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The aim of this study is to build a linear decoding model that reveals the relationship between the movement information and the
EOG (electrooculogram) data to online control a cursor continuously with blinks and eye pursuit movements. First of all, a blink
detection method is proposed to reject a voluntary single eye blink or double-blink information from EOG. Then, a linear decoding
model of time series is developed to predict the position of gaze, and the model parameters are calibrated by the RLS (Recursive Least
Square) algorithm; besides, the assessment of decoding accuracy is assessed through cross-validation procedure. Additionally, the
subsection processing, increment control, and online calibration are presented to realize the online control. Finally, the technology
is applied to the volitional and online control of a cursor to hit the multiple predefined targets. Experimental results show that the
blink detection algorithm performs well with the voluntary blink detection rate over 95%. Through combining the merits of blinks
and smooth pursuit movements, the movement information of eyes can be decoded in good conformity with the average Pearson
correlation coefficient which is up to 0.9592, and all signal-to-noise ratios are greater than 0. The novel system allows people to

successfully and economically control a cursor online with a hit rate of 98%.

1. Introduction

Recently, there has been a wide variety of applications on
bioelectricity of the human with the development of HCI
(human-computer-interaction) [1]. The EOG (electrooculo-
gram), which is simplest bioelectrical signal, is recorded by
skin electrodes placed on the skin around the eyes to detect
the eye movements of a stationary subject by measuring the
voltage difference. Because of the high SNR (signal-to-noise
ratio), the EOG has been properly applied into the field of
medical rehabilitation and has drawn the attention of a wide
range of researchers due to the great application prospects
(2, 3].

Mainly, a large number of researchers from the field of
EOG-based HCI focus on two different approaches. The first
one studies pattern recognition [4, 5]. There are two main
kinds of eye movements, namely, saccade and smooth pursuit
movements. The first one is rapid eye movements that align
the fovea with the target, but the second one is much slower
tracking movements of the eyes designed to keep a moving

target on the fovea, which means that it directs the eyes to
follow a moving visual target [6-9]. However, there are a
lot of restrictions in complex control for less information
of the pattern recognition. Then, some researchers designed
some predefined sequences of saccades to increase the control
patterns [10]. Thus, linear saccadic eye model and eye blink
were analyzed using wavelet transformation and fuzzy logic
to classify different eye movements in real-time [11]. The
second researches on the model of the mutual relationship
between eye movements and EOG. Lv et al. detected the
relationship between EOG information and eye blink or eye
movements to categorize different types of eye movement
into four commands which controlled the computer or
other instruments [12]. Barea et al. proposed an advanced
model based on wavelet transform and neural networks to
determine the eye movements and position in terms of the
recorded EOG [13]. But the difference is that Tokushige
et al. turned on at a random location 5°, 10°, 20°, or 30°
horizontally to the left or right [14]. Thus, the system was
able to detect movement angles but could not improve the
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accuracy of the decoded EOG trajectory. However, a linear
model was designed and built using eye saccade angles
and EOG based on linear fitting by He et al. [15], while
Estrany et al. established a similar model using multiple
linear regression [16, 17]. In the research of Estrany et al.,
the adjusting of proportion and excursion parameters, mul-
tichannel EOG could be transformed into cursor positions
[18]. Tecce et al. represented a moving fixation point on a
computer display to select letters by controlling a cursor with
eye movements [19]. However, the transformation system is
substantial complexity, and subjects are required to spend a
long training time carrying out a number of experiments to
set the parameters.

Then, there are few investigations on real mapping of
the relationship between EOG and the eye fixation positions
information directly. Furthermore, there also exist a few
issues that remain concerned with online control in the cur-
rent study, for example, a large range of individual differences,
line noises, and baseline artifacts. Therefore, whether the
observed object movement information can be decoded from
continuous EOG direct and efficient online control is an
open question, and if it is possible, there will be a novel
system for a real-time interactive control between subject
and cursor based on eye movement conveniently. This is the
starting point of our research. So this study presents a time
series-based decoding model using linear filtering to predict
the object motion information in the time domain from
EOG. The model parameters can be determined by a simple
calibration procedure. Then, a series of processing methods
are brought forward to produce online decoding and freely
online control cursor.

