIIME (Caporaso
et al., 2010), which runs Uclust in the background, and

VSEARCH (Rognes et al., 2016), an open-source alternative to
USEARCH. Among these heuristic options, abundance-based
greedy clustering (AGC) is often the default implementation.
The AGC clustering algorithm begins with the most abundant
unique sequences in the dataset and begins building OTUs
from these. This operates under the assumption that the most
abundant sequences are more likely to be biologically “accurate,”
and do not represent sequencing errors. That the AGC method
is “greedy” means that as it works through the list of sequences,
it places a sequence with the first match it finds that meets
the percent similarity threshold—it does not continue looking
to see if there is an even closer match, and once a decision
is made, it cannot be changed afterward. The implication of
this is that resulting clusters are less accurate, and thus often
leads to fewer OTUs and more dissimilar sequences assigned
to each OTU, despite taking far less time to compute. In
addition, this approach may introduce spurious correlations
between samples or treatments which are overrepresented in the
most abundant sequences. Conversely, Opti-MCC, a hierarchical
clustering method, uses an iterative approach which repeatedly
reevaluates the clusters formed until the MCC (ratio of FP,
FN, TP, TN) (Westcott and Schloss, 2015) is optimized. This
method begins with each unique sequence as its own OTU,
and checks whether combining each pair of OTUs will improve
the MCC—if it does, they are combined. This progresses
until no further combinations remain that will improve the
MCC. Unsurprisingly, this iterative approach requires much
more time to execute, but the results are optimized clusters
which more accurately group sequences according to percent
similarity. Therefore, the choice of clustering approach can
affect downstream analyses and conclusions regarding microbial
community diversity and structure due to its direct effect on
assignment of sequences to OTUs.

To further complicate matters, many common multivariate
analyses used in microbiome studies are sensitive to uneven
count data (unequal number of sequence reads per sample),
thus requiring normalization prior to analysis. Historically,
this has been achieved through rarefaction, which involves
randomly subsampling each sample’s reads down to an even
depth. This, however, has been demonstrated to reduce statistical
power, and may dramatically change the conclusions drawn
from downstream multivariate analyses like PERMANOVA
(McMurdie and Holmes, 2014). Comparing analytical results
from repeated rarefying trials has been previously suggested
(Navas-Molina et al., 2013), but this is time consuming and is
not generally practiced. Therefore, most published results are
obtained from analyses performed on a rarefied OTU table
which was produced by randomly subsampling the original
OTU table a single time. When the entire burden of proof for
downstream analyses rests on this single subsample, consistency
among random samples becomes critically important. Otherwise,
we allow chance to determine whether or not our subsample
contains enough statistical power to reject the null hypothesis.
For differential abundance analyses focusing on individual OTUs,
we are able to sidestep these pitfalls of rarefaction by using the
negative binomial mixed model implementation in R package
DESeq2 (Anders and Huber, 2010); however, this approach
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still depends on the accuracy of the upstream OTU clustering.
Ultimately, regardless of the analysis methods used downstream,
the accuracy of OTU assignment will play a role in interpreting
DNA sequence data.

These major considerations and shortcomings related to OTU
clustering for 16S rRNA gene sequences, the most commonly
sequenced gene for which all of these methods were developed,
do not even begin to address methodological considerations
for the quagmire of diversity found within common functional
genes of interest. For example, the suite of functional genes
commonly evaluated in microbiome studies concerning nitrogen
(N) cycling range from phylogenetically narrow (e.g., N-fixation,
nitrification) to broad [e.g., denitrification, dissimilatory nitrate
reduction to ammonium (DNRA)]. However, a method which
can accurately characterize sequences harboring comparatively
little diversity (which can be binned into fewer OTUs) may not
accurately resolve the diversity within a gene comprised of a
large number of clades. The diagnostic gene for N-fixation, nifH,
segregates into only 3 distinct clades (Raymond et al., 2004), and
thus an algorithm like AGC can be expected perform sufficiently
because each of these clades are likely to be represented within
the most abundant sequences. In contrast, the diagnostic gene
for DNRA, nrfA, is comprised of 18 distinct clades (Welsh
et al., 2014). In this case, an abundance-based method which
preferentially assigns sequences to the largest clusters runs the
risk of pulling sequences that might otherwise represent their
own smaller clusters into the larger initial clusters. Because
AGC is also “greedy,” this means that there is no reassessment
afterward to reconcile this error. A true hierarchical clustering
method, however, will be more likely to detect these smaller
clusters of similarity and assign them to their own OTU as
clustering proceeds. Since functional gene community analyses
are typically presented together to illustrate treatment effects
on specific functional groups, these differences in accuracy may
introduce biases in the conclusions that may be drawn from the
resulting OTU datasets.

