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Abstract: Phthalate esters (PAEs) are a widespread environmental pollutant, and their ecological and
environmental health risks have gradually attracted attention. To reveal the toxicity characteristics
of these compounds, ten PAEs were selected as research objects to establish a cell model. CCK-8
was used to determine cell viability, Western blots were used to determine the content of Nrf2 in
HepG2, and the LD50 collected for the 13 PAEs administered to rats. On this basis, 3D-QSAR models
of IC50, LD50 and Nrf2 were established. The experimental results showed that as the time of PAEs
exposure increased (24, 48 and 72 h), cell viability gradually decreased. The test concentration
(62.5 /125/250 µM) of PAEs exposed for 48 h could significantly increase the content of Nrf2, and
the 1000 µM PAEs could inhibit the content of Nrf2. The model is relatively stable and predicts well
that the introduction of large and hydrophobic groups may significantly affect the toxic effects of
PAEs on cells. The present study provided a potential tool for predicting the LD50 and Nrf2 of new
PAEs, and provide a reference for the design of new less toxic PAEs in the future.

Keywords: phthalate esters; Nrf2; 3D-QSAR; HepG2

1. Introduction

Phthalate esters (PAEs) are mainly used as plasticisers that can be employed in various
chemical products to promote processing and product flexibility [1,2]. Since their first
application in industrial products in the 1920s [3], their global production and consumption
have increased to more than 6 million tons [4]. Historically, the use of phthalic acid (2-
ethylhexyl) ester (DEHP) in polyvinyl chloride (PVC) was very common, and DEHP was
later replaced by didecyl phthalate (DIDP) and diisononyl phthalate (DINP) [5]. Low
molecular weight phthalates including dibutyl phthalate (DBP), diethyl phthalate (DEP),
and dimethyl phthalate (DMP), were mostly used in personal care products, pesticides,
glue, and paint solvents [6,7]. However, due to the weak binding force between phthalates
and substrates, the PAEs could be gradually released from the product to the environment
during production, use, disposal and recycle [8,9], leading to frequent and undesirable
human contact.

The persistent existence of PAEs in the environment and their toxicity has aroused
widespread concern in society. Many experiments have revealed that some PAEs could
cause developmental toxicity, reproductive toxicity, hepatotoxicity, neurotoxicity, and even
carcinogenicity, teratogenicity, and mutagenicity [10]. For example, in a study compared
with the workers who were not exposed to high levels of DEHP and DBP, workers exposed
to high levels DEHP and DBP had significantly lower free testosterone [11]. In another
study, exposure of pregnant women to various PAEs led to a shortened anal-genital distance
in male infants [12].

Hepatotoxicity is also commonly observed as systemic toxicity in rodents exposed to
PAEs. The liver is the main target of PAEs because it is the main detoxification site for the
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decomposition of PAEs in the body. It has been reported that some PAEs caused peroxisome
proliferation and liver tumors through peroxisome proliferation factor activated receptors
(PPARs) [13]. Similarly, DEHP could disrupt the homeostasis of thyroid hormones by
inducing liver enzymes, leading to liver edema [14]. In addition, high-fat diets exposed to
DEHP can cause various degrees of non-alcoholic fatty liver in mice [15].

Furthermore, hepatotoxicity caused by PAEs is closely related to oxidative stress, and
nuclear factor erythroid 2 related factor 2 (NRF2) is a nuclear transcription factor that
regulates oxidative stress [16], which plays a crucial role in liver detoxification. Therefore,
the impact of PAEs on Nrf2 has been directly related to the liver toxicity, with the toxicity of
PAEs varying greatly due to their side chains and the type of analogues [17]. Considering
the complexity, three-dimensional quantitative structure-activity relationship (3D-QSAR)
model was introduced to explore the toxic effects of different PAEs. The field of quantitative
structure-activity relationship (QSAR) research in medicinal chemistry has been greatly
developed since the 1970s for the quantitative studies om the mathematical relationship
between the chemical structure and pharmacological activity or other properties of a series
of compounds [18].