2. Materials and Methods

2.1. Participants. Five subjects (2 male and 3 female, age
from 22 to 26) of Xi'an Jiaotong University with no relevant
diseases participated in this study. All of them provided
written informed consent and experimental protocol by Xian
Human Subject Review Committee before the experiments.

2.2. Experimental Condition and Procedure

2.2.1. Experimental Condition. Two experiments were carried
out in a brain computer interface laboratory at a fixed
time during regular working hours. Subjects were asked to
sit in front of a 24-inch flat screen with a resolution of
1,920 pixels 1,200 pixels, with their eyes looking squarely
at the horizontal center of the screen which was presented
in a black ground. A Neuroscan NuAmps Express system
(Compumedics Ltd., VIC, Australia), which collected a wide
variety of multichannel neurophysiological signals such as
EEG, ECG, EOG, and EMG, was used to record EOG at a
sampling rate of 500 Hz. Besides, a notch filter was normally
used to remove 50 Hz.

Two pairs of skin electrodes are placed on the opposite
sides around the eye. One pair of electrodes is arranged
to record the EOG of the right horizontal (HR) and the
left horizontal (HL) positions, respectively, and the other
pair is placed on the left eye and is used for recording the
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EOG of the up vertical (VU) and the down vertical (VD)
positions separately. In addition, a ground electrode for EOG
recordings was attached to the forehead and the mastoid
behind the right ear is chosen as reference electrode in
Figure 1(a). The HEOG and VEOG can be acquired by the
electrodes of the horizontal and vertical directions. So, the
different values between two channels in each direction are
computed based on the EOG of two pairs of electrodes in

Up (t) = Ugg () = Uy, (1)
Uy (t) = Uyy (t) = Uyp (1),

where Uy is the HEOG (horizontal EOG); Uy, is the VEOG
(vertical EOG); Uyg, Uyp, Uyy, and Uy are the EOG
collected by skin electrodes of HR (HEOR), HL (HEOL), VU
(VEOU), and VD (VEOD), separately.

)

2.2.2. Experimental Procedure. All subjects are instructed to
track the circular cursor with their eyes, no matter whether
it is moving or static, with their bodies (and especially their
heads) still and their eyes blinking naturally. But there is
sometimes not a moving target which directs the eyes to
move in online cursor control. When the eyes quickly moves,
the eye movements may be a saccade, and then the eyes
slowly move; the eye movements may be smooth pursuit
movements. So the eye movements may be called eye pursuit
movements which are a hybrid of those two approaches in
this study. Subjects take 10 minutes to familiarize themselves
with the experimental procedure. The experiment includes
calibration and online control cursor. The first one can be
seen in Figure 1(b), where participants track the circular
cursor which moves smoothly along predefined curves on the
screen and the EOG is recorded synchronously. In Figure 1(c),
a helix pattern, a clover pattern, and a stellate pattern are
designed to evaluate assessment of decoding accuracy. Each
pattern is performed five times for each subject. The second
one is shown in Figure 7(a): subject online controls the cursor
using eye pursuit movements without any trip trajectory. The
black interface is divided into eight target areas in the screen
edge and one buffer zone in the center. The red circular cursor
is initialized at the interface center. Subjects control online
and change the cursor position one by one based on eye
pursuit movements. When the cursor hits one of the eight
target areas, the area becomes yellow, signifying the end of a
trial. Then, the cursor can be reset to the center of the screen
using a single blink, and in the meantime the vision focus of
a subject is set back to the center to begin the next trial. The
subjects control the cursor to hit the predefined target areas
one by one; the hit times and hit rate are recorded calculated
simultaneously.