In this study, we evaluated the performance of two clustering
methods, one heuristic (AGC) and one hierarchical (Opti-MCC),
on a functional gene comprised of few clades (nifH) and a gene
comprised of many clades (nrfA). We predicted that both the
AGC and Opti-MCC methods would perform similarly on nifH
sequences, but that Opti-MCC would produce more statistical
power than AGC when applied to nrfA sequences due to its
greater ability to characterize the diversity within the gene.
We processed the same two sets of raw Illumina sequences
in Mothur, once using the Opti-MCC clustering algorithm at
the standard 97% similarity cutoff, and twice using the AGC
algorithm: Once at 97% similarity, and again at 98%, to evaluate
if tightening the similarity threshold was able to better resolve
greater diversity. Each resulting OTU table was then subjected
to 10 repeated rarefaction trials, which generated 10 rarefied
OTU tables from each raw OTU table. The ability to detect
community differences using common multivariate methods was
assessed for each rarefied dataset and results were aggregated
for comparison between methods. Alpha diversity metrics were
also assessed for each unrarefied and rarefied dataset. Finally,
differential abundance analyses were conducted on each original

unrarefied OTU table to evaluate performance independent of
rarefaction, as well as performance in taxonomic classification.
Based on these comparisons, we conclude with recommendations
about appropriate use cases for each method, and when priority
should be placed on clustering accuracy vs. computational speed.

MATERIALS AND METHODS

Data Source
The DNA sequence data used in this study are part of a larger
dataset used to compare soil microbial communities among
agricultural management treatments. The dataset derives from
DNA extracted from soils collected from several fields at the
University of Illinois Crop Sciences Research and Education
Center located in Urbana, Illinois (40◦03′32.0

′′

N 88◦13′34.0
′′

W),
representing four agricultural treatment groups, with n = 8
for each group. This dataset is intended to simulate a “real
world” application of processing and downstream analysis, and
to highlight actual differences in conclusions and interpretation
that might be impacted by upstream processing choices. While
intentionally assembled mock communities enable performance
evaluation against a known assemblage of taxa, methods
which perform well on these simulated communities often do
not perform well when faced with the phylogenetic diversity
encountered in environmental samples (Westcott and Schloss,
2015). For this study, treatments are generically abbreviated as
T1 through T4, where T1 and T2 = conventionally tilled corn-
soy rotation (separate sites), T3 = no till corn-soy rotation, and
T4 = perennial grasses (Miscanthus and switchgrass).

DNA Extraction and Molecular Methods
Total genomic DNA was extracted from freeze-dried soil
samples using the FastDNA SPIN Kit for Soil (MP Biomedicals,
Solon, OH). Genomic DNA was further purified using a cetyl
trimethyl ammonium bromide (CTAB) extraction to remove
contaminating humic acids. DNA concentration was adjusted to
a standard concentration of 10 ng/µL in each sample.

Illumina sequencing was used to target nitrogen cycling
functional genes nifH and nrfA (Illumina, San Diego, CA).
Additional primer details can be found in Supplementary
Table 1. Sequencing amplicons were prepared by PCR using a
Fluidigm Access Array IFC chip, which allowed simultaneous
amplification of each target gene (Fluidigm, San Francisco,
CA). Initial reactions were carried out according to a 2-
step protocol using reagent concentrations according to
Fluidigm parameters. The first PCR was performed in a
100-µL reaction volume using 1 ng DNA template. This
PCR amplified the target DNA region using both the gene-
specific primers with Fluidigm-specific amplification primer
pads CS1 (5′-ACACTGACGACATGGTTCTACA-3′) and CS2
(5′-TACGGTAGCAGAGACTTGGTCT-3′), which produced
amplicons including (1) CS1 Fluidigm primer pad, (2) 5′-forward
PCR primer, (3) amplicon containing the region of interest, (4)
3′-reverse PCR primer, and (5) CS2 Fluidigm primer pad.
A secondary 30-µL PCR used 1 µL of 1:100 diluted product from
the first PCR as template, and added Illumina-specific sequencing
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linkers P5 (5′-AATGATACGGCGACCACCGAGATCT-3′) and
P7 (5′-CAAGCAGAAGACGGCATACGAGAT-3′), along with
a 10-bp sample-specific barcode sequence. The final construct
consisted of (1) Illumina linker P5, (2) CS1, (3) 5′-primer, (4)
amplicon containing the region of interest, (5) 3′-primer, (6)
CS2, (7) sample-specific 10-bp barcode, and (8) the Illumina
linker P7. Final amplicons were gel-purified, quantified (Qubit;
Invitrogen, Carlsbad CA, United States), combined to the
same concentration, and then sequenced from both directions
on an Illumina HiSeq 2500 2 × 250 bp Rapid Run. Fluidigm
amplification and Illumina sequencing was conducted at the
Roy J. Carver Biotechnology Center (Urbana, IL, United States).
Barcodes were used to assign each sequence to its original sample,
and sequences were provided as demultiplexed.fastq sequences
with adaptors, barcodes, and primer sequences removed.

