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Abstract

arious micro factors on the general biological activity and function
Objective:Recent studies have shown the important influence of v
of endothelial cells (ECs). Vascular endothelial growth factor (VEGF) and angiogenin (ANG) are classic micro factors that promote
proliferation, differentiation, and migration of ECs. The underlying pathophysiological mechanisms and related pathways of these
micro factors remain the focus of current research.
Data sources: An extensive search was undertaken in the PubMed database by using keywords including “micro factors” and
“endothelial cell.” This search covered relevant research articles published between January 1, 2007 and December 31, 2018.
Study selection: Original articles, reviews, and other articles were searched and reviewed for content on micro factors of ECs.
Results: VEGF and ANG have critical functions in the occurrence, development, and status of the physiological pathology of ECs.
Other EC-associated micro factors include interleukin 10, tumor protein P53, nuclear factor kappa B subunit, interleukin 6, and
tumor necrosis factor. The results of Gene Ontology analysis revealed that variations were mainly enriched in positive regulation of
transcription by the RNA polymerase II promoter, cellular response to lipopolysaccharides, negative regulation of apoptotic
processes, external side of the plasma membrane, cytoplasm, extracellular regions, cytokine activity, growth factor activity, and
identical protein binding. The results of the Kyoto Encyclopedia of Genes and Genomes analysis revealed that micro factors were
predominantly enriched in inflammatory diseases.
Conclusions: In summary, the main mediators, factors, or genes associated with ECs include VEGF and ANG. The effect of micro
factors on ECs is complex and multifaceted. This review summarizes the correlation between ECs and several micro factors.
Keywords: Endothelial cells; Vascular endothelial growth factor; Interferon; Genes

Introduction bioactive and endocrine organs with critical functions in
[2]
controlling vascular metabolism. ECs situated between
Cardio-cerebrovascular disease, the pathogenesis of which
mainly involves atherosclerosis (AS), is a leading cause of
disability and death, with acute coronary syndrome (ACS)
being one of the more common cardio-cerebrovascular
diseases. ACS is a group of clinical syndromes with a
pathological basis of rupture or invasion of coronary
atherosclerotic plaques and subsequent complete or
incomplete occlusive thrombosis, including acute ST-
segment-elevation myocardial infarction, acute non-ST-
segment-elevation myocardial infarction, and unstable
angina pectoris. Injury of vascular endothelial cells (ECs) is
the initial factor in AS development. Therefore, a review of
the literature on ECs is necessary.

During the past few years, researchers have established
that ECs represent a metabolically active organ rather than
a passive barrier between blood and tissues.[1] ECs are vital
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vascular tissues and blood can not only accomplish the
metabolism of interstitial fluid and blood but also
synthesize and secrete many vasoactive substances that
maintain normal blood flow and long-term vessel patency
as well as regulate blood pressure and anticoagulation-
coagulation balance.[3]

The main micro factors associated with ECs include
vascular endothelial growth factor (VEGF), angiogenin
(ANG), interferons (IFNs), and several others; these
factors are secreted by inflammatory leukocytes and some
non-leukocytic cells and act as intercellular mediators.
They differ from classic hormones in that they are
produced by a number of tissue or cell types rather than
by specialized glands. Other micro factors include nuclear
factor kappa-light-chain-enhancer of activated B cells
(NFKB), p53, single-nucleotide polymorphisms (SNPs),
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mesenchymal stem cells (MSCs), arginine-to-proline
amino acid substitutions (Arg72Pro), beta-2 adrenergic

molecules of different classes—are mainly determined by
the early metabolic response of ECs.[12,13]

Figure 1: Flow diagram of the process for selecting references.
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receptor (b2AR), zinc-finger protein transcription factor
(ZFP) 580, tumor necrosis factor-alpha (TNF-a), and
Kruppel-like transcription factor 6 (KLF6). In specific
immune and inflammatory responses, these micro factors
are produced by many cell types such as monocytes,
macrophages, natural killer cells, T cells, B cells, fibroblast
cells, and ECs. After binding to the high-affinity receptors
of their corresponding target cells, these micro factors can
perform biological functions such as regulation of cell
growth, cell differentiation, and immune responses.[4-6]