2.2.3. Signal Acquisition. The pretreatment is the first step
before any further analyses. Since the EOG have been
recorded by a DC amplifier, DC offsets and drifting can occur
artificially and simultaneously. The DC offset is a constant
and steady offset from zero voltage, while the DC drifting
is a gradual shift that may occur throughout the recording
period. The offset and drift together can be merged into a
baseline. There are few baseline removal methods for EOG in
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FIGURE 1: (a) Skin electrodes placement in EOG acquisition; (b) calibration experiments for a helix pattern; (c) experimental patterns: helix

pattern, clover pattern, and stellate pattern.

literature. To avoid the unnecessary DC drift problem, many
researchers adopt AC-coupled amplifications or process the
signals using high-pass filtering. However, this method also
removes the DC component of EOG themselves. Thus, we can
not observe the gradually changing information completely.
Here, a low-order polynomial fitting method [20], in which
the low-order polynomial represents the slow change of the
signal, is used to process oftline EOG data. A high polynomial
order does not mean a high quality but might allow us to
extract more detailed information from the EOG. In oftline
baseline removal, because of the long length of the data,
the polynomial order is 3. Subtracting the baseline from the
original EOG in each channel allows the signal to start from
zZero.

As mentioned above, EOG contains noise from different
sources. Three methods are widely used to combat this: low-
pass filtering, wavelet transforms based on a threshold [21],
and median filtering [4]. The median filter of three methods
work well enough for artifact rejection. When there are
different scanning patterns, the filter holds the edge steepness,
which retains the EOG amplitudes and prevents introduction
any artificial signal effectively. Furthermore, the median filter
is conducted wholly in the time domain, which is good
for online control. Considering all the above, a median
filter with 150 ms window size is adopted to denoise the
EOG.

2.3. The Method of Blink Detection. An eye blink associates
with a great activity from the human eyes but does not
include information about the movements of the observed
objects. Thus, an eye blink, which needs to be processed
firstly, affects the EOG in the vertical direction with a
peaked pulse. Both the voluntary and involuntary blinks
appear during blink activity; the voluntary blinks can be
used in control, while the involuntary blinks need to be
removed for their uncontrollability. The general rule is that an
involuntary blink has lower amplitude than a voluntary blink
because of its smaller motion. Our experimental statistics
results also show that different types of blinks were usually
distributed in different voltage ranges. With this in mind, we
propose a new blink detection method. After removing low-
frequency components of EOG, the method firstly performs
the threshold processing twice to obtain the positions of
voluntary and involuntary blinks.

The blink detection process is shown in Figure 2; the low
frequency of raw EOG data Uy, are extracted by a 1D discrete
wavelet decomposition at a 10-detail level using a 4th-order
Daubechies as a mother wavelet. After reconstructing the
high-scale low-frequency approximations, the trend becomes
clear in Figure 2(a). The first threshold processing of the
Uyyq is performed. In Figure 2(b), if the signal is larger than
the threshold Tj, it will be set to 1; otherwise it will be
set to 0. Then, the signals become square signals which are
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FIGURE 2: Example of blink detection process. (a) VEOG and low-frequency approximations after wavelet transform; (b) threshold processing;
(c) square waves; (d) blink-removed VEOG and separated voluntary blink. In blink vector, a value of 1 is an involuntary blink, 2 is a voluntary

single blink, and 3 is a voluntary double-blink.

shown in Figure 2(c). Thus, the second threshold processing
is performed on the blink peak values, that is, Uy4. If the value
is larger than the threshold T), the blink will be defined as
a voluntary blink. Otherwise, it is defined as an involuntary
blink. To increase the control effectiveness and complexity,
the distances between adjacent single voluntary blinks must
be computed. If they are smaller than the blink intervals,
the two fast continuous voluntary blinks will be taken as a
double-blink. The two blinks will be removed to ensure that
only single blinks are saved in it. The first positions of the two
blinks will be defined as the double-blink position and will be
saved. So far the blink positions are detected; meanwhile, the
voluntary single and double-blinks are separated as shown in
Figure 2(d).

Generally, the duration of a single blink ranges from
100 to 400ms [22]. To remove the effects of the blink
on the signals, we estimate the precise blink intervals and
perform linear interpolation compensation to the intervals.
For involuntary blinks and voluntary single blinks, we take
the regions from 100 ms before to 250 ms after the blink
positions to form the precise blink intervals. For double-
blinks, we take regions from 100ms before the double-
blink positions to 500 ms after as the double-blink intervals.
By linearly inserting the same number of points into the
estimated blink intervals, blink-removed vertical EOG can be
produced.