Therefore, the aim of this study was to develop a 3D-QSAR model based on the
investigation of the effects of PEs on Nrf2, IC50 in human hepatocyte (HepG2) cells, in the
hope of predicting the toxicity of new analogues and providing a reference for the design
of less toxic PAEs in the future.

2. Materials and Methods
2.1. Cell Culture

Human hepatocyte HepG2 was purchased from Procell (Wuhan, China) and cultured
in MEM (Procell) complete medium supplemented with 10% fetal bovine serum (FBS),
1% penicillin streptomycin (pen-strep:10,000 U/mL) and 1% L-glutamine. Cells were
maintained in a 37 ◦C, 5% CO2, fully humidified incubator and passed twice weekly.

2.2. Cell Viability

To evaluate the cytotoxicity of DEHP and DMP on the cells, HepG2 cells were cultured
in a 96-well plate at a density of 3 × 103 cells/well. After 24 h incubation, cells were taken
at the logarithmic stage and treated with DEHP, dihexyl phthalate (DHXP), di-n-octyl
phthalate (DNOP), dinonyl phthalate (DNP), bis(2-methoxyethyl) phthalate (DMEP), DEP,
and DIDP (62.5, 125, 250, 500 and 1000 µM), or DMSO (solvent control, final concentration
<0.1%) (purchased from Sigma, St. Louis, MO, USA). After 24, 48 and 72 h exposure, the
viability was measured using CCK-8 cell viability assay kit (Nanjing Jiancheng Bioengineer-
ing Institute, Nanjing, China). After different treatments, 10 µL CCK-8 solution was added
into the culture and incubated at 37 ◦C for 3 h. The generated luminescent signal was
captured on a Microplate Reader (Multiskan FC, Thermo, Waltham, MA, USA). The results
were expressed as percentage of control, and each value was presented as the mean ± SD
of at least three independent experiments.

2.3. Western Blot Analysis

Cells were inoculated in six-well plates for 24 h and then treated with DEHP, DEP,
DMP, DMEP, DHXP, DNOP, DBP or DMSO for 48 h. After treatment, RIPA lysate (50 mM
Tris (pH 7.4), 150 mM NaCl, 1% Triton X-100, 1% sodium deoxycholate, 0.1% SDS, (Be-
yotime Biotechnology, Haimen, China) was added to lyse for 30 min to extract the total
protein. Then, the cell lysate was centrifuged at 12,000× g for 5 min, and the supernatant
was collected. Protein concentration in the extract was determined with the Bicinchoninic
Acid assay (Beyotime Biotechnology). Equal amount of protein samples (15 g/lane) were
subjected to 10% sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE)
and then adsorbed on polyvinylidene fluoride (PVDF) membranes (Millipore Corporation,
Bedford, MA, USA), which were sealed by 1.5 h in 5% (w/v) skim milk. Afterwards, the
membranes were incubated with primary antibodies against Nrf1(1:2000, abcam, Cam-
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bridge, UK) and tubulin alpha (1:6000, Affinity Biosciences, Changzhou, China), followed
by a horseradish peroxidase- (HRP-) conjugated with goat anti-rabbit IgG antibody (Nan-
jing Jiancheng Bioengineering Institute, Nanjing, China) diluted to 1:10,000 at room tem-
perature for 1 h. Finally, the protein bands on the membrane were visualized using ECL
western blot detection reagent (BioSharp, Technology Inc., Shanghai, China) and quantified
using ImageJ software (National Institutes of Health, Bethesda, MD, USA).