These micro factors regulate both innate and adaptive
immune responses.[6] The micro factors addressed in the
present review can be categorized as interleukins (ILs),
IFNs, TNF, colony-stimulating factors, chemokines,
growth factors, and other factors. Recent studies have
shown that variousmicro factors have significant effects on
the structure, function, and repair of ECs.[7-9]Figure 1
presents the flow diagram of the process for selecting
references for review in the present study.

On the one hand, ECs play a vital role inmaintainingmicro
factors that are located in tissues.[10] On the other hand,
many micro factors act on ECs, affecting their structure,
and function.[11] The vital aspects that characterize the
function of micro factors—from induction of prothrom-
botic activity on the luminal surface to the transfer and
functional activation of mobile elements and from the
release of chemoattractants for different cell populations to
the expression and functional activation of adhesion

1

Effect of Vascular Endothelial Growth Factor on Endothelial
Cells

VEGF is the strongest factor that promotes angiogene-
sis.[14,15] It enhances mitosis and proliferation of ECs,
increases the permeability of blood vessels, and facilitates
the migration of ECs.[16-18] Members of the VEGF family
include VEGF-A, VEGF-B, VEGF-C, VEGF-D, VEGF-E,
and placental growth factor.[19]VEGF-A signaling is the
primary factor that initiates physiological sprouting
angiogenesis and prompts crucial differentiation activities
as well as the growth of endothelial progenitor cells (EPCs)
and vascular ECs, mainly through the VEGF receptor 2
(VEGFR-2). VEGF-C can combine with the lymphatic-
system-specific VEGFR-3; it is, therefore, critical for the
formation of the lymphatic system. The remaining
isoforms of the VEGF family include VEGF-D, which
binds to VEGFR-2 and -3, and VEGF-B and placental
growth factor, both of which bind to VEGFR-1. VEGF-A
is one of the more important members of the family
because of its ability to induce monocytes to activate,
adhere, migrate, increase EC permeability, enhance
endometrium hyperplasia, and aggravate AS.[20]

VEGFRs are transmembrane proteins with intrinsic
tyrosine kinase activity in their cytoplasmic domains.[21]

They appear to have minor functions in adult coronary
vascularization, vascular remodeling, and the lymphatic
system. VEGFR-2 contains 19 tyrosine residues.[22] The
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extent to which the multitude of tyrosines in its
cytoplasmic tail is differentially phosphorylated remains

ANG-3, and ANG-4) bind to the tyrosine kinase-2
receptor.[35,36]ANG-1 plays a vital role in vascular
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unclear. The binding mechanism of different SH2 domain-
containing proteins, which leads to activation of gene
induction patterns and receptor-specific intracellular
signaling, is also unclear. Furthermore, the various effects
of different receptors and growth factors are associated
with receptor-distinctive signaling pathways, and differ-
ences exist in the spatial and temporal expression of the
receptors. These effects govern the proliferation, growth,
differentiation, tube formation, and maturation aspects of
EC repair and regeneration.[23-25]

To confirm the characteristics of VEGF-related gene
induction and signaling pathways, some researchers have
comparatively explored the gene repertoire and down-
stream pathway ofVEGFR-2 and epidermal growth factor
receptor, which is a non-endothelial-specific growth factor
receptor. These studies have indicated that erythrocyte
glutathione reductase-1 is a critical transcription factor for
VEGF-mediated gene induction in ECs.[26,27]

The genesis and development of many human diseases are
associated with long non-coding RNAs, a novel type of
RNA molecule. Recent researches have emphasized the
significance of mono-ethylene glycol 3 (MEG3) in the
maintenance of normal function of ECs and repair of
damaged ECs through processes mediated by VEGF.[28,29]

