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Abstract Residues responsible for allostery, cooperativity, and other subtle but functionally

important interactions remain difficult to detect. To aid such detection, we employ statistical

inference based on the assumption that residues distinguishing a protein subgroup from

evolutionarily divergent subgroups often constitute an interacting functional network. We identify

such networks with the aid of two measures of statistical significance. One measure aids

identification of divergent subgroups based on distinguishing residue patterns. For each subgroup,

a second measure identifies structural interactions involving pattern residues. Such interactions are

derived either from atomic coordinates or from Direct Coupling Analysis scores, used as surrogates

for structural distances. Applying this approach to N-acetyltransferases, P-loop GTPases, RNA

helicases, synaptojanin-superfamily phosphatases and nucleases, and thymine/uracil DNA

glycosylases yielded results congruent with biochemical understanding of these proteins, and also

revealed striking sequence-structural features overlooked by other methods. These and similar

analyses can aid the design of drugs targeting allosteric sites.

DOI: https://doi.org/10.7554/eLife.29880.001

Introduction
Residues remote from an enzyme’s active site can influence catalytic activity and substrate specific-

ity. It has been proposed that an enzyme generally has multiple conformational states that modulate

its function, with residues remote from the active site often shifting the enzyme’s conformational

equilibrium to favor interactions associated with specific substrates or reactions (Ramanathan et al.,

2014; Bhabha et al., 2015; Whitney et al., 2016; Campbell et al., 2016). Computational methods

can help identify such functionally relevant non-active-site residues and their interactions. For exam-

ple, direct coupling analysis (DCA) (Morcos et al., 2011), which predicts structural contacts from

covarying residue pairs in a multiple sequence alignment (MSA), has been used to infer major con-

formational transitions for Hsp70 chaperones (Malinverni et al., 2015) and to explain the conforma-

tional heterogeneity seen in molecular dynamics simulations (Sutto et al., 2015). Statistical Coupling

Analysis (SCA) (Lockless and Ranganathan, 1999) seeks to identify structural pathways of ‘energetic

connectivity’ by applying principal component analysis to a covariance matrix to identify groups of

coevolving residue positions (Halabi et al., 2009). SCA has been used to design proteins

(Reynolds et al., 2013) and to predict surface sites (Reynolds et al., 2011) and hydrophobic cavities

(Tanwar et al., 2013) involved in allosteric regulation. Here, we investigate residue interaction net-

works by combining two correlation analysis methods distinct from DCA and SCA (see Figure 7):

Bayesian Partitioning with Pattern Selection (BPPS) (Neuwald, 2014a; Neuwald, 2014b), which
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identifies arbitrarily large correlated residue patterns arising through evolutionary divergence, and

Structurally Interacting Pattern Residues’ Inferred Significance (SIPRIS), which we first describe here.

BPPS relies on the observation that protein superfamilies often diverge into subgroups, each

adapting the superfamily’s structural core to fill a functional niche. Often a subgroup G diverges fur-

ther into smaller subgroups, each conserving residues constrained by G’s function, as well as other

residues constrained by more specialized functions. Repeated rounds of such divergence have led to

hierarchically arranged subgroups, each of which conserves distinctive residues at particular posi-

tions. BPPS identifies and characterizes these subgroups by partitioning an MSA into a hierarchically

nested series of MSAs, a hiMSA, based on correlated residue patterns that are distinctive of each

subgroup and that often include non-active site residues.

For each subgroup of interest, the SIPRIS program takes a BPPS-defined residue pattern as input,

as well as structural coordinates for a protein from that subgroup. It then identifies the statistically

most significant network of pattern residues embedded within a structurally defined cluster, with a

view to suggesting hypotheses for experimental investigation. Such a network is doubly significant

inasmuch as BPPS identifies significant residue patterns in the absence of structural data, whereas

SIPRIS defines structural clusters in the absence of sequence data. In this way, SIPRIS may statistically

validate the output of BPPS or other sequence-based methods. Of course, a set of residues identi-

fied by a sequence-based method may still be biologically relevant despite a lack of SIPRIS-assigned

significance. However, as we illustrate, BPPS-SIPRIS analyses often elucidate sequence/structural

properties that conventional computational and experimental approaches have failed to detect.

Results
SIPRIS takes as input: (1) structural coordinates for a protein of interest; (2) a set of residues defined

by BPPS; and, optionally, (3) a predefined cluster of residues, or a starting residue defined either

explicitly or as the residue closest to a ‘focal point’ molecule or atom. If a third input is absent, then

SIPRIS uses each of the BPPS-defined residues as a starting residue, in turn, and returns the most

significant result. Nested clusters are defined around a starting residue in one of three ways: (i)

‘Spherical expansion’, which sequentially adds residues closest to the starting residue, which thus

forms the center of each cluster. (ii) ‘Core expansion’, which sequentially adds the residue closest to

a residue within the cluster’s ‘core’. This core is defined as the starting residue R plus all cluster resi-

dues whose distance to their kth closest cluster residue is less than R’s distance to its kth closest clus-

ter residue (with k = 7 by default; this was selected empirically to avoid both spherical- and tentacle-

shaped clusters). In this case, the cluster typically expands less symmetrically. (iii) Hydrogen-bond-

network expansion, which sequentially adds a residue forming the closest sidechain-to-sidechain or

sidechain-to-backbone hydrogen bond with a cluster residue. (iv) For spherical or core clustering,

SIPRIS may also take DCA scores (Marks et al., 2012, 2011) as a surrogate for 3D structural distan-

ces. SIPRIS evaluates the intersection between clusters and BPPS-defined residue sets with a

p-value.

We applied BPPS-SIPRIS to a GCN5-like N-acetyltransferase (GNAT), several P-loop GTPases, an

RNA Superfamily-II helicase, several members of the Synaptojanin/Exonuclease-Endonuclease-Phos-

phatase (EEP) superfamily, and two uracil/thymine DNA glycosylases. These results are summarized

in Table 1. (Go to sipris.igs.umaryland.edu for BPPS output alignments.)

