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Asthma is a multifactorial disorder characterized by the airway chronic inflammation,
hyper-responsiveness (AHR), remodeling, and reversible obstruction. Although asthma is
known as a heterogeneous group of diseases with various clinical manifestations, recent
studies suggest that more than half of the clinical cases are ‘‘T helper type 2 (Th2)-high’’
type, whose pathogenesis is driven by Th2 responses to an inhaled allergen from the
environmental exposures. The intensity and duration of inflammatory responses to inhaled
allergens largely depend on the balance between effector and regulatory cells, but many
questions regarding the mechanisms by which the relative magnitudes of these opposing
forces are remained unanswered. Regulatory T cells (Tregs), which comprise diverse
subtypes with suppressive function, have long been attracted extensive attention owing to
their capability to limit the development and progression of allergic diseases. In this review
we seek to update the recent advances that support an essential role for Tregs in the
induction of allergen tolerance and attenuation of asthma progression once allergic airway
inflammation established. We also discuss the current concepts about Treg induction and
Treg-expressed mediators relevant to controlling asthma, and the therapies designed
based on these novel insights against asthma in clinical settings.

Keywords: regulatory T cells, allergic airway inflammation, asthma, airway epithelial repair, therapeutic strategies
INTRODUCTION

Asthma is a chronic airway inflammatory disease that affects more than 350 million individuals
worldwide (1). The etiology underlying asthma includes both genetic predisposition and
environmental exposures (2). In general, the airway inflammation in asthmatic setting arises
from the reaction in response to allergens and/or other environmental factors, thereby leading to an
aberrant airway Th2-type immune response (3). Although a great effort of studies had advanced the
understanding of pathologic features of asthma, its mechanisms underlying the regulation of allergic
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airway inflammation are yet to be fully elucidated. As a result, the
development of novel therapeutic strategies against asthma is
confronted with formidable challenges.

There is strong evidence in animals that regulatory T cells
(Tregs) act as a key regulator of allergic diseases and are essential
to limit antigen-specific immune responses. For example, mice
deficient in CD4+CD25+ Tregs resulted from loss-of-function
mutations in the Foxp3 gene are featured by the development of
spontaneous autoimmunity, lymphoproliferation, allergic airway
inflammation, hyper IgE syndrome, and eosinophilia (4).
Similarly, adoptive transfer of ovalbumin (OVA) peptide-specific
CD4+CD25+ Tregs into the OVA-sensitized mice attenuated airway
hyper-responsiveness (AHR) along with reduced number of
eosinophils and production of Th2 cytokines in the lung
following allergen challenge (5). Foxp3+ Tregs also suppress
chronic allergic inflammation to establish allergen-tolerance in the
respiratory mucosa (6). Furthermore, manipulation of steroid
responsiveness in Tregs could represent a novel strategy to treat
steroid refractory asthma, as their responsiveness determines steroid
sensitivity during allergic airway inflammation (7). Collectively,
these studies underscore the significance of Tregs in the
regulation of allergic airway inflammation in mouse models.