2.4. D-QSAR
2.4.1. CoMFA and CoMSIA for LD50 of PAEs

In the quantitative structure-activity relationship modeling, the biological activity
value LD50 (collected from PubChem) was calculated in mg/kg, as shown in Table 1.
CoMFA and CoMSIA methods were used for 3D-QSAR analysis [19], and all operations
were completed with SYBYL2.1.1 software module. The molecular dynamics program
Minimize was used to optimize the energy of all compounds to obtain their lowest energy
conformation. In the optimization process, the Tripos force field, Powell energy gradient
and Gasteiger-Huckel charge were applied, and the termination conditions and max
iteration conditions were respectively 0.005 kcal/(mol × A) and 1000. Other parameters
were default values. DMP was used as the template molecule, and all molecules were
superimposed using the Align Database method. The training set was DMP, DBP, DIBP,
DHXP, DNOP, diisooctyl phthalate (DIOP), DEHP, DNP, 1,2-benzenedicarboxylic acid,1-
decyl 2-octyl ester (nDNOP), diallyl phthalate (DAP), and the test set was DMEP, DEP, and
DIDP (using the method of random assignment to determine the training set and test set).
Statistical analysis adopted partial least squares analysis (PLS) to establish the model, and
then cross-validation was carried out by leave-one-out (LOO) methodology.

Table 1. Actual value, predicted value and error of 3D-QSAR model of PAEs lgLD50.

Names Structures LD50
(mg/kg)

Exp.
(lgLD50)

CoMFA
Pred.

CoMFA
Res.

CoMSIA
Pred.

CoMSIA
Res.

DMP
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8600 3.9345 3.89 0.0445 3.942 −0.0075 

DBP 

 

7499 3.875 3.955 −0.08 3.896 −0.021 
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represented it visually using Williams diagrams. Here leverage denotes the distance be-
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hi = xi (XT X)−1xiT  

where xi is the vector of variables for compound i to be tested and X is the matrix of inde-
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47,000 4.6721 4.647 0.0251 4.684 −0.0119

DIOP
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Table 1. Cont.

Names Structures LD50
(mg/kg)

Exp.
(lgLD50)

CoMFA
Pred.

CoMFA
Res.

CoMSIA
Pred.

CoMSIA
Res.

DNP
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2.4.2. CoMFA and CoMSIA for IC50 of PAEs

HepG2 cells were used as experimental objects to explore the effects of PAEs exposure
for 24 h, 48 h and 72 h on cell viability, and the IC50 of PAEs exposure for 72 h on HepG2 cells
was calculated as model biological activity data. Using DEHP, DMEP, DNP, DNOP, DIDP as
the training set and DPHP, DHXP as the test set to establish CoMFA and CoMSIA models.
The molecular modeling method and parameters were as elaborated in Section 2.4.1.

2.4.3. CoMSIA for Nrf2 of PAEs

Western blots were used to determine the content of Nrf2, a key antioxidant protein,
in HepG2 cells exposed to PAEs for 48 h, which was used as the model biological activity
data. Taking DEHP, DMP, DBP, DNOP, DMEP as the training set, and DEP, DHXP as the
test set to establish the CoMSIA model. The molecular modeling method and parameters
were as elaborated in Section 2.4.1.

2.5. Applicability Domain

We used a Leverge-based approach to calculate the range of use of the model and
represented it visually using Williams diagrams. Here leverage denotes the distance
between the value of the ith observation x and all X and was calculated as:

hi = xi (XT X)−1xi
T

where xi is the vector of variables for compound i to be tested and X is the matrix of
independent variables for the training set. The general threshold for whether a sample is
abnormal or not is set to h* = 3 k/n, where k is the variable term and n is the number of
samples. If the leverage value of a compound is higher than h*, it is considered an X outlier.

2.6. Statistical Validation

To test the fitting quality and prediction capability of continuous QSAR model, we
used Model Acceptance Criteria in Enalos+ KNIME nodes [20]. According to the criteria
proposed by Tropsha A, the following conditions must be satisfied:

R2 > 0.6; Rcvext2 > 0.5; (R2-R02)/R2 < 0.1; (R2-R’02)/R2 < 0.1; abs(R02-R’02) < 0.3; 0.85 ≤ k ≤ 1.15; 0.85 ≤ k’ ≤ 1.15

where R2 is the correlation coefficient between the predicted and observed activities,
Rcvext2 the external cross validation, R02 the coefficient of determination: predicted
versus observed activities, R’02 the coefficient of determination: observed versus predicted
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activities, k = slope: predicted versus observed activities regression lines through the origin
and k’ = slope: observed versus predicted activities regression lines through the origin.