2.4. Linear Decoding Model

2.4.1. Construction of Linear Decoding Model. Many research-
ers have successfully estimated the limb kinematical param-
eters of humans or animals from neuronal action potentials

in recent years. By using bioelectrical signals from the skin
to decode the movement information form neuronal activity
of the body, the intentions or the limb position feedback of
subjects can be connected with the features of the task, and
neural decoding models can be built. One of the most widely
used models was the linear decoding model [23-25], which
used a multiple linear regression or a wiener filter, using the
weighted linear combination of neural activities before the
current decoding time point to establish the linear decoding
model.

Most EOG research only considers the signal from the
current time point, ignoring time series effects. Therefore,
the linear decoding model is illustrated to extract movement
information from EOG. The linear models are described as
follows:

n—-1
h(t)=ay+ Y a Uy (t-k) +g, ()

k=1

| )
v(t) =by+ Y BUy (t—k) +¢, (1),

k=1

where h(t), v(t) is a set of both directions (horizontal and
vertical directions) through decoding trajectories from EOG
at time ¢ separately;  is the number of lags or the order of the
model; here nis 10; U (t —k), Uy, (t —k) is a set of preprocessed
and blink-removed EOG in both directions at time t — k,
respectively; ay, by is a set of coeflicients; a,, b, is the set of
intercepts (the value of h(t) and v(¢) when U (t — k) = 0 and
Uy (t—k) = 0); ¢, €, are the residual errors in both \linebreak
directions.
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2.4.2. Parameter Calibration Based on the RLS Algorithm. The
linear decoding model above is an Nth order AR model
(autoregressive model), and a and b of the parameters are
calibrated by EOG data. An adaptive filter, which is com-
monly used in system identification, can revise and update
the parameters to satisfy the performance requirements.
Furthermore, The EOG is time-varying and nonrepetitive,
thus, the adaptive filter algorithm can be used to train the
parameters. The RLS algorithm is famous for its fast conver-
gence. The calibration is performed in both the horizontal
and vertical directions. The inputs and the ideal outputs
of the RLS algorithm are EOG and the real moving object
trajectories, respectively. The algorithm order is equal to the
model order. Details of the RLS algorithm could be seen in
related literatures [26, 27]. After the training is finished, the
model parameters can be determined.

2.4.3. Assessment of Linear Decoding Model. For assessment
of linear decoding model, three kinds of experimental pat-
terns were designed to test decoding accuracy which reflected
the decoding performance or prevented a single pattern from
leading to excessive training that brought in this universal
adaptability degradation. For individual subject, three EOG
data sets of each pattern are averaged into one data set to
obtain more steady data set of the training, which are used
to adopt cross-validation method to determine the model
parameters after blink removal and preprocessing. Then, the
cross-validation is performed cross subject and cross pattern
to test the accuracy of the decoding models. Respectively
for each subject, the RLS Algorithm, which is employed
for training the EOG data in one pattern and the desired
trajectory, is very helpful to select the most appropriate
predicting model. Then, the decoding model is used to
decode motion trajectory using one of the three EOG data
sets of the other two patterns. Thus, each pattern is used for
training once and testing sixth.

The decoding performance of the trained model is
assessed by statistical analysis of SNR and R (Pearson correla-
tion coefficient) between the known object positions and the
object ones reconstructed from EOG [25]. The SNR is defined
as the ratio of the power of the EOG to the noise power, that
is, the ratio of the squared amplitude of EOG to the amplitude
of noise. So the SNR can be calculated from the following
equation:

(3)

SNR (x, x) = 10log,, [Var (x)] ,

MSE

where x is the amplitude of EOG; (%) is the difference between
predicted signal and actual ones; Var(x) is the variance of the
trajectory coordinates; MSE(X) is the mean squared error of
the predicted signal; SNR(x, X) is the ratio between Var(x)
and MSE(X);

The SNR(x, X) is converted into a decibel (dB) scale,
which means the noise signals present in the reconstructed
trajectories. For instance, a SNR of reconstructed EOG
trajectories is less than 0, which means weak signal decoding
ability that indicates a noisy reconstruction. Then, the SNR
is more than 0, which is strong signal decoding capability

that stands for a high quality reconstruction EOG decoding
trajectories.