Unlike the impact observed in animal models, the role of
Tregs in asthmatic patients is yet to be well defined. Studies
revealed that adult asthmatic patients with either stable or
exacerbated symptoms displayed lower percentage of Tregs
along with impaired suppressive function in the blood and
airway (8). Similarly, decreased pulmonary Treg number
coupled with lower capability to suppress pulmonary Th2
responses were observed in asthmatic children (9). In sharp
contrast, some studies also demonstrated that the amount of
airway Tregs was increased in adult patients with moderate to
severe asthma as compared to both mild asthmatic patients and
healthy subjects (10), especially in response to bronchial allergen
provocation (11). The discrepancy between these findings could
be caused by the differences of study cohorts and the approaches
for Treg analysis. Nevertheless, a consistent conclusion could
probably be reached for the impaired Treg function in asthmatic
patients, particularly for their capability to suppress Th2
responses. A recent study further suggested that the numerical
and functional defects of Tregs may render the children and
younger adults more susceptible to asthma, while the
relationship between Tregs and asthma risk or severity in older
patients is relatively weak (12). Although the contribution of
Tregs in asthma is not fully addressed, clinical improvement
following allergen immunotherapy (AIT) for asthma suggested
an association with the induction of IL-10-, IL-35- and TGF-b-
producing Tregs and Foxp3+ Tregs (13). Therefore, in this review
we seek to summarize the immunological features of allergic
asthma, and then update the recent advances that support the
role of Tregs in allergen tolerance induction and in limiting
disease severity once allergic airway inflammation established.
We also discuss the current concepts about Treg induction and
Treg-expressed mediators relevant to controlling asthma, and
the therapies designed based on these novel insights against
asthma in clinical settings.
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THE IMMUNOLOGICAL
CHARACTERISTICS UNDERLYING
ALLERGIC ASTHMA
Type 2 immunity has now been well recognized to be a critical
feature relevant to a complex network of immunologic
mechanisms in allergic asthma (14). Type 2 immune response
involves an ever-expanding repertoire of immune cells, including
Th2 cells, B cells, natural killer (NK) cells, NKT cells, basophils,
eosinophils, mast cells, and group 2 innate lymphoid cells
(ILC2s) and their associated cytokines (15). IL-4, IL-5, IL-9,
and IL-13 are predominantly produced by immunocytes, while
IL-25, IL-31, IL-33, and thymic stromal lymphopoietin (TSLP)
are released from tissue cells, particularly epithelial cells (16).

The immunological mechanisms underlying allergic response
can be classified into two main phases: (1) the sensitization and
memory phase, and (2) the effector phase. The later can be
subdivided into the immediate and late-phase reactions (17, 18).
During the sensitization and memory phase, the differentiated
and clonal expanded allergen-specific Th2 cells produce copious
amount of IL-4 and IL-13 to drive the class switching of antibody
isotypes to the e heavy chain. The allergen-specific IgE then
binds to the high-affinity FcϵRI on the surface of mast cells and
basophils, thereby contributing to the IgE sensitization of
individuals against allergens. In this phase, a memory pool of
allergen-specific Th2 and B cells is also generated, which is ready
to act upon allergen encounters. The immediate reaction of
allergic response is also termed as type 1 hypersensitive
reaction. Upon the challenge from same allergens, crosslinking
of the IgE-FcϵRI complexes on the sensitized basophils and mast
cells leads to the release of anaphylactogenic mediators (such as
vasoactive amines, prostaglandin D, platelet-activating factor,
leukotriene, chemokines, and other cytokines) responsible for
the classical immediate symptoms of allergic disease. The late-
stage reaction generally occurs following 4-6 hours of allergen
stimulation and lasts for more than a few days, and is featured by
the localized inflammatory responses mediated by the infiltrated
eosinophils, neutrophils, macrophages, Th2 cells and basophils.
The ongoing inflammation results in more severe clinical
manifestations of allergy, such as chronic persistent asthma,
allergic rhinitis, and in extreme cases, systemic anaphylactic
reactions (18).

Recent studies also suggested the involvement of epithelial
cells in allergic pathology. Barrier epithelial cells not only
represent the very first line of defense against environmental
insults, but also produce cytokines (e.g., IL-25, IL-31, IL-33, and
TSLP) and alarmins (e.g., uric acid, ATP, HMGB1, and S100
proteins) following allergen exposures (19). These signals
constitute important factors in the early phase of asthma and
promote Th2 differentiation through their effect on tissue
dendritic cells and ILC2s (20). In particular, there is evidence
that a neutralizing mAb against IL-25 results in a significantly
reduced production of IL-5 and IL-13 along with attenuated
eosinophil infiltration, goblet cell hyperplasia, and serum IgE
secretion, by which it prevents AHR following OVA-induced
allergic airway inflammation in mice (21). More excitingly,
June 2022 | Volume 13 | Article 902318
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blocking antibodies against either TSLP or IL-33/ST2 signaling
are currently at different stages of clinical trials, which could be
promising candidates for asthma treatment in clinical settings
(22, 23).