Distinct N-acetyltransferase cofactor- and substrate-binding
subdomains
GNATs catalyze the transfer of a carboxylic acyl group from Coenzyme A (acyl-CoA) to a diversity of

substrates. Previously, a BPPS analysis of glucosamine-6-phosphate N-acetyltransferase (Gna1) led

to two observations (Neuwald and Altschul, 2016a) (Figure 1): (1) Within the homodimeric struc-

ture of Gna1 (pdb: 4ag9) (Dorfmueller et al., 2012), BPPS-defined residues for this family are con-

tributed by both subunits to form the dimeric interface and the active site for each subunit. In

contrast, within a single subunit most of these residues are far from the active site and face away

from it. Thus, the BPPS analysis implicates family-specific residues in the formation of this unusual

substrate-binding pocket between subunits. (2) Residues conserved in the GNAT superfamily cluster

within an acyl-CoA binding subdomain distinct from the homodimer/substrate interacting
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Table 1. Summary of BPPS-SIPRIS results for the most significant cluster in each test case.

Protein PDB SIPRIS Focal BPPS-SIPRIS‡ SIPRIS Tree Interpretive comments#

Structure mode* point† Dist. Init. Term. p-value level§

Gna1 4ag9A p=BDF - 22 57 71 8.5 � 10�7 1 Substrate and homodimeric interfaces

S CoA 17 41 87 6.8 � 10�5 0 CoA-binding subdomain

S - 23 56 72 9.3 � 10�6 1 DCA-based clustering

S - 14 21 107 2.5 � 10�4 1 Structure-based clustering

Rho1 3refB B - 20 53 100 8.3 � 10�5 1 (Active site secondary shell)

C - 22 55 98 7.8 � 10�7 1 “ “ “ “

Rab4 1z0kA S - 10 11 153 2.1 � 10�5 1 (Active site secondary shell)

C - 25 91 73 2.6 � 10�6 1 “ “ “ “

p=B - 14 23 141 2.9 � 10�8 2 Interface with Rabenosyn-5

S - 22 42 122 4.8 � 10�10 2 “ “ “ “

Rab8 3qbtA p=B - 13 23 139 5.2 � 10�7 2 Interface with Ocrl1

p=B - 12 23 139 6.1 � 10�6 3 Interface with Ocrl1 helix

4lhwB p=A - 10 14 148 8.7 � 10�7 2 Homodimeric interface

EF-Tu 1ob5A S - 18 33 150 1.4 � 10�7 1 (GTP to tRNA allosteric link)

S - 23 71 112 1.0 � 10�6 2 (GTP/tRNA allosteric link to b-barrel)

S 1B 22 81 102 1.3 � 10�5 1 Cluster around 5’ base 1 of tRNA

S 2B 18 47 136 2.6 � 10�6 1 Cluster around 5’ base 2 of tRNA

1efuA S 81B 14 49 128 5.2 � 10�5 1 (Nucleotide exchange allosteric network)

4zv4A S 291C 21 66 109 0.0060 1 (Mediates hijacking by Tse6 toxin)

CysN 1zunB S - 23 79 118 6.3 � 10�5 2 (Allosteric link to b-barrel domain)

eIF4AIII 3ex7H p=J - 11 18 128 6.4 � 10�6 1 (ATP to RNA allosteric link)

S 4J 13 18 128 5.1 � 10�7 1 Cluster around RNA rotation bond

S 5J 16 41 105 5.5 � 10�4 1 “ “ “ “ “

APE1 5dfiA H 11P 9 13 238 5.2 � 10-6 0 Abasic site H-bond network

H 11P 22 99 152 1.6 � 10�6 1 “ “ “ “

H - 25 137 114 1.7 � 10�6 1 (Active site secondary shell)

H 9P 25 137 114 1.9 � 10�7 1 H-bond network positioning abasic site

H 12P 23 119 132 7.6 � 10�6 1 “ “ “ “ “

Inpp5b 4cmlA S - 24 69 216 5.8 � 10�13 0 Active site core residues

S - 21 77 208 3.9 � 10�7 1 (Substrate recognition with allosteric link)

S - 12 30 255 0.0022 2 (Membrane substrate sequestration)

Inpp5b 3mtcA S - 22 91 194 8.0 � 10�7 1 (Substrate recognition with allosteric link)

S - 12 29 256 0.0015 2 (Membrane substrate sequestration)

Inpp5e 2xswA S - 25 140 148 3.7 � 10�7 1 (Substrate recognition with allosteric link)

S - 9 13 275 3.6 � 10�4 2 (Membrane substrate sequestration)

SHIP2 4a9cA S - 17 38 260 6.0 � 10�8 1 (Substrate recognition with allosteric link)

S - 4 4 294 0.30 2 (Membrane substrate sequestration)

TDG 5hf7A H 17D 19 97 76 4.1 � 10�4 1 H-bond network around excised base

H - 20 98 75 3.5 � 10�5 1 H-bond network around catalytic water

UDG 2dp6A B - 13 17 121 1.7 � 10�5 1 H-bond network distinct from TDG

*Modes: S, spherical expansion; C, core expansion; H, hydrogen bond expansion (involving sidechain interactions); B, hydrogen bond expansion (also

involving backbone-to-backbone interactions); P, predefined clustering (residues in the cluster are those interacting with the chain(s) whose pdb identifiers

are given to the right of the equal sign).
†Focal points defining starting residue(s): ‘-‘,analysis was optimized over multiple starting residues (i.e., no focal point); CoA, cluster initiated from the resi-

due closest to Coenzyme A; others, cluster initiated from the residue closest to the indicated position and chain (e.g., 1B = position 1 in pdb chain B).
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subdomain. This raises the question: How likely is such a structural distribution of these family and

superfamily residues to have occurred by chance?