In addition, R can be defined as the strength of a linear
association between the known trajectory and the output of
the trained model by the following adaptive RLS algorithm.
So the formula of R is shown as follows:

cov (x, X)

R(x,X) = ——, (4)

0,x0%

where x is the actual trajectory coordinates followed by the
eye gaze object; X is the predicted output of the model; o,
and o are the standard deviations of x and X, respectively; R
is the value ranges from -1 to 1.

From (4), we can infer that the value of R is close to 1;
it means the highest possible correlation between the actual
and decoded trajectories, and the values are close to —1; it
presents an inverse relationship, but when the value reaches
0, it indicates the absence of a correlation.

2.5. Online Control Cursor

2.5.1. Online Processing. The program of the acquisition
system is provided to read the recorded data online; then
real-time control is produced through self-developed online
processing and control algorithms, so the program reads
a sample block at each time point and saves the data in
both horizontal and vertical directions. The sample frequency
is 500 Hz, and every second has 25 sample blocks, so 20
points are contained in one sample block for each channel.
In performing online control, there are several issues with
decoding and control. First, because of subjects individ-
ual difference, the effects of decoding and control are not
satisfactory for different subjects and different conditions.
Second, the detection method works well only when the blink
activities are successfully identified, especially for a double-
blinks. Third, the method outlined above based on low-order
polynomial fitting is appropriate for the offline processing of
a long data set, not for the online handling of a short data set
in baseline removal. Then, the measures of online calibration,
subsection processing, and incremental control need to be
taken to solve these problems.

The whole online processing process is shown in Figure 3;
the program reads and updates the acquired EOG data. If
subjects are running the control program for the first time
or need recalibrating, the calibration process can be executed
and the model parameters also are updated. After that, the
control program is started. It first performs blink detection.
After a long time running, if the program breaks, users can
restart the calibration process by double-blinking. If there
is no double-blink, the system judges whether there is one
voluntary blink. If there is, the cursor is reset to the screen
center; meanwhile, the subjects eyes also have to go back
to the center to perform the next control movement. If not,
after denoising by the median filter, the decoding process
continues to control the cursor position, so the subsection
processing and increment control still need to be carried
out. The control results can be fed back in real-time via
viewing the screen of PC based on eye movement decoding
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FIGURE 3: The flow chart of whole online process.

for a single-trial, so subject performs the next movement by
smooth pursuit movements.

2.5.2. Online Calibration. Before the start of control or when
the system needs re-calibrating, a calibration dialog pops
up, showing the calibration procedure and the system begins
saving the EOG data in responsefile.txt simultaneously. The
subjects initially face the center of the screen with no
head movement. If there are 5 seconds of cease, the cursor
slowly moves on the screen along the predefined trajectory,
and the subject have to smoothly follow the cursor with
smooth pursuit movements. When the trajectory finishes,
there are another 5 seconds, the calibration dialog disappears
automatically, and EOG data are stopped saving. Then, the
parameters of the linear model are solved and saved by the
RLS algorithm.

2.5.3. Subsection Processing. Each blink should be in each
subsection data for online subsection processing. Thus, as
shown in Figure 4(a), blink 2 and blink 3 exhibit two
subsections of data, especially for a double-blink where one
blink is in the one subsegment, and the other is the next
one. This situation often causes great trouble to be detected
correctly. So, a number of measures should be taken to
improve the detection accuracy. Then, in Figure 4(b) the
system always saves the newest 30 blocks which are divided
equally into three subsections, that is, ten blocks for each
subsection. But every time 10 new sample blocks are read at
the next 5 seconds. So, every three subsections are detected

and decoded to output the control results of the middle
subsection. After that, the program continues to read and
update data until another new 10 blocks which are read
for the next processing subsession. The control results are
continuously decoded without any loss of EOG data.