ILCs are defined as ILC type1, 2, and 3 cells based on their
transcription factors and cytokine production patterns, and
among which, ILC2s play a substantial role in the initiation,
progression, and steroid resistance of allergic airway
inflammation (20). It was noted that IL-33 targets ILC2 to
produce IL-5 and IL-13, thereby enhancing eosinophil
recruitment, goblet cell hyperplasia, macrophage M2
polarization, dendritic cell (DC) activation and Th2
differentiation (24–27). Studies revealed that the number of
total and type 2 cytokine-expressing ILC2s is significantly
higher in the peripheral blood and airway of patients with
systemic steroid-dependent severe eosinophilic asthma than
those of patients with mild asthma (28). Given that the
intracellular cytokine expression by Th2 cells within the
airways did not differ between the above two groups of
patients, The observations support that uncontrolled ILC2s
rather than Th2 cells, represent a steroid-insensitive population
of cells to exacerbate the development of airway inflammation in
patients with severe prednisone-dependent eosinophilic asthma
(28). Other distinct types of effector T cells (Teffs) may also get
involved in continuous allergic inflammation as well. For
example, although Th1 and IFN-g secreting NKT cells induce
epithelial apoptosis through cell-mediated cytotoxicity, they also
exert an inhibitory role in Th2 cells and suppress IgE isotype
switching (29). While IL-17 producing Th17 cells mediate
neutrophilic type inflammation other than exacerbating Th2-
related allergic inflammation (30). Moreover, Th9 cells employ
multiple mechanisms to orchestrate allergic inflammation, and
particularly, their interaction with diverse cell types including
mast cells, ILCs, and DCs, to promote coordinated regulation of
allergic airway inflammation (31, 32). Other than secretion of
their signature cytokine IL-9, Th9 cells from mice and humans
also secret other cytokines such as IL-10, IL-17, IL-21, and IL-22,
to facilitate immune responses in the setting of allergic asthma
(33, 34). Furthermore, studies on atopic dermatitis demonstrated
feasible evidence supporting that the expansion of Th2/Tc2 and
Th22/Tc22 may also exert an important role in allergic
inflammation (14, 35).
ORIGINS AND SUBTYPES OF TREGS

Tregs are one of the main bastions against inappropriate or over-
exuberant inflammatory responses, and play an indispensable
role in the maintenance of immune tolerance in asthma (36).
However, subsets of CD8+ T cells, CD4-CD8- T cells, gd T cells,
regulatory B cells (Bregs), IL-10-producing DCs, IL-10-
producing NK cells, and macrophage subsets with suppressive
properties also contribute to the suppressive and regulatory
events (37). Currently, two main subsets of Tregs have been
defined: the thymus-derived naturally occurring CD4+CD25hi
Frontiers in Immunology | www.frontiersin.org 3
Foxp3+ Tregs, also called tTregs, and the peripherally induced
adaptive Tregs (pTregs) (38, 39). pTregs are further divided into
Foxp3+ pTregs, Foxp3− IL-10-producing Tr1 cells, and Foxp3−

TGF-b-expressing Th3 cells. Studies in animals suggest the
Foxp3+ pTregs and IL-10-producing Tr1 cells may contribute
to the differences of asthma susceptibility associated with
different genetic background (40). Generally, Foxp3 induction
in tTregs can occur at the double positive (DP) stage or
preferentially at the CD4 single positive (SP) stage or during
the transition to this stage in the thymus (41). Interaction with
antigen presented by either cortical or medullary thymic
epithelial cells is sufficient to induce Foxp3 expression, thereby
committing T-cell precursor to Treg lineage (42). pTregs are
differentiated in the secondary lymphoid organs and tissues, and
they are particularly enriched in the intestinal mucosa and lung
during chronic inflammation, with specificities directed against
food antigens, gut microflora, and environmental allergens (43).
The induction of pTregs at the gastrointestinal tract is facilitated
by the CD103+CD11c+ DCs in a TGF-b and retinoic acid-
dependent manner (44–46), while lung tissue-resident
macrophages constitutively coexpressing TGF-b and retinal
dehydrogenases (RALDH1 and RALDH2) are the main subset
of cells driving pTreg generation from naïve CD4+ T cells (47). It
is worthy of note that the classification of Tregs could vary based
on the specific markers employed. For example, Tregs can be also
classified into nTregs, iTregs, ICOS+ Tregs, Tr1, CD8+ Tregs and
IL-17-producing Tregs (48); however, some of these Treg subsets
could be functionally overlapping or synergizing each other.