2.7. Statistical Analysis

All raw data were collated in a Microsoft Excel database, whilst SPSS 18.0 (SPSS Inc.,
Chicago, IL, USA) and GraphPad Prism 8.0 (GraphPad Inc., La Jolla, CA, USA) were used
for statistical analysis. Experimental data were expressed as means ± standard deviation
(means ± SD). Differences among groups were compared with one-way analysis of variance
with the significant difference acceptance at p < 0.05, and the extremely significant difference
acceptance at p < 0.01 confidence levels, respectively.

3. Results and Discussion
3.1. Cell Viability

PAEs are a class of exogenous compounds and HepG2 cells are derived from human
hepatocytes, which have similar metabolic functions to hepatocytes and are a common cell
model for studying the toxicity of exogenous compounds, hepatotoxicity and mitochondrial
toxicity. Meanwhile, HepG2 is probably considered to be one of the first (one of the first)
hepatocyte lines to be isolated and widely used. It is relatively inexpensive to culture,
relatively well maintained and readily available. Therefore, we chose HepG2 cells as the
subject of our study. The present study utilized CCK-8 to determine the effects of seven
PAEs exposed for different times (24, 48 and 72 h) on the viability of HepG2 cells.

The results presented in Figure 1 show that the cell viability decreased significantly
(p < 0.05), particularly at 72 h of exposure for all the tested PAEs, except DMP. PAEs had a
certain accumulation. With the extension of exposure time, the accumulation of PAEs in
cells increased, so the toxicity increased significantly. Further, the results in this study are
agreement with that of previous ones wherein DEHP was observed to induce toxicity in
different types of cells by severely inhibiting the proliferation of Hep3B [21].
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Figure 1. The influence of PAEs on cell viability. Cells were treated with 62.5, 125, 250, 500 and 1000 µM PAEs for 24 h, 48 h
and 72 h. (A): DEHP, (B): DHXP; (C): DMEP; (D): DPHP; (E): DNP; (F): DNOP; (G): DIDP. Data are expressed as mean ± SD,
n = 6. * p < 0.05, ** p < 0.01 versus the control group.

3.2. Nrf2 Protein Content

Nrf2, a ubiquitous transcription factor that could mediate and regulate the expression
of more than 200 antioxidant enzymes and cytoprotective proteins [22] was used as the
main mediator in this study. Previous studies identified the Nrf2 signalling pathway as the
main host defense pathway in the body. This transcription factor, Nrf2 enters the nucleus
and interacts with the downstream HO-1 protein to activate the oxidative stress pathway
to protect the cell that is not coerced when the intracellular ROS increases [23].
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It is observed that the inhibitory effect of Nrf2 enhances the lipid peroxidation of the
liver, which indicates that the activation of Nrf2 plays an important role in the antioxidant
defense mechanism of the liver [24]. However, some recent studies have shown that DEHP
exposure caused oxidative stress by interfering with the transcripts of the Nrf2 signaling
pathway and its downstream genes [25]. After DEHP exposure, INS-1 cells produced a
large amount of ROS leading to the imbalance in the NRF2-dependent antioxidant defense
protection [26]. In the present study, Nrf2 was observed to have undergone similar changes
(Figure 2). After 48 h of exposure to DEHP, DMP, etc., Nrf2 was inhibited in the cells of
the high-dose group, which causes a certain degree of oxidative stress. However, low
concentration PAEs in the test concentration increased the expression of Nrf2 after 48 h, the
result was accord with other studies which revealed that DEHP induced testicular toxicity
through oxidative stress and up-regulated Nrf2 expression [27]. Considered together,
under the stimulation of low concentration PAEs in the test concentration, the Nrf2 protein
content increased, indicating that HepG2 cells can trigger a defense mechanism to combat
the toxicity of low concentration PAEs in the test concentration [28]. Meanwhile with the
increased dose and the exposure time, the Nrf2 signaling pathway was inhibited, and
subsequently the production of free radicals and the antioxidant defense system were
out of balance, making the cells enter a state of oxidative stress. However, due to the
complexity of the branched chains of PAEs, the changes were also different, and even some
PAEs did not cause a significant decrease in Nrf2.
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3.3. LD50 3D-QSAR