It may be that convenient to reduce the output and control
frequency; then, the average decoding position on the middle
subsection is taken as the output for this time point. So
the result shows that the interval between two subsection
continuous outputs is less than 0.5s, and the time delay of
the control is less than 1s, and time delay of control output is
about 0.8 s, which is the time of update 20 sample blocks.

2.5.4. Increment Control. The directly decoding method
comes within the absolute coordinates, so it is easy to
accumulate errors, without any adjustment or flexibility.
Thus, the incremental control comes forward to eliminate
for accumulate errors, that is to say the control of relative
coordinates is adopted to online control cursor based on
relative coordinates. In Figure 5, initially, subjects have to
stare at the screen center as mentioned before without
strabismus. The controlled circular cursor is also initialized
in the center of the screen. The previous output position for
this subsection is subtracted from the current one to get a
relative change or relative coordinates. The system updates
the new cursor position according to the current position and
the relative change in coordinates. The first output position
is subtracted from itself; that is, it stays still at the center of
the screen. To reduce errors, if the relative position change
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exceeds a preset threshold, it is set as the threshold value.
The human eye coordinates also have to be transformed
into screen coordinates to control the cursor. When there
is a small error, the subject still controls the cursor through
smooth pursuit movements. Once the error is larger, the
subject has a voluntary single blink to reset reference point
to keep consistent in fixation point coordinates and control
coordinates, so the accumulated errors can be eliminated.
Furthermore, if the error is excessive, the system needs recal-
ibrating. The online drift correction efficiently eliminates the
impact of baseline drift and improves the control flexibility.

3. Experimental Results

3.1. Blink Detection. According to the experimental statistics,
when the threshold T is set to 80 4V, all blinks easily are
detected. However, the threshold T, has a great effect on
the results of the detection of the separation of voluntary
and involuntary blinks. Blink EOG data are used to train
the threshold T,. We set T, values from 300 to 700 4V with
every 5 values to take a value and obtained 81 values in total.
The EOG data used for training lasted about 16.3 minutes
and contained 470 blinks. The optimal threshold is 515 uV
according to ROC curve. The threshold is used to process
another data set that lasts 16.8 minutes and contains 480
blinks. The accuracy rate of blink detection is 96.88%, with
6 false detections and 9 missing detections.

Because the responses of false detections may cause
large potential security problems, while missing detections
have no effect on control. In real HCI, it is thus better to
increase the optimal threshold value appropriately to reduce
false detections. Based on this, the final chosen threshold is
increased to 540 V. The effect of the new threshold on the
detection results from the test data is 3 false detections and

21 missing detections, with a new accuracy rate of 95.00%.
So the threshold value is set at 540 4V in the end to reduce
the number of false detections.

3.2. Linear Decoding. The best value is subject 3 and the
worst value is subject 5 in the average values and standard
deviations of the SNR and R; then the mean values of five
subjects are shown in Table 1. In the horizontal data for
all subjects, for the SNR the minimum is 8.95 and the
average is 17.95, and for R the minimum is 0.9777 and the
average is 0.9943. In the vertical data for all subjects, for
the SNR the minimum is 1.39 and the average is 11.57, and
for R the minimum is 0.7536 and the average is 0.9592.
Overall, correlation values across the subjects are higher in
the horizontal than in the vertical direction. All of these data
confirm good decoding performance with the average R >
0.9592 and high SNR (all > 0).

Figure 6(a) shows the best and the worst reconstructed
trajectories in 2D space for all decoded results. It is easy
to see that the decoded trajectories retained the movement
information of the ideal trajectories, and the goodness of fit
is higher for the simpler patterns. The decoded trajectories of
all the subjects are analyzed statistically, and the mean trajec-
tories and their standard deviations are shown in Figure 6(b).
For the error between the mean decoded trajectories and the
ideal trajectories for all the patterns, the average is 4.17 mm
(the maximum is 9.31 mm) and 15.32 mm (the maximum
is 29.77 mm) in the horizontal direction and the vertical
direction, respectively. Thus, the decoding model could be
used for some simple and continuous control, such as a simple
interface with a cursor on a PC.