Experimental Design
Amplicon sequences were processed in Mothur using pipelines
which differed only in the clustering method used (Figure 1).
Briefly, contigs were first created using make.contigs, which
compares agreement between the overlapping portion of reads
to identify low confidence bases. nifH contig average length was
362 bp, with an average overlapping region of 137 bp. nrfA
contigs averaged 240 bp and had an average overlapping region of
162 bp. Contigs were then screened using screen.seqs to remove
any sequences with ambiguous bases identified by mismatches
during contig-building. Next, sequences were aligned to reference
alignments using align.seqs. nifH sequences were aligned to the
FunGene sequence database for nifH and nrfA sequences were
aligned to a reference database generated during an earlier,
comprehensive shotgun sequencing effort including soils from
the location sampled for this experiment (Orellana et al., 2018).
The aligned sequences were then screened again using screen.seqs
followed by filter.seqs to remove sequences not aligned within
the expected region based on start and end position, and to
discard any sequences containing 8 or more homopolymers.
Remaining unique, quality-filtered sequences were then clustered
using pre.cluster followed by dist.seqs using either the AGC
clustering approach implemented with VSEARCH, or the Opti-
MCC method, both at a 97% similarity cutoff. These approaches
will be referred to as AGC-0.03 and MCC-0.03 hereafter. Because
the AGC method routinely produces fewer OTUs than the
Opti-MCC method, an additional trial of AGC was included
at 98% similarity (AGC-0.02) to evaluate whether differing
results between AGC and Opti-MCC were the result of OTU
counts. Coverage was calculated for each sample in Mothur
using rarefaction.single followed by summary.single commands
with the inverse Simpson metric. Representative sequences for
each OTU were taxonomically classified using the Wang method
(Wang et al., 2007) implemented in Mothur. For nifH, the
FunGene database was used for classification; for nrfA we present
results for both the FunGene database as well as a novel clade-
based taxonomic database. The latter was created by prepending
the clade designations identified in Welsh et al. (2014) to
each taxonomic rank to facilitate taxonomic classification for
genes like nrfA whose functional gene and phylogenetic markers
have incongruent evolutionary histories. This allows for better

FIGURE 1 | Workflow used for each analysis.

differentiation between taxonomic groups which appear within
more than one clade of nrfA. Cutoffs for taxonomic classification
were set at 70% similarity for nifH and 50% similarity for nrfA,
based on estimates generated in ClustalW for average percent
identity between the sequences in the FunGene database for each
(71.68 and 50.34% similarity, respectively). Amplicon sequence
data for 16S rRNA genes and N-cycling functional genes are
available for download on the NCBI SRA database via the
BioProject accession number: PRJNA752786.1

Analyses and Metrics Assessed
The resulting OTU tables were subjected to identical downstream
analyses (Figure 1). For analyses requiring even read depth,
ten independent rarefactions were executed using command
rarefy_even_depth in R package Phyloseq. OTU tables were
rarefied to the lowest read depth present. Each OTU table was
rarefied using the same array of ten random seeds to ensure
comparability and repeatability. Skewness of unrarefied OTU
tables was assessed using Fisher’s Skewness implemented in R
package MultiSkew, and homogeneity of dispersions was assessed
using PERMDISP implemented in R package vegan.

Alpha diversity was estimated using the Chao1 richness index
and Shannon diversity index. The Chao1 index emphasizes
rare organisms and predicts the number of taxa in a sample
by extrapolating rare taxa that may have been missed due to

1https://www.ncbi.nlm.nih.gov/sra/PRJNA752786
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undersampling. The Shannon index combines both richness and
evenness to quantify the uncertainty associated with predicting
a randomly sample taxon. By comparing these two indices
between methods, we can determine whether the OTU tables
generated by each differ in richness or evenness. Chao1 and
Shannon estimates were generated for each OTU table using
estimate_richness function in Phyloseq, corrected for multiple
comparisons using Tukey’s HSD at α = 0.05. Conclusions
regarding which treatment groups were more or less diverse than
others were compared between pipeline datasets to determine
if richness comparisons between treatment groups are biased
by upstream clustering. Subtle differences in the information
provided by each metric may be used to identify the mechanism
by which pipelines produce different qualitative conclusions
downstream, if any.

Multivariate analyses PERMANOVA and ANOSIM were used
to determine community-level differences among treatments,
using the adonis and anosim functions in R package vegan
(Oksanen et al., 2019), corrected for multiple comparisons using
the Benjamini-Hochberg method (Benjamini and Hochberg,
1995), the multivariate analog of Tukey’s HSD. The number
of trials out of ten independent rarefaction trials for which
each pairwise comparison was significant at α = 0.05 were
tallied and compared between pipelines. Both agreement between
each clustering methods’ individual pairwise conclusions (i.e.,
communities significantly different or not) as well as robustness
to repeated rarefaction (i.e., number of times among ten
rarefaction trials that treatment differences were found to be
significant) were considered. PERMANOVA is a permutational,
non-parametric analog of the MANOVA, a centroid-based
analysis of variance for multivariate datasets. Therefore, null
hypotheses rejected during PERMANOVA analyses denote a
significant difference between multivariate centroids specifically.
ANOSIM, however, is a rank-based omnibus test which is
sensitive to differences in centroid, as well as other underlying
aspects of data structure, including skewness, correlation, and
more. Differences in conclusions between the two analyses
therefore shed light on which aspects of the underlying data differ
between agricultural treatment groups.

OTUs that were differentially abundant between one or more
treatment groups were identified for each resulting pipeline
dataset using the parametric Wald test in R package DESeq2.
As this package implements a negative binomial mixed model
designed to circumvent the need for rarefaction, this analysis was
applied only to unrarefied datasets. Beta diversity comparisons
are generally unaffected by extremely rare taxa; therefore, only
the top 100 most abundant OTUs were considered for this
analysis. Agreement between pipelines was assessed based on

agricultural treatments found to have higher or lower abundance
of identified taxa.