However, whetherMEG3 is beneficial for EC regeneration
is unclear, as are the specific underlying pathophysiological
mechanisms associated with VEGF. Experiments have
shown that DNA methylation can control the high
expression levels of MEG3 in primary ECs and that,
under hypoxic conditions, hypoxia-inducible factor-1a can
regulate MEG3 expression in ECs.[30] Additionally,
MEG3 silencing distinctly decreases VEGFR-2 mRNA
levels but does not affect the expression levels of VEGFR-
1, Delta-like ligand 4 (DLL4), Hes family BHLH
transcription factor 1 (Hes1), or notch receptor 1
(Notch-1). LowMEG3 expression also inhibits endothelial
angiogenesis and migration, both of which are induced by
VEGF.[29] Moreover, under normoxic and hypoxic
conditions, MEG3 knockdown decreases the formation
of ECs and spheroid sprouting of primary ECs. These
findings indicate that MEG3 regulated by hypoxia-
inducible factor-1a is necessary for increasing VEGFR-2
levels in ECs and that it plays an important role in EC
angiogenesis, which is mediated by VEGF-A.[30,31]

Effect of Angiogenin on Endothelial Cells
967
ANG is a single-stranded peptide comprising 123 amino
acids (molecular weight: ∼14,000 Da).[32] Approximately
35% of its amino acids are similar to those of pancreatic
RNase. In rabbit cornea, 50 ng of ANG can promote EC
formation. ANG is not active against some traditional
ribonuclease substrates such as poly(C) RNA of wheat
germ. However, ANG is inhibited by RNase inhibitors
from human placenta, and it cannot combine with
heparin.[33,34]

The primary biological function of ANG is to promote EC
formation. The four types of ANG (ANG-1, ANG-2,

1

remodeling events, possibly by co-activating recombinant
TEK tyrosine kinase, endothelial 1 (Tie1) and, in
combination with the Tie2 receptor, optimizing the
manner in which ECs bind to supporting cells.[37,38]

However, ANG-2 might antagonize ANG-1 activity by
blocking the binding of ANG-1 to Tie2. Some studies have
focused on the recognition of natural feedback inhibitors
of EC activation[39-41] and shown that such inhibitors can
be used to inhibit the induction of angiogenic genes.

A previous study has shown that theANG-1/Tie2 signaling
system can promote ECmigration.[42] The results of in vitro
experiments on small-tube formation have demonstrated
that the ANG-1/Tie2 signaling system can facilitate EC
formation in the blood vessel lumen.[43] The experimental
results suggest that a fibroblast medium can boost EC
migration and small-tube generation, mainly because of the
presence of the fibroblast medium. Cartilage oligomeric
matrix proteinCOMP-ANG-1 facilitates ECmigration and
small-tube generation in a dose-dependent manner. How-
ever, the addition of Tie2 inhibitors to an EC nutrient
solution leads to significant inhibition of EC migration and
tube formation.[44] These findings demonstrate that the
ANG-1/Tie2 signaling system can accelerate angiogenesis
by promoting EC migration and tube formation.[45]

Research has shown that, when ECs are stimulated with
different concentrations of COMP-ANG-1, the expression
of Notch-1 receptor and its DLL4 ligand are up-regulated
in a dose-dependent manner, while the expression of their
downstream target genes (e.g., Hey1, Hey2, and Hey5)
is also increased.[46] Similarly, different concentrations
of COMP-ANG-1 stimulate ECs and inhibit the Tie2
receptor. ECs that have been stimulated by COMP-ANG-
1 show similar Notch-1 receptor and DLL4 ligand
expression levels as non-stimulated ECs.[47,48] Likewise,
there is no obvious difference in the expression levels of the
downstream target genes (such as Hey1, Hey2, and Hey5)
between stimulated and non-stimulated ECs. Stimulation
of ECs with different concentrations of COMP-ANG-1
leads to an increase in EC migration and tube forma-
tion.[49,50] Such ECs can settle Notch-1 signaling path-
ways, and they show no difference in EC migration and
tube formation relative to ECs that have not been
stimulated by COMP-ANG-1.[50] Therefore, we can
conclude that the ANG-1/Tie2 signaling system might
regulate EC regeneration through Notch-1 signaling
pathways.