SIPRIS returns a p-value of 8.5 � 10�7 for the intersection between Gna1-family residues and the

predefined cluster of 57 residues contacting either the substrate or the other subunit (for residues

‡Nature of the optimum cluster: dist., the number of distinguishing residues within the cluster (total = 25); init., the total number of residues within the clus-

ter; term., the number of residues outside of the cluster.
§Codes designate pattern residue class: 0, superfamily; 1, family; 2, subfamily; 3, sub-subfamily. In the figures, these correspond to residues with yellow,

red, orange and green sidechains, respectively.
#Comments in parentheses indicate possible functions.

DOI: https://doi.org/10.7554/eLife.29880.002

Figure 1. BPPS-SIPRIS analysis of the GNAT superfamily and Gna1-family based on structural coordinates for Gna1 (pdb: 4ag9) (Dorfmueller et al.,

2012). SIPRIS clearly associates Gna1-residues with the substrate and homodimeric interfaces (p=8.5 � 10�7). Color scheme: homodimer subunits A

and B, green and blue backbones, respectively; BPPS-defined Gna1-family residues in subunits A and B, magenta and red sidechains, respectively

(glycine residues are shown as Ca atom spheres); GNAT superfamily residues, yellow sidechains; ligands, cyan. Lys116 (shown in light red) is outside of

the SIPRIS defined cluster, but forms a hydrogen bond to a CoA phosphate group. BPPS-SIPRIS spherical clustering identified the GNAT superfamily

residues shown (p=1.7 � 10�5). The following figure supplement and source data are available for Figure 1.

DOI: https://doi.org/10.7554/eLife.29880.003

The following source data and figure supplement are available for figure 1:

Source data 1. Contrast alignments for Gna1 N-acetyltransferase.

DOI: https://doi.org/10.7554/eLife.29880.005

Figure supplement 1. Applying SIPRIS to the Gna1 protein in conjunction with various methods.

DOI: https://doi.org/10.7554/eLife.29880.004
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conserved across GNATs, the corresponding p-value was 0.96). Among the 25 Gna1-family residues

defined by BPPS, 22 intersect with the structurally defined cluster. The three remaining residues may

perform complementary functions: Gly35 and Gly101 by imparting backbone flexibility and Lys116

by helping properly position CoA via interaction with a CoA phosphate group.

SIPRIS returns a p-value of 6.8 � 10�5 for the intersection between a (spherical) CoA-centered

cluster and the set of residues conserved in all GNATs. (The corresponding p-value for Gna1-family

residues is >0.99.) Of the 25 residues most distinctive of GNATs, 17 are among the 41 residues of

this CoA-centered cluster. Hence, in the absence of explicit structural information, BPPS detects

structurally and presumably biologically relevant features: GNAT-residues that map to an acetyl-

CoA-binding module and Gna1-family residues that map to a substrate-specific ‘reaction chamber’

facilitating acetylation of glucosamine-6-phosphate.

DCA-based SIPRIS analysis
Spherical clustering using residue-to-residue pseudo-distances based on DCA pairwise scores

(instead of actual structural distances) likewise identifies these Gna1 structural features. In fact, the

DCA-based p-value for Gna1-family residues (9.3 � 10�6) was more significant than the correspond-

ing structurally based p-value (2.5 � 10�4). We suggest two possible reasons for this. First, DCA

scores are based on multiple sequences (1200 in this case) and thus implicitly on multiple structures

rather than one. Second, DCA scores should be affected by pairwise contacts between homodimeric

subunits, whereas SIPRIS currently considers distances only within a single subunit. Thus, DCA- and

structurally-based analyses provide somewhat different perspectives.

Likely determinants of GTPase family and subfamily functional
specificity
P-loop GTPases, upon binding to GTP versus GDP, undergo a conformational change in their so-

called switch I and switch II regions that depends on the presence of a g-phosphate group; this acts

as a signal to downstream cellular components. We applied SIPRIS to two major subgroups: Rab/

Rho/Ras/Ran GTPases (termed R4) and translation factor (TF) GTPases (Figure 2A).

R4 GTPases function as on/off switches regulating cellular processes. GTPase activating proteins

(GAPs) facilitate hydrolysis of bound GTP (the ‘on’ state) to GDP (the ‘off’ state). Guanine nucleotide

exchange factors (GEFs) turn GTPases back on by stimulating replacement of GDP with GTP. SIPRIS

identifies a significant network of BPPS-defined R4 residues. In Rho1 GTPases, this appears within a

hydrogen-bond cluster (p=8.3 � 10�5; Figure 2B) or within a core cluster (p=7.8 � 10�7). In most

Rab GTPases, this network often appears within a spherical or core cluster (e.g., Figure 2C) and,

rarely, within a hydrogen-bond cluster (e.g. Rab9, pdb:1s8f [Wittmann and Rudolph, 2004];

p=9.0 � 10�4). We postulate that a significant hydrogen-bond network forms only in certain confor-

mations. These R4 sequence/structural configurations correspond to features identified through pre-

vious analyses, including: (i) Several aromatic-CH-p interactions proposed to stabilize b-strands

(Merkel and Regan, 1998) associated with the P-loop and with the guanine binding loop, and to

facilitate guanine nucleotide exchange (Neuwald, 2009a) (Phe99-Gly131 and Trp114-Gly27 in

Figure 2B). (ii) A salt bridge also associated with the guanine-binding loop (Arg137-Glu163 in

Figure 2B). (iii) Residues forming a switch II ‘charge dipole pocket’ proposed to facilitate conforma-

tional changes associated with the switching mechanism (Neuwald, 2009b). And (iv) glutamine and

glutamate residues proposed to function in GTP hydrolysis (Vetter and Wittinghofer, 2001) and

nucleotide exchange (Gasper et al., 2008), respectively. We propose that, together, these residues,

which adjoin the GTP-binding site from the guanine-binding loop to the g-phosphate interacting

switch II region, constitute in large part the R4 switching mechanism.