tTregs and pTregs are phenotypically distinct, and display
different specificities and complementary functions in vivo (49).
Generally, TCR on tTregs primarily recognizes self-antigens, which
is crucial for establishing self-tolerance and preventing
autoimmunity, while pTregs are thought to predominantly
govern tolerogenic responses against non-self-antigens, such as
allergens, food, and the commensal microbiota (50, 51). In a mouse
model of chronic asthma, passive transfer of pTregs efficiently
suppressed all aspects of asthmatic phenotype, whereas equal
amount of tTregs only manifested a modest impact in this
model, indicating that pTreg are substantially more tolerogenic
in this setting (52). Although both tTregs and pTregs attenuate the
development of asthma in WT recipients, those cells, however,
enhance lung allergic responses in CD8-/- recipients (53). The
reprogramming pathways and enhancement appear to be distinct
and cytokine specific, in which IL-13 production in nTreg depends
on the GITR signaling, while IL-17 production in pTregs is induced
by IL-6 signaling (53). There is evidence that tTregs stability in
allergic settings is maintained by the epigenetic mechanisms and
metabolites generated by themselves such as cyclic adenosine
monophosphate (cAMP) (50). In contrast, the instability of
Foxp3 expression and loss of suppressive function in pTreg are
closely related to the methylation state of the Treg-specific
demethylated region (TSDR) (50). Therefore, the regulatory
mechanisms underlying the maintenance of Treg stability and
functionality are essential to the development of effective
strategies against allergic airway diseases.
June 2022 | Volume 13 | Article 902318
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CELLULAR AND MOLECULAR
MECHANISMS UNDERLYING TREG
ATTENUATION OF ASTHMA

The suppressive functions of Tregs in allergic inflammation are
mediated by an ever-growing list of mechanisms (Figure 1).
Tregs can suppress antigen presentation cells (APCs) to activate
Teffs, while enhancing the function of tolerogenic DCs. Tregs
inhibit the migration and functionality of Teffs including Th1,
Th2, and Th17 cells. Tregs also repress the secretion of allergen-
specific IgE from plasma cells and induce IgG4-secreting B cells
and IL-10-producing Bregs. Other than Teffs, Tregs are able to
suppress the activation of eosinophils, basophils, mast cells, NKT
cells, and ILC2s (14, 54). The above-mentioned suppressive
functions from Tregs are introduced by a number of soluble
and membrane-bound molecules such as cytokines with
inhibitory effect (e.g., IL-10, TGF-b and IL-35), enzymes or
proteins relevant to cytolysis (e.g., granzymes A, B and K, and
perforin), membrane proteins and signaling molecules relevant
to metabolic homeostasis (e.g., CD25, CD39, CD73, cAMP,
LAG3, adenosine receptor 2, and histamine receptor 2), and
surface molecules (e.g., PD-1 and CTLA-4) for targeting DCs
(38, 55–57).

The key role played by IL-10 and TGF-b in the context of
allergic asthma is now well established (summarized in Table 1).
Frontiers in Immunology | www.frontiersin.org 4
Apart from Tregs, IL-10 is also released by Bregs, monocytes, a
small fraction of NK cells, macrophages, DCs and ILCs (15). IL-
10 exerts its effect on both innate and adaptive immune
responses, thereby inducing immune tolerance and dampening
tissue inflammation (90). For example, transfer of OVA peptide-
specific Tregs to OVA-sensitized mice repressed AHR,
eosinophil recruitment, and Th2 cytokine expression in the
lung following allergen challenge (5), which was reversed by
the application of IL-10R blocking antibody (5). It is worthy of
note that the IL-10-producing Tr1 cells also represent an
essential mechanism in immune tolerance to a high dose of
allergens in nonallergic individuals, such as high dose bee venom
exposure in beekeepers by natural bee stings (55).