Additionally, a 3D-QSAR method was used to quantitatively analyze the toxic effects
of PAEs on rats. The results obtained, reported in Table 2, show that both the CoMFA
model and CoMSIA1 model have good predictive ability with cross-validation coefficient
(q2) greater than 0.50 [29,30] with values equal to 0.522 and 0.621, respectively. Other
performance metrices evaluated were the standard error of estimate and Fischer’s value
which were 0.067 and 192.02 and 0.015 and 1528.55 for CoMFA and CoMSIA1 models
respectively. Furthermore, the non-cross validation coefficients were all greater than
0.90, indicating strong adaptability and robustness of the developed models [31,32]. The
correlation between the predicted value and the actual value of training set and test set r2
were 0.9896 and 0.9997 in CoMFA (Figure 3F), and correlation between the predicted value
and the actual value of training set and test set r2 were 0.9996 and 0.9997 in CoMSIA1,
indicating that the model had good predictive ability. In addition, the contribution rates
of the steric field (S) and the electrostatic field (E) in the CoMFA model were 58.4% and
41.6%, respectively. The contributions of the S, E, hydrophobic field (H), hydrogen bond
donor field (D) and acceptor field (A) in the CoMSIA1 model were 18.8%, 26.6%, 50.8%,
3.8% and 0 respectively (Table 2). As can be observed from the results, contrastingly the
structure-activity relationship between the hydrogen bond donor field and acceptor field
was extremely small. Hence a CoMSIA2 model was established without considering the
D and A fields. Subsequently, this approach was observed to improve the predictive
performance with a q2 of 0.631 and r2 of 1 (Table 2). In this case, the contribution rates
of S, E and H were 19.3%, 28.4% and 52.3% (Table 2), respectively. Further as can be
observed from the figure the r2 of the model was 1.000 and 0.999 for the training and test
sets, respectively.

Table 2. 3D-QSAR models’ parameters.

3D-QSAR Model. Styles Q2 R2 F SEE S E H D A

LD50

CoMFA 0.522 0.991 0.067 192.025 58.4 41.6
CoMSIA1 0.621 1 0.015 1528.55 18.8 26.6 50.8 3.8 0
CoMSIA2 0.631 1 0.015 1552.090 19.3 28.4 52.3

IC50 CoMFA 0.69 0.98 0.021 48.513 79 21
IC50 CoMSIA1 0.687 0.926 0.036 24.907 20.5 22.3 36.1 0 21.2
Nrf2 CoMSIA1 0.512 0.966 0.075 42.754 23.2 11.8 51.9 0 13.1

In the CoMFA, CoMSIA1 and CoMSIA2 models evaluated in this study, the contribu-
tion rate of the S and the H accounted for 58.4%, 69.6%, and 71.6% (Table 2), respectively,
suggesting that the non-specific reactions account for a larger proportion in the toxic ef-
fects of PAEs. The results of this study were consistent with other QSAR study on PAE
biotoxicity and flammability which has shown that the hydrophobicity of molecules was an
important parameter to characterize the toxicity of compounds [33]. This study also tried
to apply the CoMSIA method to include the hydrogen bond donor and acceptor properties
of the molecule. It was found that the above two parameters contributed very little to the
structure-activity relationship, further confirming that non-specific reactions accounted for
a relatively large proportion. However, whether it was CoMFA or CoMSIA1 and CoMSIA2
models, the electrostatic field had a greater contribution, accounting for 41.6%, 26.6% and
28.4% (Table 2), respectively. The QSAR model indicates that after PAEs enter cells, there
may be electrostatic interactions between ester bonds, which would cause toxic effects
through biochemical reactions.