Effects of Other Cytokines on Endothelial Cells
The expression of certain molecules plays a vital role in the
repair of ECs. In one study, when ECs were treated with
indoxyl sulfate and extracellular microvesicles, the
expression levels of NFKB and p53 increased but the
concentration of NFKB inhibitory protein alpha (IkBa)
decreased in EPCs. These findings indicate that IkBa,
NFKB, and p53 play specific roles in EC repair.[51]

IFNs, a type of cytokine, are a group of secretory proteins
(mainly glycoproteins) produced by monocytes and
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lymphocytes upon stimulation by viruses or other IFN
inducers. IFNs are categorized as types I, II, and III on the

colony-forming cells, which are a subpopulation of EPCs.
Alternate EPO-mediated signaling through the EPO

Chinese Medical Journal 2019;132(16) www.cmj.org

968
basis of their cell sources and receptors. A previous study
combined tumor-angiogenesis-specific polypeptides with
human IFNa.[52] These polypeptides can bind to integrin
avb3 and aminopeptidase N, which are expressed on
the surface of ECs with high efficiency. IFNa2a and
IFNa2b are then induced to gather in the new blood
vessels of tumor tissues, where they play a vital antitumor
role and inhibit tumor angiogenesis. IFN could prompt
ECs to express the major histocompatibility complex-II
antigen.

A recent report described that changes in VEGFR-2/
CD133/CD34 levels in EPCs (which are indispensable for
endothelial repair) and in CD31/annexin V levels in
endothelial microvesicles are indicators of endothelial
lesions.[53] Additionally, an experiment demonstrated the
reparative effect ofCD34: UsingCD34 antibodies to cover
a sirolimus-eluting coronary stent can effectively reduce
injuries induced by metal instruments.[54]

TNFa is a cell-signaling protein (cytokine) involved in
systemic inflammation and one of the cytokines involved in
the acute-phase responses of inflammation. TNFa can
decrease intimal hyperplasia effectively through its role in
the NFKB pathway. NFKB is a protein complex that
controls DNA transcription, cytokine production, and cell
survival. Its effect can be partially abolished by an inhibitor
of nuclear factor kappa-B kinase XII, an NFKB inhib-
itor.[55]TNFa can inhibit EC proliferation, differentiation,
migration, and adhesion. It can also promote cell
apoptosis. However, microRNA-19b has the opposite
effect on EC apoptosis. The general biological roles of
microRNAs and TNFa in coronary artery diseases have
been investigated. MicroRNA-19b performs a vital
function in weakening TNF-a-induced EC apoptosis,
and this function is strongly associated with the Apaf1/
caspase-dependent pathway.[56]

Tumor protein p53 (Tp53), also known as p53, is an
isoform of a protein encoded by homologous genes in
various organisms, such as Tp53 in humans and Trp53
in mice. The SNP is a variation in a single nucleotide that
occurs at a specific position in the genome, where each
variation is present to some appreciable degree within a
population. In the case of Arg72Pro, a common protein in
exon 4 and codon 72 of the p53 gene can produce arginine
or proline residues. The human Tp53 gene harbors a
common SNP at codon 72; this mutation yields Arg72Pro,
which modulates the apoptotic activity of the p53 protein.
A study[57] has revealed that theTp53,Arg72Pro, and SNP
regulate neovascularization and endothelial repair. The
Pro allele of Tp53 is associated with the ability of ECs for
functional recovery from stroke and vascular repair.[57]