RESULTS

Operational Taxonomic Unit
Characteristics—nifH
As anticipated, the AGC-0.03 method produced the fewest OTUs
for a total of 4,242 (Table 1). The next largest OTU count
was produced by the MCC-0.03 method with 5,810 OTUs
generated. Tightening the similarity threshold for the AGC
method to 98% resulted in roughly twice as many OTUs as the
other methods. Among methods, singleton OTUs represented
comparable proportions of total OTUs (Table 1). At a 97%
similarity cutoff, the MCC-0.03 method yielded 28% more non-
singleton OTUs and 43% more singleton OTUs than the AGC-
0.03 method.

The lowest read depth for the nifH dataset was 182, which
represented an average coverage ranging from 90.7 to 97.1%
for the AGC-0.03 method, and a range from 87.7 to 95.7%
for the MCC-0.03 method (Table 2). Rarefaction to this depth
resulted in 90% fewer OTUs for both AGC-0.03 and MCC-0.03
methods, and 93% for the AGC-0.02 method. Skewness within
the unrarefied OTU tables followed similar patterns for both the
AGC and MCC methods, with the AGC-0.03 method producing
slightly less skewness. This is largely the result of the higher
number of singleton OTUs generated using the MCC method.
Despite this, dispersions for each treatment were homogenous for
both methods, averaging approximately 0.65 distance to median
for all treatments and methods.

Alpha Diversity—nifH
Alpha diversity measures on the unrarefied OTU tables were
very similar between the two methods, with Chao1 in good
agreement and Shannon exhibiting similar patterns with slightly
differing pairwise comparison differences (Figure 2). Chao1
richness estimates were slightly larger in magnitude for the MCC
method compared to AGC. These similarities between methods
persisted post-rarefaction, and results did not differ between
rarefaction trials.

Community Analyses—nifH
Multivariate community analyses on rarefied datasets agreed
among all methods. All pairwise comparisons except T1 vs. T3
generated significant ANOSIM results, with R-values ranging
from 0.2 to 0.9. For each pairwise comparison, R-values

TABLE 1 | nifH OTU table and rarefaction characteristics for each clustering method.

Method OTUs pre-
rarefaction

Singleton
OTUs

Percent
singletons

Avg OTUs
post-rarefaction

OTUs lost
post-rarefaction

Percent lost

AGC-0.03 4,242 2,768 65% 444 3,798 90%

MCC-0.03 5,810 3,928 68% 583 5,227 90%

AGC-0.02 9,768 7,033 72% 687 9,081 93%
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TABLE 2 | nifH OTU table statistics for each agricultural treatment.

Method Treatment Avg rarefied
coverage

Unrarefied
skewness

Avg
unrarefied
distance to

median

AGC-0.03 T1 96.7% 37.9 0.654

T2 95.8% 29.4 0.653

T3 97.1% 42.9 0.653

T4 90.7% 28.2 0.654

MCC-0.03 T1 95.2% 42.5 0.655

T2 94.9% 32.1 0.652

T3 95.7% 45.5 0.654

T4 87.7% 31.8 0.643

differed only slightly between methods, and would be considered
qualitatively the same in terms of describing relative effect sizes.

For all pairwise comparisons except T3 vs. T4, PERMANOVA
results were always in agreement among independent rarefaction
trials, at either 10/10 rarefied datasets yielding significant
community differences, or 0/10 (Table 3). These results remained
consistent when considering only the top 100 OTUs, which
represented 83 and 76% of the total sequences for the AGC-0.03
and MCC-0.03 datasets, respectively. In the case of the T3 vs. T4
comparison, neither method generated consistent PERMANOVA
results across rarefaction trials. This was despite consistently
significant ANOSIM results, and comparatively the highest effect
size according to ANOSIM, at R ≈ 0.9. These two agricultural
treatments represent the most skewed and least skewed OTU
data for both methods, suggesting that ANOSIM can detect this
difference in skewness between treatments.

The variance explained by each PERMANOVA model,
represented as its R2 value, compared to its adjusted p-value
followed very similar trends for all methods (Supplementary
Figure 1). The range of effect sizes identified in all OTUs was

lower for the AGC-0.02 method, due to the presence of twice as
many OTUs as the others. For the top 100 OTUs, the MCC-0.03
method yielded a higher upper end to the range of effect sizes.

Differential Abundance—nifH
Differential abundance analysis using DESeq2 on the unrarefied
OTU tables generated results that were largely in agreement
(Figure 3). The MCC-0.03 method detected higher relative
abundance of Rhizobiales in both T1 and T4 treatments,
compared to the other treatments, but AGC-0.03 only detected
this taxon in higher relative abundance in the T4 treatment.

Operational Taxonomic Unit
Characteristics—nrfA
Similar to the trends seen in the nifH datasets, the AGC-0.03
method produced the fewest OTUs, followed by MCC-0.03 and
then AGC-0.02 (Table 4). The AGC-0.03 method generated
12,144 OTUs, of which 5,280 (43%) were singleton OTUs,
compared to 16,497 OTUs and 8,320 (50%) singletons generated
by the Opti-MCC method at the same cutoff. In contrast to
results for nifH, the AGC-0.02 method applied to nrfA produced
comparatively more OTUs than the other methods, generating
nearly 4 times more OTUs compared to AGC-0.03 and nearly 3
times more OTUs over MCC-0.03.