TGF-b is a pleiotropic cytokine and Tregs are the major source of
its secretion. The implication of TGF-b in allergic asthma is
complicated, and confronting effects are observed (38). It has been
recognized that TGF-b produced by Tregs is indispensable for the in
vivo pTreg expansion and immunomodulatory functionality in an
autocrine manner, which is crucial for the induction of immune
tolerance and design of alternative mucosal vaccination strategies.
However, TGF-b has also been noted to increase mucus production,
promote airway remodeling and fibrosis in asthmatic settings, which
could be prevented by the anti-TGF-b therapy in allergen challenged
animals (91). Therefore, further studies are required to elucidate the
paradoxical role of TGF-b in the regulation of allergic asthma.
FIGURE 1 | Tregs control ongoing inflammation by acting on major cells that drive allergic reaction, including antigen presentation cells, Teffs, NKT cells, ILC2s,
eosinophils, basophils, and mast cells. Tregs suppress IgE-producing B cells, while induce IgG4-producing B cells and IL-10-producing Bregs, and promote the
generation of tolerogenic dendritic cells. APC, antigen presentation cell; EOS, eosinophil; BAS, basophil; MC, mast cell.
June 2022 | Volume 13 | Article 902318
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THE IMPLICATION OF TREGS IN AIRWAY
REMODELING

Airway remodeling refers to the pathological restructuring of the
small and large airways in asthma, including neovascularization,
subepithelial fibrosis, loss of epithelial integrity, goblet cell and
mucus gland enlargement, and increased airway smooth muscle
(ASM) mass (92). These pathophysiological changes result in
alterations in the composition and structural organization of
molecular and cellular components that constitute the airway. As
a consequence, the asthmatic patients manifest the presence of
airway narrowing and edema, AHR, and mucus hypersecretion,
which is relevant to the poor clinical outcomes in asthmatic
patients (93).

Airway remodeling is induced by factors from both
inflammatory cells and structural cells. In general, the change
of structural cells is under the influence of inflammatory cells
(94). A variety of inflammatory cells presented in the asthmatic
airways is able to produce mediators that have the potential to
induce airway remodeling, such as cysteinyl leukotrienes
(CysLTs), IL-13, endothelins, TGF-b, and epidermal growth
factor (EGF). Vascular endothelial growth factor (VEGF) is an
angiogenic factor, which has also been shown to induce airway
remodeling and enhance Th2-mediated lung inflammation (95).
Secretion of VEGF by cultured ASM cells is upregulated in
response to the proinflammatory cytokines, TNF-a and IL-1b
(96), or the Th2 cytokines, IL-13 and IL-4 (97). Therefore, the
infiltrated immune cells are considered as “amplifiers” of airway
remodeling (98). Indeed, sustained immune responses are key
drivers in exacerbating the development of airway remodeling.
For example, cytokines produced by the infiltrated Th2 cells,
such as IL-4 and IL-13 enhance subepithelial fibrosis, mucous
hyperplasia, and collagen deposition to promote airway
remodeling (99–101). Similarly, alveolar macrophages
contribute to airway remodeling through the release of matrix
Frontiers in Immunology | www.frontiersin.org 5
metalloproteinases to alter the extracellular matrix (ECM) and
airway structure (102). Although the role of Th17 cells in airway
remodeling remains controversial, a synergistic effect of DCs
together with Th17 cytokines to promote the accumulation of
fibrotic matrix components that correlate with TGF-b expression
had been observed (103). It is noteworthy that all of above
mentioned immune responses are relevant to the suppressive
function of Tregs, and therefore, the role of Tregs in airway
remodeling has recently been highly appreciated.

Indeed, data collected from animal studies characterized
signaling molecules and transcription factors implicated in
airway remodeling, which are closely related to Treg function
(94, 104, 105). Specifically, transfer of CD4+CD25+ Tregs at the
peak of acute inflammation before the onset of airway
remodeling reversed established airway inflammation and
prevented the development of airway remodeling (106),
supporting a role of Tregs in the prevention of airway
remodeling. Similarly, adoptive transfer of tTregs caused a
substantial reduction in bronchoalveolar lavage eosinophil
composition and suppressed airway remodeling and T cell
migration into the lung of STAT6 and RAG2 double knockout
mice, confirming the role of Tregs in repressing allergic airway
inflammation and remodeling (107). There is also feasible
evidence that Th17 responses in chronic allergic airway
inflammation abrogate Treg-mediated tolerance, and thereby
contributing to airway remodeling (108). More interestingly,
adoptive transfer of Tregs into OVA-induced asthmatic mice at
the chronic stage selectively reduced the vessel numbers in both
peritracheal and peribronchial regions and the lung parenchyma
(109), which indicate a potential role of Tregs in the regulation of
structural cells such as endothelial cells, smooth muscle cells and
mesenchymal cells during the development of airway remodeling
in asthmatic settings other than immune cells. Therefore, the
exact impact of Tregs on airway remodeling in asthmatic setting
is worthy of further investigations.
TABLE 1 | Summarized functions of IL-10 and TGF-b in allergic asthma.