SIPRIS identifies a network of residues distinctive of the Rab subfamily of R4 GTPases within a

spherical cluster in the switch I and II regions (p=4.8 � 10�10 for Rab4). Rab subfamily residues also

intersect with those residues contacting Rab-binding domains, with high significance based on pre-

defined clustering: for Rab4-Rabenosyn-5 (Figure 2C) (Eathiraj et al., 2005) and Rab8a-Ocr1

(Hou et al., 2011) (Figure 2D) p=2.9 � 10�8 and 5.2 � 10�7, respectively. This occurs despite the

Rabenosyn and Ocrl1 domains being structurally distinct. Rab subfamily residues are similarly

enriched at the Rab8a homodimeric interface (p=8.7 � 10�7) (Figure 2E) (Guo et al., 2013), sup-

porting the notion that these residues can interact with diverse structural folds. For the Rab4
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structure in Figure 2C, Thr40, another R4-specific residue, albeit one outside of the SIPRIS-defined

cluster, corresponds to the switch I residue that senses the g-phosphate of GTP. This residue estab-

lishes its greatest contact area (45 Å2) with Glu44, one of the Rab-specific residues contacting Rabe-

nosyn-5; thus Thr40 and Glu44 may link sensing of the g-phosphate to substrate binding. For Rab8a

Figure 2. BPPS-SIPRIS analysis of R4 P-loop GTPases. Bound guanine nucleotide (shown in cyan) allows orientation of each subfigure relative to the

others. (A). BPPS-defined hierarchical relationships among the GTPases examined here. (B). Entamoeba histolytica Rho1 GTPase (pdb: 3refB)

(Bosch et al., 2011). Color scheme: R4-specific residues forming a BPPS-SIPRIS-defined hydrogen-bond network (p=8.3 � 10�5), red sidechains;

residues conserved in P-loop GTPases and interacting with bound guanine nucleotide, yellow sidechains; atoms forming hydrogen bonds, CPK

coloring. Modeled hydrogen atoms were generated using the Reduce program (Word et al., 1999). (C). Rab4 bound to GTP and to the Rab-binding

domain of Rabenosyn (pdb: 1z0kA [Eathiraj et al., 2005]). BPPS-SIPRIS-defined residues distinctive of R4 (red sidechains) and Rab (orange) have core

and Rabenosyn-contacting predefined cluster p-values of 2.6 � 10�6 and 2.9 � 10�8, respectively. The sensor threonine (Thr40) has substantial van der

Waals contact with Glu44; Thr40 is a R4-specific (red) residue outside of the SIPRIS-defined cluster. (D). Rab8a in complex with the GTP analog, GNP,

and with Ocrl1 (residue 540–678) (pdb: 3qbtA) (Hou et al., 2011]). Residues distinctive of Rab GTPases (orange) and of the Rab8 subgroup (green) are

enriched at the Ocr1 interface (p=5.2 � 10�7 and 6.1 � 10�6, respectively). (E). Rab8a homodimeric complex (pdb: 4lhwAB) (Guo et al., 2013). Rab-

specific residues (orange) are enriched at the homodimeric interface (p=8.7 � 10�7). The following source data are available for Figure 2.

DOI: https://doi.org/10.7554/eLife.29880.006

The following source data is available for figure 2:

Source data 1. Contrast alignments for Rab8, Rab4 and Rho1 GTPases.

DOI: https://doi.org/10.7554/eLife.29880.007
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both Rab- and Rab8-specific residues appear to mediate binding to the Ocr1 domain (Figure 2D); in

all, 19 of the 23 Rab8-Ocrl1 interface residues are distinctive of either the Rab subfamily or the Rab8

sub-subfamily. Many of the Rab8-residues interact with an N-terminal helix extending out of the

Ocrl1 b-sandwich domain, perhaps thereby compensating for the lack of binding specificity of Rab-

subfamily residues.

BPPS grouped translation factor (TF) GTPases into a single family (Figure 2A), which includes initi-

ation factors (e.g. IF2 and eIF5B), sulfate adenyltransferases (CysN), ribosome-releasing factor 2,

peptide chain release factor 3, elongation factors EF-Tu, EF1a and selenocysteine-specific elonga-

tion factor, EF4, aEF2, and EF-G (Leipe et al., 2002). Within Thermus aquaticus EF-Tu complexed

with a GTP analog, Phe-tRNA, and the antibiotic Enacyloxin IIA (Parmeggiani et al., 2006), TF-spe-

cific residues (Figure 3A) spherically cluster around the switch I and II and P-loop regions

(p=1.4 � 10�7); this differs from the R4-residue arrangement in Figure 2B. The two 5’-terminal tRNA

nucleotide bases, which base-pair with the 3’ strand to which the aminoacyl group is attached,

establish the greatest contact with the EF-Tu GTPase domain among all the bases of the tRNA. TF-

specific residues cluster around these 5’ bases (p=1.3 � 10�5 and 2.6 � 10�6, respectively) and link

the 5’ region of aa-tRNA to the GTP g-phosphate; this cluster includes Thr62, which senses g-phos-

phate. We hypothesize that, upon correct tRNA-anticodon pairing with its mRNA codon, these TF

residues assist in coupling GTP hydrolysis to coordinated conformational changes that dissociate EF-

Tu from the ribosome and from tRNA, which can then fully enter the ribosomal A site.

TF-specific residues also may be important for guanine nucleotide exchange mediated by EF-Ts.