The lowest read depth for the nrfA dataset was 4,096, which
resulted in average coverages ranging from 93.4 to 96.2% for
AGC-0.03 and 92.3–94.6% for MCC-0.03 (Table 5). Rarefying
to this depth resulted in an average of 7,791 OTUs, or a loss of
36% for the AGC-0.03 method, and an average of 9,912 OTUs,
or a loss of 40%, for MCC-0.03. In all cases, the percent lost
upon rarefaction was comparatively smaller than it was for nifH.
The reduction in loss upon rarefaction was partly due to the
skewness for the nrfA datasets, which was much higher than for
nifH, ranging from 40.4 up to 64.6. This indicates that a larger
proportion of the data are “smeared” out toward the tail, and thus

FIGURE 2 | Chao1 and Shannon alpha diversity measures for nifH for AGC-0.03 (A) and MCC-0.03 (B) methods. Letters indicate significance at α < 0.05 via
ANOVA with Tukey’s HSD correction for multiple comparisons.
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TABLE 3 | nifH community analysis results for each clustering method across ten independent rarefaction trials.

Treatment
comparison

Method Avg sig ANOSIM
rarefied R

Sig PERMANOVA of 10
rarefactions for all OTUs

Sig PERMANOVA of 10 rarefactions for
top 100 OTUs

T1 vs. T2 AGC-0.03 0.282 10 10

MCC-0.03 0.360 10 10

AGC-0.02 0.309 10 10

T1 vs. T3 AGC-0.03 n.s. 10 10

MCC-0.03 n.s. 10 10

AGC-0.02 n.s. 10 10

T1 vs. T4 AGC-0.03 0.640 0 0

MCC-0.03 0.671 0 0

AGC-0.02 0.624 0 0

T2 vs. T3 AGC-0.03 0.297 0 0

MCC-0.03 0.287 0 0

AGC-0.02 0.315 0 0

T2 vs. T4 AGC-0.03 0.717 10 10

MCC-0.03 0.741 10 10

AGC-0.02 0.775 10 10

T3 vs. T4 AGC-0.03 0.797 2 7

MCC-0.03 0.876 4 9

AGC-0.02 0.839 2 6

Significance assessed at α = 0.05. n.s. in various spots means “not significant.”

random subsampling is more likely to collect data points from the
full range, compared to a dataset which is less skewed. Dispersion
for nrfA was homogeneous between all agricultural treatments
and clustering methods, and ranged narrowly from 0.644 to 0.652
distance to sample median.

Alpha Diversity—nrfA
Trends in nrfA alpha diversity metrics were roughly similar
between the AGC and MCC clustering approaches, though
statistical significance of pairwise comparisons for certain
metrics differed in some cases (Figure 4). The MCC-0.03
method detected no significant differences in Chao1 richness
among treatments, while several pairwise treatment differences
occurred in the OTU table generated via the AGC-0.03 method.
Additionally, the magnitude of these estimates varied, with
Chao1 estimates from the AGC-0.03 OTU table being slightly
higher than that of the MCC-0.03, opposite of the trend observed
for nifH. Shannon diversity estimates, which consider evenness
in addition to richness, did not differ between the AGC and
MCC methods. Similar to nifH, these trends for nrfA alpha
diversity persisted post-rarefaction and did not differ between
rarefaction trials.

Community Analyses—nrfA
ANOSIM results for all pairwise agricultural treatment
comparisons were significant across all clustering methods,
with effect sizes (R) ranging from 0.492 to 0.759 (Table 6).
Effect sizes for each pairwise comparison were similar between
MCC-0.03 and AGC-0.03 methods, with AGC-0.02 exhibiting
slightly lower R-values due to its substantially larger OTU count.
Overall, agricultural treatment effect sizes were similar among
clustering methods, yielding the same qualitative interpretations.

PERMANOVA results differed substantially between
clustering methods, with only the MCC method yielding
consistent qualitative results among rarefaction trials at either
10/10 or 0/10 significant results obtained for each pairwise
agricultural treatment comparison. For three of the four pairwise
comparisons that the MCC method identified as being significant
in all rarefaction trials, the AGC method only returned significant
treatment differences in 20–40% of the trials. The fourth pairwise
comparison was the only one for which the AGC method
produced significant results in all rarefaction trials. For the
two pairwise comparisons in which the MCC method yielded
no significant treatment differences in any rarefaction trial,
the AGC method also yielded no significant results from any
rarefaction trial.

For analyses of only the top 100 OTUs, which represented 45
and 42% of total reads for AGC-0.03 and MCC-0.03 respectively,
results also differed depending on clustering method. The MCC-
0.03 approach did not produce significant pairwise agricultural
treatment differences in the top 100 OTU communities except
for one pairwise comparison (T1 vs. T3), in which it produced
a significant treatment difference in 7 out of 10 rarefaction
trials. Conversely, the AGC method tended to identify significant
treatment differences more consistently among the top 100
OTUs compared to all OTUs. For example, for T1 vs. T2,
the AGC method produced significant differences in all ten
rarefaction trials when evaluating the top 100 OTUs only,
as opposed to only four of the trials when evaluating all
OTUs. These results indicate that the AGC-0.03 method
partitions variation due to treatment differences into the most
abundant (top) OTUs.