The EOG decoding accuracy in the vertical direction is
not as good as the horizontal, especially for a large-scale
smooth pursuit movements. The main reason is that the
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TaBLE 1: The average values and standard deviations of SNR and R for the best, the worst, and the mean of the five participants (mean + SD).

Subject 3 (best) Subject 5 (worst) Mean (5 subjects)
R SNR R SNR R SNR
Helix pattern X 0.9934 £ 0.0045 17.38 £5.12 0.9919 £ 0.0030 16.75 £ 3.37 0.9914 + 0.0053 16.87 + 4.87
Y 0.9708 £ 0.0239 11.90 £ 2.27 0.9028 + 0.0983 7.58 £ 5.36 0.9312 + 0.0740 10.39 £ 4.77
Clove pattern X 0.9979 £ 0.0017 18.78 £ 2.86 0.9951 £ 0.0013 14.95 £ 2.76 0.9975 £ 0.0017 20.24 + 5.44
Y 0.9850 £ 0.0047 12.36 £2.63 0.9577 £ 0.0212 9.57 +4.08 0.9692 + 0.0168 10.85 + 2.47
X 0.9968 + 0.0007 15.54 +2.87 0.9916 + 0.0036 15.63 £ 0.58 0.9940 + 0.0053 16.75 + 3.31
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FIGURE 7: (a) Cursor Control Interface; (b) hit rates of the cursor control; (c) one cursor control trajectory for each participant.

vertical EOG is much more prone to being affected by EMG
from sources like frowns or other facial expressions, which
occur randomly with varying degrees. The experiments show
that even a slight frown or facial expression can cause large
signal changes. In addition, EOG with more blinks deviated
heavily, even with a blink detection method, linear insertion
cannot completely compensate for these effects. All of these
factors will influence the processing results.

3.3. Online Cursor Control. The EOG data have been pro-
cessed with data block partition based on online subsection
processing. The program receives a sample block every 40 ms
and every update 10 blocks output the control result, so the
position control frequency can be up to 2.5 Hz based on eye
pursuit movements; that is, the target position can be changed
by means of eye movements every 2s. However, the target
position changes do not directly output for controlling, the
cursor enters and come out corresponding area to achieve
control result, so the control frequency is lower than position
control one based on eye pursuit movements. Although the
control frequency slightly decreased, the subject acquires the
current position feedback according to the cursor’s location;
thus, each subject has greatly increased a certain capacity of
self-adaptation.

Each subject controls the cursor on the screen by the
eye pursuit movements that slowly change the point of
fixation to hit the predefined target area one after another.

Meanwhile, the trajectories of cursor movement are recorded
and saved. The cursor control trials are carried out five times
for each subject and the experimental results can be seen
in Figure 7(b). There are two different conditions in the
histogram. One is four orthogonal targets (top, bottom, left,
and right). Each subject hit 100 times in 100 times, so hit rate
is 100%. Then the other is four corner targets (left top, left
bottom, right top, and right bottom) whose hit rate on average
is 96%. From the hit rate of two different conditions, it is easier
to hit the targets in the orthogonal directions than the corner
one. At last, the rate for overall hit is 98%. One of the four
control results for each subject is selected randomly, and the
drawn results of cursor movement trajectories are presented
in Figure 7(c).