Within the structure of EF-Tu bound to EF-Ts (pdb: 1efu) (Kawashima et al., 1996), 14 TF-residues

form a (spherical) cluster (p=5.2 � 10�5; Figure 3B) centered on Phe81 of EF-Ts, the residue with

the greatest area of contact with EF-Tu. These TF-residues, which include His19, His84, and Gln114

of EF-Tu, adjoin two regions of EF-Ts contacting EF-Tu and are conserved across bacteria and eukar-

yotes (Figure 3B). His19, which is located in the P-loop of EF-Tu, is the residue that is most charac-

teristic of these translation factors. Both His19 and Gln114 have been implicated in nucleotide

exchange (Zhang et al., 1998), and in destabilization of Mg+2 coordination (leading to guanine

nucleotide release) upon intrusion of EF-Ts Phe81 near His84 of EF-Tu (Schümmer et al., 2007).

Given recent evidence for an EF-Tu/Ts�GTP�aa-tRNA quaternary complex (Burnett et al., 2014), we

conjecture that TF-residues may help couple GTP-hydrolysis-mediated loading of aa-tRNA onto the

ribosome with nucleotide exchange by EF-Ts. P. aeruginosa Tse6 toxin (Whitney et al., 2015)

appears to have hijacked this TF interaction interface with EF-Ts (Figure 3C).

BPPS partitions EF-Tu and CysN into a common subfamily within the TF family, consistent with

earlier analysis supporting their specific relationship (Leipe et al., 2002; Inagaki et al., 2002). CysN,

together with the catalytic CysD subunit, form a sulfate adenylyltransferase complex involved in sul-

fur assimilation. The CysND-catalyzed reaction is analogous to the first step in charging a tRNA, and

CysN’s contact sites with CysD are similar to, and include residues homologous to, EF-Tu’s contact

sites with aa-tRNA. Within the CysND complex (pdb: 1zun) (Mougous et al., 2006) EF-Tu/CysN-resi-

dues cluster around the switch I and II regions (p=6.3 � 10�5; Figure 3D). In CysN, these residues

adjoin contact regions with CysD and with the CysN C-terminal linker and b-barrel domains. Analo-

gously in EF-Tu, they are proximal to the contact region with aa-tRNA and the EF-Tu C-terminal

linker and b-barrel domains (Figure 3E). Within EF-Tu these residues are also located between the

bound antibiotic enacyloxin IIA and the GTPase- and TF-specific residues (Figure 3A). Because

enacyloxin IIA hinders the release of EF-Tu-GDP from the ribosome (Parmeggiani et al., 2006), we

hypothesize that these residues may help mediate this process.

Comparison of two P-loop NTPase superfamilies: eIF4AIII RNA helicase
For comparison, we analyzed another nucleic-acid-associated P-loop NTPase, the Superfamily II RNA

helicase eIF4AIII, which is a component of the exon junction complex (EJC). The EJC deposits onto

spliced mRNAs and plays an important role in mRNA transport, translation, and quality control. RNA

helicases are part of a huge group of NTPases that undergo ATP-hydrolysis-coupled conformational

changes to unwind double-stranded nucleic acids, translocate nucleic acids or re-distribute protein

complexes on nucleic acids (Anantharaman et al., 2002; Bourgeois et al., 2016; Lohman et al.,

2008; Northall et al., 2016). For the transition state structure of eIF4AIII bound to RNA, a prede-

fined cluster of RNA helicase-specific residues contacting RNA is highly significant (p=6.4 � 10�6;

Figure 3F). Focal point spherical clustering indicates that these residues are centered on RNA bases
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Figure 3. BPPS-SIPRIS analysis of translation-associated P-loop NTPases. (A). Thermus aquaticus EF-Tu complexed with the antibiotic enacyloxin IIA, a

GTP analog, and Phe-tRNA (pdb: 1ob5) (Parmeggiani et al., 2006). Color scheme: BPPS-SIPRIS defined GTPase-, TF- and EF-Tu/CysN-specific

residues, yellow, red, and orange sidechains, respectively; GTPase domain backbone, green; C-terminal b-barrel domains, gray; phe-tRNA, teal; 5’ end

nucleotide bases, light cyan; guanine nucleotide, cyan; enacyloxin IIA, greenish-cyan. Spheres indicate glycine Ca atoms. (B). BPPS-SIPRIS cluster of EF-

Figure 3 continued on next page
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4 and 5 (p=5.1 � 10�7 and p=5.5 � 10�4, respectively), which establish the greatest contact with the

ATPase domain. These observations and a rotated bond between bases 4 and 5 suggest that these

residues help couple ATP hydrolysis to disruption of duplex RNA. Clusters centered on other bases

are not significant (p>0.9). Most of the remaining RNA helicase-specific residues surround key active

site residues or interact with C-terminal domain catalytic residues, including two arginine fingers

(Figure 3F). Given this configuration, ATP hydrolysis seems likely to shift the relative orientations of

the N- and C-terminal domains, both of which interact with RNA.

Residue networks adapting the EEP catalytic core to diverse substrates
EEP enzymes cleave phosphodiester bonds in substrates that include nucleic acids and phospholi-

pids. To identify residues likely responsible for EEP functional divergence, we applied BPPS-SIPRIS

to APE1, an exonuclease III-like apurinic/apyrimidinic endonuclease (exoIII-AP-endo), and several

inositol polyphosphate 5-phosphatases (INPP5) (Figure 4A).