IL-10 TGF-b

Inhibits antigen present cell (APC) maturation, antigen presentation and pro-
inflammatory cytokine secretion (58)
Induces IL-10-producing DCs (59)

Inhibits DC maturation and antigen presentation; promotes Langerhans cell
development (60, 61)
Stimulates cells at the resting state (monocytes), whereas activated cells
(macrophages) are inhibited (62)

Inhibits mast cell activation and release of pro-inflammatory cytokines (63)
Inhibits eosinophil and basophil cytokine production (5)
Suppresses ILC2 activation and cytokine production (64)

Inhibits expression of FcϵRI (65)
Promotes chemotaxis of neutrophils, eosinophils, and mast cells (66–68)

Suppresses allergen-specific Teffs (69) Suppresses allergen-specific Teffs (70, 71)
Associates with CTLA-4 expression on T cells (72)
Promotes T cell survival (73)

Suppresses IgE (74)
Induces IgG4 and IgA (75)

Suppresses class switching to the majority of IgG isotypes (76, 77)
Suppresses IgE (78)
Induces IgA (79)

Enhances B cell survival (75, 80) Inhibits B cell proliferation (81)
Promotes apoptosis of naïve or immature B cells (82, 83)

Promotes the generation of Tr1 cells (84) Induces Foxp3 and suppressive function of Tregs (72, 85)
Induces Th9, Th17 and Tfh cells under different conditions (86–88)

Synergistic effect in in vivo suppression with CTLA-4, PD-1 and TGF-b (89) Synergistic effect in in vivo suppression with CTLA-4, PD-1 and IL-10 (89)
June 2022 | Volume 13 | Article 902318
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THE ROLE OF TREGS IN AIRWAY
EPITHELIAL REPAIR

Asthmatic patients generally manifest different levels of chronic
airway inflammation with airway epithelial damage that occurs
even in mild, early and nonfatal asthma (110, 111). Damage and
shedding of airway epithelial cells are important pathological
features of asthma, and altered epithelium in the airway is more
susceptible to injury and apoptosis than those from non-
asthmatic individuals (112). Specifically, epithelial cells derived
from asthmatic patients collected by bronchial brushing seem to
be more hyperreactive and less viable (113), which likely results
from inflammatory damage. Furthermore, the airway of
asthmatic patients is characterized by the dysregulation of
airway epithelial repair, leading to a chronic cycle of wound
repair coupled with bronchial remodeling (110).

Except for the immunosuppressive function and capacity to
limit the intensity and sustained time of immune responses,
Tregs also participate in non-immunological processes such as
tissues repair during extensive inflammation. The presence of
Tregs has been documented in several non-lymphoid tissues,
including lung, skin, placenta, intestinal mucosa, adipose tissue,
and atherosclerotic plaques (114). Tregs rapidly accumulate in
the acutely injured skeletal muscle of mice. Ablation of Tregs
impairs muscle repair due to decreased amphiregulin, an
epidermal growth factor family member known to promote
healing and tissue regeneration (115). Another study
demonstrates that amphiregulin deficiency in Tregs results in
severe acute lung damage and a rapid decline in lung function
during influenza virus infection. In addition, anti-viral immune
responses and suppressive function of Tregs are unaltered,
suggesting these two functions are invoked by separable cues
(116). Nevertheless, implication of Tregs in airway epithelial
repair in the context of asthma has not yet been reported, which
is necessary for further investigations.
DYSREGULATION OF TREGS

Increasing clinical evidence supports that dysregulated Tregs
play an important role in the pathogenesis and chronicity of
allergic asthma. In patients with asthma and other allergic
diseases, the expression of FOXP3 is reduced as compared to
that of healthy controls (117). In atopic children, tTreg
maturation is significantly delayed as compared to that of age-
matched nonatopic children (118). Additionally, Tregs in
patients with allergic asthma exhibit impaired suppressive
function compared to those Tregs from healthy controls
(11, 119).