4. Discussion

In this study, subjects are asked to perform volitional and real-
time control cursor of an interface using voluntary single eye
blink and eye pursuit movements. The new system performs
well with the voluntary blink detection rate over 96.88% with
6 false detections among 480 blinks; then the algorithm’s
detection sensitivity for blinks is 93% whereas the incorrectly
classified blinks is 8 during 213 blinks in the Petterssons
paper [28]. Furthermore, the rate for the overall hit of the
new system performs was 98% with 8 classes based on
linear decoding model, which could be a good effect on the
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expression of decoding and on-line control. Thus, Usakli et
al. classifies 5 classes with nearest neighborhood algorithm,
and the classification performance is 92% in real-time [29].
Subsequently the classification performance is increased to
95% [30]. For the response times of system, the time interval
of new system is about 500 ms for continuous control output
based on eye pursuit movements, and the time delay is less
than 1s, while Masaki Nakanishi employs 600, 700, and
800 ms window length and 100 and 200 ms shift amount.
Then, the maximum accuracy of 93.77% is obtained by using
800 ms window and 200 ms shift amount, and there is no
mention of the time delay [31]. So the time interval of the
new system is shorter than others. Thus the saccade-based
systems turned on at a random location 5°, 10°, 20°, or 30°
horizontally to the left or right of it in the EOG recording
task [14]. So the saccades are strongly limited in their spatial
extents to less than a degree of visual angle [32]. All in all, the
new system extracts the movement information to predict the
target positions in 2D space from EOG. Moreover, whether or
not there is a guide curve hints, the new technology is applied
to online control a cursor to hit the multiple predefined
targets with a higher hit rate than the existing knowledge what
we know.

From the view of the control results, the average position
error of eye pursuit movements is usually within 1cm.
However, the error of a single individual may be a little larger,
which will lead to the control unstable result. Even the error
is accumulated with the time increases, so the method cannot
be applied to an accurate control system. This also associates
with the inherent characteristics of EOG; on the one hand, the
EOG is influenced by physiological conditions and itself have
great individual difference and instability. On the other hand,
the EOG is tightly associated with psychological activity.
When the psychological activity is in a bad mood, the effect
of control will be worse with the negative psychological
activities which reflects easily in eye pursuit movements.

To improve the control accuracy, the EOG data need to be
done some postprocessing. Because the decoded eye gazing
object positions are not very smooth trajectories which tend
to make the controlled cursor shake while moving, it is
better to average the decoded cursor positions every 0.5
seconds to be the instant output of the decoding model.
The time duration for averaging is so short that the cursor
movement would still look continuously. Then, the EOG
with high quality is good for online control, but the control
may be fail because of the influences of electrode placement,
head movements, lighting conditions, sweat, and different
sources of artifacts such as EEG and EMG and blinking
movements [33]. All subjects are instructed to track the
circular cursor with their eyes, no matter whether it is moving
or static, with their bodies (especially their heads) still and
their eyes blinking naturally. By slightly moving the head, an
experienced user can change the relative location between
human eyes and the screen and correct the cursor moving
error to some degree. Therefore, it needs some amendment
and transition in eye pursuit movements to improve the
stability of the control result; meanwhile, it is better to make
a qualitative control rather than a quantitative control with
a high precision. Generally speaking, after the system is
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calibrated by PLS algorithm, a complete experiment can be
carried out by this system for the same subject. But subjects
control the system online for a long time (usually more than
an hour), or the environment around the subjects take place
a series of changes (sweat, the absence of the conductive
paste, or the evaporation or being in a bad state), the system
needs recalibrating to ensure the accuracy of decoding. When
subjects operate error (enter the wrong trajectory) or the
actual decoding trajectory is inconsistent with the ideal one
evidently, the new system has a dependency on the assistance
of HCI and the reset correction of single voluntary blinks to
avoid the effect of error accumulation. There is undeniably,
the subjects reset correction with blink frequently that lead
to slow down the control. Only the subject already is familiar
with the eye pursuit movements and the system response, the
system can have more effective control.

5. Conclusion

This paper proposes a double-threshold-based blink detec-
tion method to extract voluntary single blinks and double-
blinks. Then, by time series modeling, the system integrates
the merits of blinks control and smooth pursuit control
to predict target positions well with a continuous linear
decoding method in 2D space. Finally, the online calibration
and control scheme is carried out to produce free online
control without any guide curve hints, and the technology is
used to hit multiple predefined on-screen targets successfully
with a hit rate of 98%.

Our future work is to focus on the optimization of
the online control scheme, and the improvement of control
precision. So the technology will be put into use for physically
disabled people with still maintain eye movements to help
them have very limited peripheral mobility.
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