Moreover, inhibition of Rho-associated protein kinase[58]

improves endothelial repair in stented arteries by enhanc-
ing EC proliferation and migration through the bidirec-
tional flow.[59] Liu et al[60] discovered a new method
for improving endothelialization through erythropoietin
(EPO)-induced EPC activation. ARA290, a specific agonist
of the EPO receptor/CD131 complex, induces specific
improvement in the biological activity of endothelial

1

receptor/CD131 heteromeric receptor is responsible for
the endothelium-protective functions of EPO in a variety of
injuries, especially ischemic diseases.[61]b2AR is a cell-
membrane-spanning b2AR that interacts with (binds to)
epinephrine, a hormone, and neurotransmitter (ligand
synonym, adrenaline). Epinephrine signaling increases
cyclic adenosine monophosphate levels through adenylate
cyclase stimulation by trimeric G proteins and mediates
physiological responses such as muscle relaxation and
bronchodilation by means of downstream L-type calcium-
channel interaction. Ke et al[62] have shown that b2AR up-
regulation improves the capabilities of EPCs and strength-
ens their ability for endothelial repair in vivo through the
b2AR/Akt/endothelial nitric oxide synthase pathway. Up-
regulation of b2AR gene expression through gene transfer
might be a novel therapeutic target for endothelial repair.
Unexpectedly, biofunctionalization with RGD/chemokine
(C-X-C motif) ligand 1 (CXCL1) has been reported to
dramatically decrease thrombus formation and improve
re-endothelialization in apolipoprotein E-/- arteries relative
to bare-metal nitinol stents.[63] Therefore, RGD/CXCL1
might play an indispensable role in endothelial repair.
However, CXCL-10 up-regulation reduces angiogenic
capacity in patients with systemic lupus erythematosus.[64]

Thus, an antagonistic relationship might exist between
CXCL1 andCXCL-10, which should be a point of focus in
future research.

In molecular genetics, KLFs are described as a set of zinc-
finger DNA-binding proteins that regulate gene expres-
sion. KLFs are divided into three subgroups. Group 2
KLFs (KLF 1, 2, 4, 5, 6, and 7) are transcription activators.
TheKLF6 protein is encoded by theKLF6 gene in humans.
In a previous study, mobilization of KLF6 into the nucleus
was shown to regulate various target genes related to
angiogenesis, vascular repair, and remodeling after
endothelial injury.[65] Matrix metalloproteinase 14
(MMP14) targets endoglin to release soluble endoglin
and is associated with the endothelial repair. Expression of
KLF6 leads to enhancement of MMP14 activity. KLF6
then cooperates withMMP14 to improve EC proliferation;
this cooperation is increased in case of vascular injury.[66]

These findings suggest that KLF6 promotes MMP14
activity and plays a pivotal role in the gene expression
network that is stimulated during the endothelial repair.

VEGF might contribute to vascular endothelial repair and
function as a protective factor. Song et al[66] attempted to
provide sufficient evidence for the existence of this
phenomenon. They found thatVEGF observably improves
the quantity and activity of EPCs. Moreover, treatment
with VEGF reduces the apoptosis rate of ECs. However,
carbamylated high-density lipoproteins inhibit the activa-
tion of VEGFR-2 and signaling pathways of the scavenger
receptor class B type I in ECs. Furthermore, these
lipoproteins suppress the repairability of ECs.[67] Using
the online tool STRING (https://string-db.org/cgi/input.
pl), we obtained details regarding the protein-protein
interaction network of interleukin 10, Tp53, VEGF-A,
ANG, nuclear factor kappa B subunit, interleukin 6, and
TNF [Figure 2].

https://string-db.org/cgi/input.pl
https://string-db.org/cgi/input.pl
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ZFPs are transcription factors composed of a zinc-finger-
binding domain and any of a variety of transcription factor

positive ACE2 protein for a long time and have a stepped-
up capacity to facilitate endothelial recovery. These