Several subsets of dysfunctional Tregs are relevant to allergic
asthma. Chemoattractant receptor-homologous molecule
expressed on Th2 cells (CRTH2) is one of the functional
prostaglandin D2 (PGD2) receptors, and regarded as a potent
inducer of type 2 cytokine secretion (48). The allergic asthma
patients have more CRTH2+ Tregs in the peripheral blood than
Frontiers in Immunology | www.frontiersin.org 6
healthy controls (120). These CRTH2+ Tregs produce greater
amounts of IL-4 and show less suppressive function than that of
CRTH2− Tregs in the PGD2-stimulated cultures (120). Another
dysregulated Treg subpopulation is the ILT3 (also known as
gp49B or CD85k)-expressing Tregs. Flow cytometry detected a
substantially elevated percentage of ILT3+ Tregs in mice with
massive asthma-like airway pathologies, which promoted the
maturation of IRF4+PD-L2+ DCs to activate Th2 cells (121).
Simultaneously, ILT3+ Tregs displayed a compromised
suppressive function owing to low expression of FOXP3 and
Helios (122). In mice, the expression of IL-33 receptor ST2 has
been identified in Foxp3+ Tregs in the lung (123). In the presence
of IL-33, Tregs display upregulated expression of canonical Th2
transcription factor GATA3 and IL-33 receptor ST2 along with
enhanced secretion of type 2 cytokines (122). Furthermore, Tregs
lose their ability to suppress Teffs once exposed to IL-33 (122).
However, in vitro studies suggest that ST2+ Tregs are highly
activated and superior to ST2- Tregs in suppressing CD4+ T cell
proliferation through IL-10 and TGF-b release (124). Although
those in vitro data may not mimic the in vivo situation, further
investigations would be necessary to fully address this question.
Pro-inflammatory cytokine-secreting Tregs such as IFN-g-
producing FOXP3+ cells, IL-4-producing FOXP3+ cells, and
IL-17-producing FOXP3+ cells are also noticed in asthmatic
patients, which are strongly correlated with the severity of
asthma and might be insensitive to corticosteroids (125, 126).
TREG-BASED STRATEGIES FOR
ASTHMA THERAPY

It is generally accepted that Tregs are a promising candidate for
developing effective therapies to treat immune disorders such as
allergic asthma. Current preclinical studies and clinical trials of
Treg-based therapies are mainly on the basis of two approaches:
one of which is to directly boost Treg number and functionality
in vivo, and the other is re-administration of purified, ex vivo
modified, GMP (good manufacturing practice)-compliant Tregs
back to patients (127).

Several approaches have been employed to promote the in
vivo expansion of Tregs or depletion of Teffs, leading to an
increased Treg/Teff ratio. These therapies include the
administration of IL-2 or IL-2/anti-IL-2 mAb complex, anti-
CD3 mAbs, mTOR inhibitors, and dietary or microbe-derived
pro-tolerogenic stimulators (127). Although high dose of IL-2
has been used for immunotherapy against metastatic cancer
(128), low-dose of IL-2, however, preferentially stimulates
Tregs and has shown a great potential of success in Treg-based
immunosuppressive strategies against autoimmune and
inflammatory diseases (129). Advances in the knowledge of the
functional, biophysical and structural characteristics of IL-2 have
promoted the generation of IL-2 formulations, such as IL-2/anti-
IL-2 mAb complexes (130). Depending on the clone of the anti-
IL-2 mAb, IL-2/anti-IL-2 mAb complex exerts differential effect
on the expansion of T cell subsets (131). Studies in mice revealed
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that IL-2/anti-IL-2 mAb complexed with S4B6 clone induces the
preferential proliferation of CD8+ T cells, while the IL-2/JES6-1
complex preferentially induces the expansion of Tregs by
blocking the interaction of IL-2 with IL-2Rb (CD122) and IL-
2Rg (CD132), and promoting the interaction of IL-2 with IL-2Ra
(CD25) (131, 132). Particularly, the IL-2/JES6-1 complexes have
already manifested exciting results in terms of suppressing organ
transplant rejection (133), autoimmune and inflammatory
diseases in mice such as type 1 diabetes (134), dextran sodium
sulfate-induced colitis (132), experimental myasthenia (135),
collagen-induced arthritis (136), experimental autoimmune
encephalomyelitis (133), and allergic airway disease (137). In
the model of established airway allergy, treatment with IL-2/
JES6-1 complex dampens eosinophilia and airway inflammation,
and inhibits the production of eotaxin-1 and IL-5 (137). Mucus
production, AHR to methacholine, and parenchymal tissue
inflammation are also dramatically reduced following IL-2/
anti-IL-2 mAb complex administration, which is dependent on
Treg-derived IL-10 (137). Interestingly, administration of IL-2/
JES6-1 complex also improves some manifestations of metabolic
diseases, such as obesity related chronic inflammation and
insulin resistance, which are characterized by the inflammatory
infiltration of immune cells in the adipose tissues that are
amenable to Treg modulation (138).