The contour maps of CoMFA and CoMSIA models could also be used to explore the
toxicity mechanism of compounds to a certain extent [34,35]. In the CoMFA model, two red
areas appeared above the ether group of the electrostatic field equipotential diagram (shown
in Figure 3B), and one red area appeared above the carbonyl group. These appearances
indicate the introduction of negatively charged groups at the positions of the ether and
the carbonyl groups, respectively which were responsible for the decreased toxicity of the
compound. This effect was significant at the ether group wherein a significant electrostatic
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interaction with the possible acceptor was observed. In fact, in the stereo field equipotential
diagram in Figure 3A, 12 yellow areas at the double bond positions on both sides of the
DAP were observed. These regions indicated the introduction of large groups at the double
bonds of the positively charged groups which increased the compound toxicity. As for the
large groups introduced at the middle position of the double bonds on both sides and the
right carbonyl group might have decreased the compound toxicity (Figure 3A). Similar
additions on the bonds and equipotential results of the electrostatic fields were observed
for the CoMSIA1 model as well. In fact, the presence of white and yellow areas on the side
chains in the hydrophobic field (Figure 3E) confirm the influence of bond additions and
electrostatic fields on the side chains and subsequent toxicity.
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3.4. IC50 3D-QSAR

To further explore the toxic effects of PAEs, an in vitro cell experiment to determine
the 50% lethal dose of PAEs to HepG2 cells was established. The experimental and model
predicted values of 72 h-lgIC50 and the difference between them are detailed in Table 3.
On the basis of the results, a CoMFA model and a CoMSIA model were built which
respectively had a q2 of 0.69 and 0.687(Table 2), and r2 of 0.980 and 0.926 (Table 2). The
non-cross validation coefficients were all greater than 0.9, indicating that the model was
relatively stable. The training set correlation r2 between the predicted value and the actual
value in CoMFA and CoMSIA were all 0.98 (Figure 4G,H), respectively, indicating that
the model had good predictive ability. In addition, the contribution rates of S and E in
the CoMFA model were 79% and 21% (Table 2), respectively. The contribution rates of S,
E, H, D, and A in the CoMSIA1 model were 20.5%, 22.3%, 36.1%, 0 and 21.2% (Table 2),
respectively. Like the 3D-QSAR model of LD50, the contribution rates of S and H were
relatively high, especially the contribution rate of S in the CoMFA model reached 79%
(Table 2), which has shown that non-specific reactions accounted for a relatively large
proportion with a high probability of charge transfer.

Table 3. Actual value, predicted value and error of 3D-QSAR model of PAEs 72 h-lgIC50.

Names Structures 72 h-IC50 (µM) Exp. (lgIC50) CoMFA
Pred.

CoMFA
Res.

CoMSIA
Pred.

CoMSIA
Res.

DEHP
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From the three-position equipotential map of the CoMFA model, we found that
the yellow area covered both sides of the DMEP molecule (Figure 4A), indicating that
the introduction of large groups would enhance the activity of the molecule and lead
to a decrease in IC50. The equipotential diagram in the electrostatic field shows that
adding negatively charged groups near the carbonyl group and the ether group below
could decrease the biological activity of the molecule (Figure 4B), thereby enhancing the
biological toxicity of the molecule, whereas the introduction of negatively charged groups
near the second ether group would cause the opposite effect. The position of the CoMSIA
model was like that of the electrostatic field equipotential diagram, except that there were
two red regions at the end of the side chain in the electrostatic field equipotential diagram,
which show that the introduction of negatively charged groups was not beneficial to the
biological activity.

In the hydrophobic field equipotential diagram with the largest proportion (Figure 4D),
we were surprised to find that the white area was very large, almost covering the entire
side chain, which indicated that the increase of hydrophilic groups in the side chain is
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closely related to the IC50 of PAEs on HepG2 cells, and this also confirmed the longer the
fatty acid chain of PAEs, the lower IC50. In the hydrogen bond acceptor field (Figure 4F),
we observed a red area on the left side of the ether group of DAP, indicating that adding
hydrogen bond acceptors could increase molecular activity, but the carbonyl position on
the right had a purple area, which had the opposite effect to the hydrogen bond acceptor
on the left.