APE1 participates in the DNA excision repair pathway by incising the apurinic/apyrimidinic (AP)

site phosphodiester backbone; this generates a single nucleotide DNA gap with 3’-hydroxyl and 5’-

deoxyribose phosphate termini—a cytotoxic intermediate substrate that is then processed by DNA

polymerase b (Liu et al., 2007). A proposed mechanism for APE1 (Mol et al., 2000) involves super-

family-conserved active site residues forming hydrogen bonds with the oxygen atoms of the phos-

phate group at the abasic site. Consistent with this, SIPRIS identifies a superfamily-conserved

hydrogen-bond network centered on the abasic site (p=5.2 � 10�6) within a structure of APE1

bound to DNA harboring an abasic site phosphate group analog (phosphorothioate) in one strand

(Figure 4B,C). Centering on adjacent bases in the same strand was less significant (p>0.003). For

exoIII-AP-endo-conserved residues SIPRIS identifies a significant hydrogen-bond network centered

on the abasic site (p=1.6 � 10�6) or on adjacent bases 8–9 and 12–13 (p=1.9 � 10�7 to 7.6 � 10�6);

these residues may contextually position catalytic residues around the abasic site. In particular,

regions associated with these residues insert into the DNA major and minor grooves on either side

of the abasic site, and form a kink in and engulf the target DNA strand (Figure 4B). Thus, exoIII-AP-

endo residues appear to form a substrate-specific ‘reaction chamber’, as might be expected. They

also tend to aggregate between the catalytic core and a loop containing basic residues that interact

with the major groove of DNA (Figure 4B). Modification by nitric oxide (nitrosation) of one of these

residues, Cys310, results in dissociation of APE1 from DNA and relocation to the cytoplasm

(Qu et al., 2007); thus, the associated hydrogen-bond network may communicate the nitrosation

signal to the DNA-binding site.

BPPS-SIPRIS-defined INPP5-residues also form a significant hydrogen bond network

(p=1.1 � 10�7) adjacent to the superfamily-conserved cluster (Figure 5A,B). We hypothesize that

this network recognizes inositol polyphosphates harboring phosphate groups at positions 4 and 5 of

the inositol ring. INPP5 phosphatases cleave the 5-phosphate, but require for recognition the 4-

phosphate, which directly interacts with three network-associated basic residues—perhaps thereby

mediating substrate recognition (Figure 5C). In some structures, the INPP5 network residues most

remote from the catalytic core are part of a cleft accommodating a phosphate or a glycerol

Figure 3 continued

Tu TF-residues centered on EF-Ts Phe81 at the EF-Tu/EF Ts interface (pdb: 1efu) (Kawashima et al., 1996). Regions in EF-Ts conserved between E. coli

and cow are shown in cyan both in the figure and in the corresponding alignment below it. (C). P. aeruginosa EF-Tu bound to the Tse6 toxin domain

(pdb: 4zv4) (Whitney et al., 2015). EF-Tu His20, which corresponds to His19 in (B), appears to form a salt bridge with Glu291 of Tse6. In light pink are

regions of Tse6 contacting EF-Tu. Spherically clustered residues (p=0.0060) centered on Glu291 of Tse6 are shown with red sidechains. (D). Spherically

clustered EF-Tu/CysN residues (orange; p=6.3 � 10�5) within the CysND complex (pdb: 1zun) (Mougous et al., 2006). (E). Spherically clustered EF-Tu/

CysN-residues in EF-Tu (pdb: 1ob5) (p=1.0 � 10�6). (F). Human eIF4AIII bound to RNA, ADP, and the g-phosphate transition state mimic AlF3 (pdb: 3e

� 7) (Nielsen et al., 2009). Color scheme: eIF4AIII N- and C-terminal domains, violet and green, respectively; RNA and ADP, cyan; AlF3, light cyan;

superfamily-conserved catalytic residues, yellow sidechains; RNA helicase-specific residues clustered on (light cyan-colored) RNA bases 4–5, red; other

RNA helicase-specific residues, light red; C-terminal catalytic residues, bright green. The following source data are available for Figure 3.

DOI: https://doi.org/10.7554/eLife.29880.008

The following source data is available for figure 3:

Source data 1. Contrast alignments EFTu GTPase and eIF4AIII RNA helicase.

DOI: https://doi.org/10.7554/eLife.29880.009
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(Figure 5D,E), suggesting that these may form another (unknown) membrane interaction site or an

allosteric site that binds a molecule similar to the known substrate.

INPP5 proteins regulate diverse cellular processes, including postsynaptic vesicular trafficking,

insulin signaling, cell growth and survival, and endocytosis. With this in mind, we examined three

INPP5 subfamilies: INPP5B, INPP5E and SHIP2 (Figure 5F). Residues that most distinguish the

INPP5B subfamily form a cluster between the proposed membrane interacting region

(Trésaugues et al., 2014) and the EEP catalytic core (Figure 5A). INPP5E- and SHIP2-specific resi-

dues also cluster in this same region (Figure 5G,H)—although the SHIP2 cluster is not statistically

significant. This suggests a possible role for these residues in sequestering specific membrane-asso-

ciated phosphoinositide substrates from the lipid bilayer.

Family-specific catalysis: thymine DNA glycosylases
Uracil DNA glycosylases (UDGs) remove uracil from DNA, thereby initiating the DNA base excision

repair pathway (Aravind and Koonin, 2000). Uracil may be incorporated into DNA by DNA poly-

merase or by cytosine deamination. Thymine DNA glycosylases (TDGs) initiate base excision repair

Figure 4. BPPS-SIPRIS analysis of synaptojanin/EEP domains. (A). The two major groups of the BPPS-defined EEP hierarchy examined here. (B). Human

APE1 phosphorothioate substrate complex (pdb: 5dfi) (Freudenthal et al., 2015). Replacement of the phosphodiester bond with phosphorothioate

prohibits cleavage by APE1 at the abasic site (circled). Cys310, which is nitrosated, is indicated. Color scheme: APE1 backbone trace, green; DNA

strand containing the abasic site, cyan; complementary strand, marine blue; the BPPS-SIPRIS-defined residues distinctive of the EEP superfamily and of

the exoIII-AP-endo family, yellow and red sidechains, respectively; basic residues within a loop interacting with the major groove of DNA, purple. (C).

Close up of the APE1 active site. EEP-specific residues forming a hydrogen-bond network are shown with yellow sidechains. For clarity, only a few of

the EEP- and exoIII-AP-endo-specific residues in the network are shown. The following source data are available for Figure 4.