Figure 2: Protein-protein interaction network of IL10, Tp53, VEGF-A, ANG, NF kappa B,
IL6, and TNF. ANG: Angiogenin; IL10: Interleukin 10; IL6: Interleukin 6; NF kappa B: Nuclear
factor kappa B subunit; TNF: Tumor necrosis factor; Tp53: Tumor protein p53; VEGF-A:
Vascular endothelial growth factor A.
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effector domains that exert their modulatory effect in the
vicinity of any sequence to which the protein domain
binds. The novel ZFP580 facilitates the differentiation of
EPCs into ECs by not only up-regulating the expression of
nitric oxide and endothelial nitric oxide synthase but also
by up-regulating EC formation.[68] This might represent a
new theory on the role ofZFP580 in EPC evolution and its
clinical value in the resolution of vascular damage.
Additionally, the DLL4/Notch and ephrin-B2 pathways
both play necessary roles in every step of endothelial
neogenesis. The ephrin-B2 expression is remarkably
augmented in the EPCs of patients with pre-eclampsia.
While ephrin-B2 over-expression negatively affects EPC
functions, including their ability to increase the number of
ECs and promote endothelial repair, decreasing ephrin-B2
expression has the opposite effect. Activation of DLL4/
Notch signaling results in increased expression of ephrin-
B2 and subsequent inhibition of EPC activity.[69] Down-
regulation of the DLL4/Notch signaling pathway and
ephrin-B2 expression might be a novel therapeutic strategy
for endothelial repair. Furthermore, cyclooxygenase-2
(COX-2) expression has been found to be markedly up-
regulated because of thrombin receptor (protease-activat-
ed receptor-1) activation, and this can enhance chemo-
tactic gene activation at an ischemic location through
a COX-2-dependent approach in endothelial colony-
forming cells.[70]

MSCs are multipotent stromal cells that can differentiate
into a variety of cell types, including osteoblasts (bone
cells), chondrocytes (cartilage cells), myocytes (muscle
cells), and adipocytes (fat cells which give rise to marrow
adipose tissue). MSCs that have been induced to up-
regulate the expression of the angiotensin-converting
enzyme 2 (ACE2) gene can increase their production of

1

findings are expected to stimulate further experiments to
elucidate the favorable influence of ACE2 on endothelial
recovery.[71]

The latest CANTOS study led by Dr. Paul Ridker, showed
that treatment with canakinumab, a monoclonal antibody
against interleukin 1b, can further reduce the risk of
cardiovascular events after myocardial infarction by 15%
in conjunction with standard drug therapy. This study
concluded that anti-inflammatory therapy targeting the
interleukin 1b innate immunity pathway with canakinu-
mab (at a dose of 150 mg every 3 months) led to a
significantly lower rate of recurrent cardiovascular events
than placebo therapy, independent of the decrease in lipid
levels. Therefore, anti-inflammatory therapy might slow
the development and progression of AS.[72]

Conclusions
In summary, the effect of cytokines on ECs is complex and
multifaceted. The results of Gene Ontology analysis
revealed that variations in biological processes were
mainly enriched in positive regulation of transcription
by the RNA polymerase II promoter, cellular response
to lipopolysaccharides, negative regulation of apoptotic
processes, positive regulation of transcription, DNA-
templated, and other processes [Figure 3A]. Changes in
cellular components were mainly enriched in the external
side of the plasma membrane, cytoplasm, extracellular
regions, and extracellular space [Figure 3B]. Variations in
molecular function were enriched in cytokine activity,
growth factor activity, identical protein binding, transcrip-
tion regulatory DNA region binding, and other processes
[Figure 3C]. The results of Kyoto Encyclopedia of Genes
and Genomes analysis revealed that micro factors were
prevailingly enriched in inflammatory bowel disease,
pertussis, Chagas disease, amoebiasis, hepatitis B, and
so on [Figure 3D]. VEGF regulates the proliferation, tube
formation, differentiation, and maturation aspects of EC
regeneration and repair, which are associated with
erythrocyte glutathione reductase-1 and MEG3.[73] Some
research has shown that the ANG-1/Tie2 signaling system
can promote EC migration through Notch-1 regula-
tion.[74,75] Furthermore, some cytokines, such as IFNs,
prompt ECs to participate in immune or inflammatory
responses.[76] Of course, many of the current studies have
been performed in vitro, and the effect of cytokines on ECs
in the body is likely to be more complex and not static.[77]