Increasing the OTU number by increasing the similarity cutoff
for the AGC method to 98% tended to increase the consistency
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FIGURE 3 | Differentially abundant nifH taxa among the top 100 OTUs for the
AGC-0.03 method (A) and the MCC-0.03 method (B). Significance of
differential abundance assessed at α = 0.01.

of results among rarefaction trials using all OTUs, though still
not to the 100% consistency achieved by the MCC method.
In addition, the AGC-0.02 method produced no agricultural
treatment differences among the communities comprised of the
top 100 OTUs, as these abundant OTUs represented a small
percentage of the total OTUs in the dataset.

The pairwise treatment comparisons which did not yield
consistent PERMANOVA results on AGC-clustered datasets
were generally those with comparatively lower R-values via

ANOSIM, implying a smaller effect size for those comparisons.
A comparison of the R2 values of the PERMANOVA trials vs.
their adjusted p-values shows the MCC-0.03 approach produces
OTU tables which yield significant p-values at lower effect
sizes than the AGC-0.03 approach (Supplementary Figure 2).
Conversely, while the AGC-0.02 method is able to produce
significant results at similarly low effect sizes, proportionally
fewer of the treatment comparisons are found to be significantly
different. When considering only the top 100 OTUs, the MCC-
0.03 method was able to produce effect sizes comparable to the
AGC-0.03 method, but far fewer of these achieved a significant
p-value compared to the AGC-0.03 method. In contrast to nifH,
the clustering methods applied to nrfA led to greater differences
in effect size and detectable significant treatment differences in
downstream analyses of all OTUs.

Differential Abundance—nrfA
While the overall trends in differential abundance among
agricultural treatments were generally similar between
clustering methods, there were some marked differences
between the AGC and MCC approaches, and between taxonomic
databases. The FunGene database often failed to classify
representative sequences for many differentially abundant
OTUs beyond the Kingdom level, resulting in a much larger
proportion of unclassified Bacteria in the FunGene analysis
(Figures 5A,B) compared to the clade-based taxonomic database
(Figures 5C,D). Within the FunGene-classified OTUs for AGC
and MCC, classifications for differentially abundant taxa were
generally similar. However, several differentially abundant
Myxococcales OTUs were identified from the MCC OTU
table, whereas similar sequences were classified less granularly
as Deltaproteobacteria in the AGC OTU table. The relative
abundances of these OTUs also differed across treatments, with
these taxa appearing more abundant in the T3 treatment in
the AGC OTU table, but appearing more abundant in the T4
treatment in the MCC OTU table. Both methods identified
Chthoniobacteraceae, the only non-Proteobacteria phyla
identified, as more abundant in the T4 treatment, as well as
the T3 treatment.

The clade-based taxonomic database uses a clade designation
prefix to aid the classification algorithm in differentiating
between taxa whose organismal phylogeny is mixed between
clades. Using this database, the AGC and MCC OTU tables
followed differential abundance trends similar to those found
when using the FunGene database (Figures 5C,D). As with the
FunGene-classified database, the MCC method yielded a slightly
longer list of differentially abundant taxa, with the organisms
missing from the AGC method appearing primarily in the

TABLE 4 | nrfA OTU table and rarefaction characteristics for each clustering method.

Method OTUs pre-
rarefaction

Singleton
OTUs

Percent
singletons

Avg OTUs
post-rarefaction

OTUs lost
post-rarefaction

Percent lost

AGC-0.03 12,144 5,280 43% 7,791 4,353 36%

MCC-0.03 16,497 8,320 50% 9,912 6,585 40%

AGC-0.02 44,495 24,323 55% 25,367 19,128 43%
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TABLE 5 | nrfA OTU table statistics for each agricultural treatment.

Method Treatment Avg rarefied
coverage

Unrarefied
skewness

Avg unrarefied
distance to median

AGC-0.03 T1 95.2% 59.0 0.645

T2 93.4% 41.5 0.644

T3 96.2% 61.5 0.648

T4 95.3% 40.4 0.648

MCC-0.03 T1 93.7% 60.8 0.646

T2 92.3% 24.6 0.649

T3 94.6% 64.6 0.651

T4 93.8% 42.5 0.652

T4 treatment. Both methods resulted in a small number of
unclassified differentially abundant OTUs in the T3 treatment
and a slightly larger number in the T4 treatment. Both
methods also were generally in agreement regarding the relative
abundances of OTUs which resembled clones from clades J and
K. However, only the MCC method allowed for identification of
Anaeromyxobacteraceae belonging to clade J. Because the AGC-
0.02 method produced so many OTUs, the top 100 OTUs only
contained two OTUs which were differentially abundant among
agricultural treatments, both of which were classified as Clade J
for both methods (data not shown).

DISCUSSION

The processing necessary to convert raw Illumina amplicon
sequence data to a usable OTU table can be achieved through any
number of approaches within the continuously growing toolbox
of bioinformatics methods. However, the choices made at each
step during upstream processing are liable to impact downstream
results, and the ways these choices influence different types
of data are only beginning to be explored. In this study, we

conducted a comparison of OTU tables generated from pipelines
which differed only in their clustering method on each of two
functional genes: nifH, the diagnostic gene for N-fixation, which
is comprised of only 3 clades, and nrfA, the diagnostic gene for
DNRA, which is comprised of at least 18 clades. AGC, a quicker
heuristic method, performed comparably to the slower, more
accurate hierarchical Opti-MCC method for the phylogenetically
narrow gene, nifH. For nrfA, however, which harbors a much
greater diversity than does nifH, the AGC method did not
perform as well as the Opti-MCC method, producing an OTU
table which resulted in unreliable downstream community
analyses post-rarefaction and evidence of reduced granularity
in classifying OTU taxonomy. Our results demonstrate how
clustering methods optimized for 16S rRNA phylogenies may
perform differently depending on the diversity and lineages of the
functional gene sequences being processed.