DOI: https://doi.org/10.7554/eLife.29880.010

The following source data is available for figure 4:

Source data 1. Contrast alignments for APE1 endonuclease.

DOI: https://doi.org/10.7554/eLife.29880.011
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Figure 5. BPPS-SIPRIS analysis of synaptojanin/EEP domains within INPP5 proteins. Color code: EEP-residues, yellow sidechains; INPP5 residues, red

sidechains; INPP5B-, INPP5E- and SHIP2-subfamily residues, orange sidechains; ligands, cyan; atoms involved in hydrogen bonds, CPK coloring. (A).

Human INPP5B in complex with phosphatidylinositol 3,4-bisphosphate (pdb: 4cml) (Trésaugues et al., 2014), which is associated with cytosolic and

mitochondrial membranes (Speed et al., 1995). BPPS-SIPRIS results: EEP spherical cluster, p=5.8 � 10�13; INPP5 spherical cluster, p=3.9 � 10�7;

Figure 5 continued on next page
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by removing T from G�T mispairs, which can be due to deamination of 5-methylcytosine. These

enzymes also remove oxidized derivatives of methyl cytosine such as 5-formyl and 5-carboxymethyl

cytosine, which are epigenetic marks or intermediates in the reset of 5mC marks by the TET enzymes

(Pastor et al., 2013). Within the structure for human TDG (Pidugu et al., 2016) BPPS-SIPRIS identi-

fies a significant hydrogen-bond network associated with TDG-family residues (Figure 6A,B); also in

this network are residues classified by BPPS to a metazoan TDG subfamily. Like APE1, network resi-

dues appear to position loops containing basic residues that, in this case, interact with both the

major and minor grooves of bound DNA (Figure 6C). Network residues also form hydrogen bonds

to DNA oxygen atoms on either side of the thymine base being excised—suggesting that they may

help position the substrate for catalysis by sensing particular sequence contexts (Figure 6B). Near

the center of this network and in contact with the targeted thymine base is the residue most distinc-

tive of metazoan TDGs, Asn230 (Figure 6B and Figure 6—source data 1); in other TDG subfamilies,

a hydrophobic residue occurs at this position. Other TDG-residues in this network encase a water

molecule believed to function as a nucleophile in catalysis (Pidugu et al., 2016) (Figure 6D). Hence,

for TDG, family-specific residues may play a critical catalytic role. UDG harbors a hydrogen bond

network distinct from that of TDG (Figure 6E), indicating a mechanistic divergence.

Applying SIPRIS with other methods
Applying SIPRIS in conjunction with various protein function determining residue (FDR) methods

(Casari et al., 1995; Ye et al., 2008; Pirovano et al., 2006; Kalinina et al., 2004; Hannenhalli and

Russell, 2000; Livingstone and Barton, 1996; Mihalek et al., 2004; Mirny and Gelfand, 2002;

Lichtarge et al., 1996; Sankararaman and Sjölander, 2008; Fischer et al., 2008; Kalinina et al.,

2009; Janda et al., 2012; Janda et al., 2014; Marttinen et al., 2006; Kolesov and Mirny, 2009;

Wilkins et al., 2012; Chakraborty and Chakrabarti, 2015; Gaucher et al., 2002; Xin and Radivo-

jac, 2011; Capra and Singh, 2008) is straightforward in principle. However, several factors compli-

cate comparisons to BPPS-SIPRIS. First, a fair number of published FDR methods are no longer

available as source code, executables or over the world wide web (e.g. INTREPID

[Sankararaman and Sjölander, 2008] and MINER [La and Livesay, 2005]). Second, many FDR meth-

ods (e.g. GroupSim [Capra and Singh, 2008]) require user-provided input, such as an MSA, a phylo-

genetic tree, or prespecified categories with corresponding sequence assignments for each

category. This confounds the comparison because the contribution of each user-provided compo-

nent to overall performance is unclear. In contrast, BPPS-SIPRIS requires no input beyond the query

and database sequences, and its algorithmic components are statistically coherent. Third, those FDR

methods not requiring user-generated input typically are based on a phylogenetic tree; this renders

infeasible their application to large sequence sets, which is a key aspect of SIPRIS’s ability to detect

biologically relevant features. Our attempts to input even moderately large sequence sets to various

FDR programs resulted in runtime errors. By focusing on a hierarchy of subgroups, each defined by

a correlated residue pattern, BPPS eliminates the need for a phylogenetic tree, which would intro-

duce more complexity than either is necessary or can be reliably inferred.

Finally, BPPS-SIPRIS aims to identify biologically relevant interaction networks whose functions

are not necessarily known, whereas FDR methods generally try to identify residues responsible for

well-characterized functions—such as catalysis or substrate recognition—that can be experimentally

Figure 5 continued

INPP5B spherical cluster, p=0.0021. (B). INPP5 hydrogen bond network within human INPP5B (pdb: 3mtc) (unpublished). (C). View of INPP5-residues (in

3mtc) that bind the 4-phosphate group required for substrate recognition. (D). Human INPP5B with phosphate bound to a possible membrane

interaction or allosteric site (Mills et al., 2016). (E). Human INPP5B Ocrl with glycerol bound to the same site as indicated in (D) (Trésaugues et al.,

2014). (F). INPP5 subgroups within the BPPS-defined hierarchy. (G). Human INPP5E (pdb: 2xsw) (unpublished), which is associated with the primary

cilium, an organelle involved in signal transduction (Jacoby et al., 2009) (spherical cluster, p=3.6 � 10�4). (H). Human SHIP2 (pdb: 4a9c) (Mills et al.,

2012), which is associated with membrane ruffle formation (Hasegawa et al., 2011) (spherical cluster, p=0.30). The following source data are available

for Figure 5.