That is, the effect of micro factors on ECs is dependent not
only on the relative concentrations of various micro factors
in ECs and the different stages of immune or inflammatory
responses but also on the condition of the ECs themselves.
The relationships between the endothelium and micro
factors are complex [Figure 4]. Existing researches show
that the reactivity of ECs to the same cytokines differs
between arteries and veins, between the great and small
blood vessels, and between the blood vessels of people of
different ages. Many published reports have focused on
micro factors under various disease conditions. However,
it is critical to further study how the effects of various
micro factors on ECs adjust and modify the effects of
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cytokines on ECs. This will help elucidate the emergence
and development of certain diseases and establish novel

delaying its progression is of great significance in
preventing ACS. A study has found that micro factors,

Figure 3: GO and KEGG analysis of pivotal factors (IL10, Tp53, VEGF-A, ANG, NF kappa B, IL6, and TNF). (A) Biological process, (B) cellular component, (C) molecular function, and (D) KEGG
analyses of these factors. ANG: Angiogenin; DBTFA: DNA-binding transcription factor activity; GO: Gene Ontology; HIF: Hypoxia inducible factor; IL10: Interleukin 10; IL6: Interleukin 6; IR:
Immune response; KEGG: Kyoto Encyclopedia of Genes and Genomes; NF kappa B: Nuclear factor kappa B subunit; NOD: Nucleotide-binding oligomerization domain-containing protein;
RPIIP: RNA polymerase II promoter; SGM: Salivary gland morphogenesis; SSDB: Sequence-specific DNA binding; TNF: Tumor necrosis factor; Tp53: Tumor protein p53; VEGF-A: Vascular
endothelial growth factor A.
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targets for their treatment.[78,79]

Effective methods for early diagnosis and therapy of ACS
could be discovered on the basis of research on EC-related
macro factors. Future studies should pay more attention to
the pivotal micro factors associated with ECs. Vascular
endothelial injury is an important cause of AS, which is the
pathological basis of ACS. Therefore, treating AS and

1

especially the ones related to vascular endothelial injury,
participate in the development of AS and are closely related
to complications such as ACS. The underlying mechanism
might be that micro factors promote inflammation and
activate blood coagulation systems and vascular injuries,
thus promoting AS and inducing ACS. At the same time,
micro factors might serve as biomarkers for new EC
injuries and vasomotor dysfunction, and their circulating
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levels might reflect the extent of stimulation of cell
proliferation. In conclusion, the study of micro factors

5. Kotredes KP, Thomas B, Gamero AM. The protective role of type I
interferons in the gastrointestinal tract. Front Immunol 2017;8:410.

Figure 4: Relationship between the endothelium and micro factors. ACE2: Angiotensin-converting enzyme 2; ANG: Angiogenin; EPO: Erythropoietin; IkBa: Inhibitor of NF kappa B a; IFN:
Interferon; KLF6: Kruppel-like transcription factor 6; MMP14: Matrix metalloproteinase 14; MSCs: Mesenchymal stem cells; NF kappa B: Nuclear factor kappa B subunit; Notch-1: Notch
receptor 1; PGF: Placental growth factor; Tie 2: Recombinant TEK tyrosine kinase, endothelial 2; TNF-a: Tumor necrosis factor-alpha; Tp53: Tumor protein p53; VEGF: Vascular endothelial
growth factor; VEGFR: Vascular endothelial growth factor receptor.
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related to vascular EC injury is of great significance for the
treatment of ACS caused by AS.
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