Many of the differences observed between results from the
two methods can be attributed to the strategy each uses to assign
sequences to clusters. The Opti-MCC method initializes each
unique sequence as its own OTU, and proceeds to combine these
based on all-against-all similarity comparisons for the sequences
in each cluster (Westcott and Schloss, 2017). The metric used to
optimize cluster assignment, the MCC, represents a balance of
not only true positives, but also false positives, true negatives,
and false negatives. In contrast, the AGC method approximates
this process by assigning sequences to clusters based on similarity
to an averaged centroid sequence, beginning with the most
abundant OTUs (He et al., 2015). As a “greedy” algorithm, it
places a sequence with the first OTU it finds whose centroid
sequence is within the chosen similarity cutoff. Since these
comparisons begin by considering the most abundant OTUs,
there is a risk of placing a sequence with an abundant OTU
when it would be more accurately classified in a smaller OTU
which was not considered for comparison. In other words, OTU
tables generated using AGC may have a higher rate of false
positives within the most abundant OTUs, and a higher rate of

FIGURE 4 | Chao1 and Shannon alpha diversity measures for nrfA for AGC-0.03 (A) and MCC-0.03 (B) methods. Letters indicate significance at α < 0.05 via
ANOVA with Tukey’s HSD correction for multiple comparisons.
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false negatives in rarer OTUs. This is manifested in the differing
performance of the AGC method on genes of differing diversity,
as the full breadth of diversity is more likely to be represented
among the most abundant OTUs for a phylogenetically narrow
gene compared to a broad one.

The clearest demonstration of this bias toward the most
abundant OTUs in AGC can be seen in the differing level of
consistency among PERMANOVA results for the full OTU table
vs. only the 100 most abundant OTUs. While both AGC and
Opti-MCC methods produced consistent PERMANOVA results
for analyses of all OTUs and only the top 100 OTUs for nifH, they
differed in performance for nrfA. The Opti-MCC method yielded
reliable results using the full OTU table, but many pairwise
differences became undetectable when analyzing only the top 100
OTUs. This indicates that there is enough explanatory power in
the data beyond of the top 100 OTUs that differences become
difficult to detect when the less abundant OTUs are excluded.
For the AGC method, however, we observed the opposite: for
many PERMANOVA results which were inconsistent among
rarefaction trials when the full dataset was analyzed, results
became more reliable when only the top 100 OTUs were
considered. These results demonstrate that explanatory power
is concentrated more heavily in the most abundant OTUs when
clusters are assembled using AGC.

Although the Opti-MCC method failed to produce consistent
PERMANOVA results using only the top 100 OTUs, the
taxonomic classification within the top 100 OTUs was more
granular than that achieved from AGC. This speaks to the
accuracy of the original cluster assignment, as fewer false
positives result in a more precise representative sequence which

can be better resolved against a reference database. When the
AGC method assigns sequences preferentially to abundant OTUs
without searching for a better fit among less abundant OTUs,
the result is “fuzzier” clusters with a wider variety of sequences,
resulting in an increasingly generic representative sequence. This
may lead to poorer granularity in taxonomic classification. While
we can circumvent some of the drawbacks of AGC-clustered
OTUs by focusing only on the most abundant OTUs, taxonomy
assignments may still suffer.

In contrast to the variable results obtained using
PERMANOVA, the results from the same datasets were strikingly
consistent when analyzed using ANOSIM: across all clustering
methods and rarefaction trials, ANOSIM results consistently
agreed in both statistical significance and approximate effect size.
ANOSIM is a rank-based omnibus test which detects differences
in several aspects of underlying data structure (Anderson
and Walsh, 2013). Therefore, the observed consistency in
results among clustering methods indicates that the agricultural
treatment differences present in the sequence data were preserved
in both the AGC and Opti-MCC datasets—and still differ with
the same quantifiable magnitude—but that these differences are
simply being structured differently within the OTU tables. In the
case of the AGC-constructed nrfA OTUs, this structure made it
difficult to detect these treatment differences via PERMANOVA
when assessing the full OTU table. In addition to consistent
ANOSIM results, processed data from both methods shared
many similarities in terms of alpha diversity metrics. Results
generated from each method followed the same treatment
patterns and exhibited comparable effect sizes, for both the
unrarefied OTU tables as well as each independently rarefied

TABLE 6 | nrfA community analysis results for each clustering method across 10 independent rarefaction trials.