3.5. Nrf2 3D-QSAR

After exploring the effect of PAEs on the cell viability of the HepG2 cells, the mecha-
nism was analyzed. The content of Nrf2, a key antioxidant protein, was determined, and
a 3D-QSAR model of the effect of PAEs on Nrf2 was established. On this basis, we can
predict the content of Nrf2 protein in HepG2 cells with different PAEs, and then understand
the effect of PAEs on Nrf2 protein. On this basis, we established CoMSIA model, where q2

was 0.512 and r2 was 0.966 (Table 2).
The non-cross validation coefficients were all greater than 0.9, indicating that the

model was relatively stable. The training set correlation r2 between the predicted value
and the actual value was 0.9818 (Figure 5E), indicating that the model has good predictive
ability. In addition, the contribution rates of S, E, H, D and A in the CoMSIA1 model were
23.2%, 11.8%, 51.9%, 0 and 13.1% (Table 2), respectively.

Toxics 2021, 9, x FOR PEER REVIEW 13 of 17 
 

 

 
Figure 5. DMEP’s three-dimensional contour maps of steric field (A), the electrostatic field (B), hydrophobic field (C), 
Acceptor field (D) in the CoMSIA model. The relation schema between predicted values and experimental values on Nrf2 
content (E: CoMFA). 

Molecular-level toxic action mechanisms are generally divided into two categories: 
specific type and non-specific type; among them, the specific type refers to the presence 
of reactive substituent groups in the molecular structure of compounds, which were bio-
chemically related to biological receptor molecules such as enzymes and proteins, which 
involved static electricity. Non-specific mechanism meant that molecules with similar 
structures could produce biological reactions with similar properties, and the reaction 
process was less dependent on special chemical structures. Organic matter enters the or-
ganism playing a role through the interaction with biofilms. The main controlling factor 
was the distribution ratio of chemical molecules in the organism and the water phase, 
related to the molecule’s hydrophobicity [36]. The addition of hydrophobic groups makes 
PAEs easier to enter cells. Generally speaking, the hydrophobicity of a molecule was 
closely related to the stereo field. Our results found that the changes in LD50, IC50 or Nrf2 
were closely related to the hydrophobic field and the steric field, and the proportions were 
very large with the results like previous studies [33]. In fact, the hydrophobicity and vol-
ume of the groups had the most obvious effect on toxicity towards the HepG2 cells and 
Nrf2 expression. However, it is worth considering that the results for IC50 and Nrf2 were 
not similar, and that this opposite result may be due to the duration of exposure to PAEs 
However, it is worth considering that the IC50 results were not similar to those of Nrf2. 
This generalization of the result can help in predicting the toxicity of PAEs on the HepG2 
cells and Nrf2 expression based on the sidechain and branch length of the PAEs without 
the necessity of experimentation. 

E 

Figure 5. DMEP’s three-dimensional contour maps of steric field (A), the electrostatic field (B), hydrophobic field (C),
Acceptor field (D) in the CoMSIA model. The relation schema between predicted values and experimental values on Nrf2
content ((E): CoMFA).

The experimental and model predicted values of Nrf2 and the difference between
them are detailed in Table 4. Like the 3D-QSAR model of LD50 and IC50, the contribution
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rates of S and H were relatively high, especially the contribution rate of H in the CoMFA
model reaches 51.9% (Table 2), which has shown that non-specific reactions accounted for
a relatively large proportion with probability of charge transfer.

Table 4. Actual value, predicted value and error of 3D-QSAR model of PAEs on cell Nrf2 content.

Names Structures Exp. (Nrf2) CoMSIA
Pred.

CoMSIA
Res.

DEHP
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Taking DMEP as an example, we found that the green area, yellow area and red area
in the steric field, hydrophobic field, and hydrogen bond acceptor field were very large
(Figure 5A,C,D). The more hydrogen bond acceptors on the branched chains of PAEs, the
fewer large groups and the more hydrophilic groups, the more pronounced the decrease in
Nrf2 content in HepG2 cells (Figure 5A,C,D). Adding negatively charged groups on the
right-side branch in the electrostatic field equipotential diagram could increase the Nrf2
content, while adding positively charged groups near the carbonyl group could increase
the Nrf2 content (Figure 5B).