In neoplastic diseases, adoptive cell therapies (ACT) use T
cells engineered to express either Ag-specific TCRs or chimeric
Ag receptors (CARs) targeting specific tumor antigens to
selectively eliminate target cells, which have been approved for
the treatment of acute lymphoblastic leukemia and advanced
lymphomas (127). In addition to killing cancerous cells, ACT can
also be used to regain appropriate Treg function in the
inflammatory context. Polyclonal expansion of Tregs via TCR
represents the initial strategy for ACT. Unlike other type of
Tregs, antigen-specific Tregs are more potent in controlling local
inflammation and inhibiting T cell priming in secondary
lymphoid tissues (139). More recently, a number of
publications demonstrate the utility of CARs in Tregs (140). In
this case, Tregs are reinfused after engineering with chimeric
TCR of different types. CAR-Tregs have several characteristics
versus TCR-Tregs: (1) non-MHC-restriction and less dependent
on IL-2; (2) the hinge region provides flexibility, which enables
CARs binding to antigen in various orientations; (3) higher
antigen affinity than TCRs; and (4) more precise control of the
type of antigen-stimulated response (141).

Current preclinical studies and clinical trials for Treg ACTs in
inflammatory disorders have indicated the efficacy and technical
feasibility of these methods (142, 143). In experimentally
induced allergic asthma, CAR-redirected Tregs suppressed
allergic airway inflammation, prevented excessive pulmonary
mucus production, and attenuated the increase of allergen-
specific IgE and Th2 cytokine levels (144). Over the past few
decades, autoimmune involvement in the pathogenesis of asthma
has been proposed due to the presence of circulating
autoantibodies against diverse self-antigens/structures (145).
Frontiers in Immunology | www.frontiersin.org 7
Some patients with severe asthma have autoantibodies against
eosinophil peroxidase (EPX) and autologous cellular
components in the sputum, which may necessitate an increase
for the maintenance of corticosteroids (146). These findings raise
the potential of utilizing CAR-Treg ACT in severe and therapy-
refractory asthmatics. However, many important issues such as
managing the stability and plasticity of Tregs, directing their
homing to the desired sites, and safety concerns are still waiting
to be worked out.
CONCLUSION REMARKS

Allergic asthma involves complex innate and adaptive immune
responses to environmental allergens, resulting in airway
inflammation predominately mediated by Th2-type cells and
allergen-specific IgE (147). Both human and animal studies
show that Tregs are essential for the maintenance of self-
tolerance and immune homeostasis, and therefore, Tregs
defects are observed in asthmatic individuals as compared to
healthy controls in terms of their functionality. These discoveries
promoted the development of technologies with Treg-based
therapies, such as Treg expansion and CAR-Tregs, which may
represent a viable approach for curative therapy of allergic
diseases. Despite the current achievements, some critical issues,
such as how to improve the safety of Tregs, increase the stability
of Tregs, and direct their homing to the desired sites, are yet to be
elucidated. As a result, additional in-depth studies are necessary
to improve current therapeutic approaches against asthma in
clinical settings.
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