Treatment
comparison

Method Avg sig ANOSIM
rarefied R

Sig PERMANOVA of 10
rarefactions for all OTUs

Sig PERMANOVA of 10 rarefactions for
top 100 OTUs

T1 vs. T2 AGC-0.03 0.590 4 10

MCC-0.03 0.583 10 0

AGC-0.02 0.492 7 0

T1 vs. T3 AGC-0.03 0.590 2 9

MCC-0.03 0.584 10 7

AGC-0.02 0.559 1 0

T1 vs. T4 AGC-0.03 0.714 0 0

MCC-0.03 0.731 0 0

AGC-0.02 0.618 0 0

T2 vs. T3 AGC-0.03 0.729 4 1

MCC-0.03 0.715 10 0

AGC-0.02 0.624 9 0

T2 vs. T4 AGC-0.03 0.759 10 10

MCC-0.03 0.724 10 0

AGC-0.02 0.685 10 0

T3 vs. T4 AGC-0.03 0.738 0 0

MCC-0.03 0.670 0 0

AGC-0.02 0.607 0 0

Significance assessed at α = 0.05.

Frontiers in Microbiology | www.frontiersin.org 11 May 2022 | Volume 13 | Article 730340

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-13-730340 May 21, 2022 Time: 15:15 # 12

Egenriether et al. Functional Gene Diversity and OTU Clustering

FIGURE 5 | Differentially abundant nrfA taxa among the top 100 OTUs for the AGC-0.03 method classified using the FunGene database (A), the MCC-0.03 method
using the FunGene database (B), the AGC-0.03 method using the clade-based database (C), and MCC-0.03 using the clade-based database (D). Significance of
differential abundance assessed at α = 0.01.

OTU table. While the outcomes of some analyses may differ
between methods, these results demonstrate that the two can still
produce very similar results for others.

While tightening the similarity cutoff for the AGC method
resulted in many more OTUs, it still did not produce the
same consistency among rarefied analytical results as the Opti-
MCC method. While some pairwise comparisons improved in
reliability, e.g., two trials resulting in 4/10 significant differences
detected at 97% similarity improved to 7/10 and 9/10 significant
under 98% similarity, others did not improve. In addition, the
large number of OTUs rendered detection of differences within
the top 100 OTUs impossible, and consideration of only the top
100 OTUs was no longer appropriate for determining differential
abundance among treatments. Therefore, although using a
higher similarity threshold marginally improved performance, it

introduced additional issues, such as the need to reevaluate and
identify appropriate cutoffs for differential abundance analyses.
This clearly demonstrates the importance of prioritizing quality
of OTU cluster formation over quantity of OTUs, as more is not
necessarily better.

This study aimed to explicitly compare the impact of two OTU
clustering algorithms on downstream analyses while holding
constant all other aspects of the bioinformatics pipeline. While
this approach allowed us to directly quantify the impact of
clustering algorithm alone, this also limits the comparison to
clustering approaches that may be implemented using the same
pipeline and otherwise identical steps. However, an increasing
number of researchers are beginning to turn to the use of
amplicon sequence variants (ASVs) in lieu of OTUs, an approach
which “denoises” the unprocessed sequence reads by clustering
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them into biologically meaningful groups independently of a
predefined level of similarity (Hugerth and Andersson, 2017).
A popular implementation of this approach is through the
package DADA2 (Callahan et al., 2016), which begins by
initializing clusters based on amplicon abundance (where, as
in the AGC heuristic, more common sequences are assumed
to be more biologically accurate) and sequence distance from
other reads. The quality scores assigned to each base by the
sequencing platform are then used to build an error model
to “correct” reads by assigning low frequency reads to higher
frequency reads from which they may have been derived via
sequencing errors (Hugerth and Andersson, 2017). While this
approach circumvents some of the pitfalls of OTU clustering at
a fixed threshold, it is important to note that such denoising
algorithms are still performing clustering operations and many
of the same considerations regarding how performance may vary
between functional genes of contrasting diversity may still apply.

Functional genes are increasingly assessed in microbiome
research because they can shed light on the ways that our
experimental treatments impact different functional group
communities and the ecological processes they perform.
However, in some cases, these functional genes represent a vast
range of diversity and divergent lineages, with some comprised
of only a few clades, and others an order of magnitude more. This
study demonstrated some of the differences that can manifest
when applying differing clustering algorithms to sequences from
genes on opposite ends of the diversity spectrum. While the AGC
method performed well on a gene with little diversity, it resulted
in unreliable analytical outcomes for some tests when applied
to a more diverse gene. This is especially problematic when we
consider that functional gene community analyses are typically
presented together as a means to demonstrate which functional
groups are differentially impacted by a treatment. If we choose
a method which obstructs detection of treatment differences
in diverse genes, we introduce biased Type II errors by failing
to identify treatment effects in some genes but not in others.
Surprisingly, despite rarefying to a very low read depth for nifH,
Type II errors were not introduced, and treatment differences
were detected consistently among methods. This emphasizes the
importance of considering gene characteristics when selecting
methods, as more Type II errors were introduced simply by
clustering nrfA sequences with the AGC method than were
introduced by rarefying to a low read depth for nifH.

Ultimately, the reliability of our downstream analyses and
subsequent conclusions is only as good as our upstream
processing. For questions which can be answered using tests

agnostic to clustering method (e.g., ANOSIM), or for genes of
relatively low phylogenetic diversity (e.g., nifH), most upstream
processing methods should lead to similar conclusions from
downstream analyses. For studies involving more diverse genes,
however, care should be exercised to ensure accurate clustering
for all genes. Most importantly, we must continually reassess
the performance of our preferred bioinformatics tools as
technology continues advancing and more sophisticated methods
become available.
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