Molecular-level toxic action mechanisms are generally divided into two categories:
specific type and non-specific type; among them, the specific type refers to the presence
of reactive substituent groups in the molecular structure of compounds, which were
biochemically related to biological receptor molecules such as enzymes and proteins, which
involved static electricity. Non-specific mechanism meant that molecules with similar
structures could produce biological reactions with similar properties, and the reaction
process was less dependent on special chemical structures. Organic matter enters the
organism playing a role through the interaction with biofilms. The main controlling factor
was the distribution ratio of chemical molecules in the organism and the water phase,
related to the molecule’s hydrophobicity [36]. The addition of hydrophobic groups makes
PAEs easier to enter cells. Generally speaking, the hydrophobicity of a molecule was closely
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related to the stereo field. Our results found that the changes in LD50, IC50 or Nrf2 were
closely related to the hydrophobic field and the steric field, and the proportions were very
large with the results like previous studies [33]. In fact, the hydrophobicity and volume
of the groups had the most obvious effect on toxicity towards the HepG2 cells and Nrf2
expression. However, it is worth considering that the results for IC50 and Nrf2 were not
similar, and that this opposite result may be due to the duration of exposure to PAEs
However, it is worth considering that the IC50 results were not similar to those of Nrf2.
This generalization of the result can help in predicting the toxicity of PAEs on the HepG2
cells and Nrf2 expression based on the sidechain and branch length of the PAEs without
the necessity of experimentation.

3.6. Applicability Domain

We used normalised residuals and levers, visualised in Williams plots with training
and validation sets, to evaluate AD. As shown in Figure 6, the horizontal and vertical
dashed lines indicate the boundaries of normal values. The horizontal dashed lines were
the Y (i.e., normalised residual) outliers, which were set ±2.5. An unknown compound was
characterised as an outlier if its normalised residual exceeded the threshold value of 2.5.
The vertical dashed line made the X (i.e., leverage) outliers, warning of leverage h* = 0.692
(A) or 1.28 (A, B). Figure 6A shows that all compounds were within the AD range except
for DMEP (hi > h*) in the training set. Although methane shown high leverage, it has small
normalised residuals, suggesting that it is a “good high leverage point” [37].
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3.7. Statistical Validation

The results of the test are shown in Figure 7. The predicted pLD50, IC50 and Nrf2
values correlated with the observed values within the tolerable error range. The values
for the external R2 test were 1 (LD50), 0.767 (IC50) and 0.979 (Nrf2), supporting a good
correlation between the predicted and observed values. However, one of the Tropsha’s test
results for IC50 did not pass, indicating that the model for IC50 has some shortcomings in
terms of predictive ability.
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The Y-randomisation test is used to assess the robustness of the QSAR model. How-
ever, the small amount of data in our study makes it difficult to apply the Y-randomisation
test. Therefore, our study did not perform Y-randomisation tests, which is where our paper
is flawed, and this would have some impact on the robustness of our model.

Finally, the models developed within this study can be utilized for predicting the
behavior of PAEs upon interaction with cells as well as to the design of new, less toxic PAEs
in the future.

4. Conclusions

In this paper, in vitro experiments found that PAEs after 72 h can inhibit the viability
of the HepG2 cells to varying degrees, and at the same time, because of their molecular
differences, PAEs can increase or inhibit the content of Nrf2 protein. On this basis, this
study established PAEs 3D-QSAR model for LD50, IC50 and Nrf2. The models (LD50 and
Nrf2) built for prediction were relatively stable and had a good predictive effect. In terms
of structure-effect analysis, it was found that the steric field and the hydrophobic field had
the greatest impact, but the electric field also had a certain contribution value. The results
show that the introduction of large and hydrophobic groups on the side and branched
chains may significantly affect the toxic effects of PAEs on cells. The results observed in this
study present a potential tool for predicting the LD50 and Nrf2 of new PAEs based on the
structure of the compounds, and also provide a reference for the design of new less toxic
PAEs in the future. However, the model in our article suffers from a lack of data, which is
the key to the overall model not being as perfect as it could be. We hope to improve this
issue in future experiments.
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