DOI: https://doi.org/10.7554/eLife.29880.012

The following source data is available for figure 5:

Source data 1. Contrast alignments for INPP5 phosphatases.

DOI: https://doi.org/10.7554/eLife.29880.013
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Figure 6. BPPS-SIPRIS analysis of DNA glycosylases. (A). Thymine DNA glycosylase (TDG) family (red sidechains) and metazoan subfamily (orange

sidechains) residues forming a significant hydrogen bond network (p=3.5 � 10�5) within human TDG (pdb: 5hf7) (Pidugu et al., 2016). (B). TDG H-bond

network consisting of residues distinctive both of all TDGs (red sidechains) and of metazoan TDGs (orange sidechains). This network includes hydrogen

bonds to DNA oxygen atoms on either side of the thymine base to be excised (cyan); note that Phe238 and Tyr235 appear to position the N-terminus

of their helix to hydrogen bond to substrate backbone oxygens; another such hydrogen bond involves Ser273, a residue generally conserved in the

entire superfamily. The water molecule shown may act as the nucleophile in the reaction. For clarity, not all of the BPPS-SIPRIS-defined residues are

shown. (C). TDG hydrogen-bond network residues may help position basic residues (green sidechains) interacting with the minor and major grooves of

DNA. (D). TDG family-specific hydrogen-bond network residues surrounding a proposed catalytic water molecule (red sphere with dot cloud). (E). A

BPPS-SIPRIS-defined H-bond network (p=1.7 � 10�5) distinct from that of TDG within Thermus thermophilus uracil DNA glycosylase (UDG) (pdb: 2dp6).

The following source data are available for Figure 6.

DOI: https://doi.org/10.7554/eLife.29880.014

The following source data is available for figure 6:

Source data 1. Contrast alignments for DNA glycosylases.

DOI: https://doi.org/10.7554/eLife.29880.015
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benchmarked (Chakrabarti and Panchenko, 2009). However, as has been noted (Dessimoz et al.,

2013; Jiang et al., 2014), we lack reliable gold standards for many functionally relevant residues,

due to a lack of experimental characterization. Consequently, methods designed to identify residues

with specific, known functions, if successful, will tend to penalize residues involved in unknown func-

tions. In contract, the goal of BPPS-SIPRIS is to recognize also such residues of unknown function.

With this in mind, we compared the BPPS-SIPRIS analyses in this study to SIPRIS analyses based

on the FRpred (Fischer et al., 2008), CLIPS-1D (Janda et al., 2012), and Evolutionary Trace (ET)

(Lichtarge et al., 1996; Wilkins et al., 2012) programs, which define residue sets given only a query

sequence. These and similar methods differ from BPPS by not classifying sequences into divergent

subgroups per se. Instead, FRpred seeks to classify residues as catalytic, ligand binding and sub-

type-specific. FRpred catalytic and ligand-binding residues generally correspond to superfamily-con-

served residues, whereas FRpred subtype-specific residues fail to correspond to any BPPS

subgroups. For example, when we ran the Rab4 analysis as in Figure 2C using FRpred-defined resi-

due sets instead of BPPS-defined sets, the first two FRpred categories nearly entirely overlapped

with each other and with the Rab4 structural core; the subtype-specific category failed to return a

significant cluster (p>0.05). SIPRIS analyses of other protein domains yielded similar results. CLIPS-

1D defines catalytic, ligand-binding and structural categories, which likewise fail to correspond to

BPPS subgroups. ET assigns residue functional importance scores without splitting into categories,

and thus fails to differentiate between BPPS subgroups. As previously noted (Madabushi et al.,

2002), high ET-scoring residues are often clustered structurally, which SIPRIS analyses confirm. Due

to methodological differences, however, BPPS-SIPRIS clustering identifies sequence/structural fea-

tures distinct from these other methods, as illustrated in Figure 1—source data 1. Although other

methods may identify biologically relevant residues different than those identified here, this study

suggests that by characterizing divergent subgroups, BPPS-SIPRIS analyses can identify significant,

otherwise overlooked sequence/structural properties.

Discussion
Active site residues directly involved in catalysis are believed often to communicate with a network

of other functionally important residues, some of which may be far from the active site

(Sunden et al., 2015). The problem of identifying these networks is fundamental for understanding

how proteins work. As illustrated here, BPPS-SIPRIS analyses can reveal information relevant to func-

tional specialization by identifying statistically significant interaction networks. This includes, for

example: (1) The nitrosation associated network in APE1 of the synaptojanin (EEP) superfamily. (2)

The protein-protein interaction interfaces for diverse R4 GTPases. (3) The protein-protein interaction

interface in EF-Tu, which can be hijacked by the P. aeruginosa Tse6 toxin (Whitney et al., 2015). In

each of these cases, the residue-networks identified by our analysis suggest features congruent with

current biochemical understanding of these proteins. Additionally, our analyses generated the fol-

lowing hypotheses: (1) Family-specific residues form hydrogen bonds (Figure 4C) responsible for

APE1 abasic site substrate specificity. (2) INPP5 family and sub-family specific residues (Figure 5E–F)

mediate, respectively, allosteric regulation and sequestration of specific membrane-associated phos-

phoinositide substrates from the lipid bilayer. (3) A hydrogen bond network associated with the resi-

due most distinctive of metazoan TDGs, Asn230 in humans, mediates substrate-specific catalysis in

DNA glycosylases, perhaps related to the discrimination of epigenetic marks present in metazoan

DNA (Pastor et al., 2013; Zhang et al., 2012), such as 5-fC and 5-caC.

More generally our analyses suggest: (1) Family-specific residues often form a substrate-specific

‘reaction chamber’ associated with the structural core and active site, as seen for Gna1-related ace-

tyltransferases, phosphoesterases related to APE1, and DNA glycosylases. (2) Subfamily-specific resi-

dues serve subordinate roles, such as mediating interactions with effector proteins, or coupling

conformational changes to signaling. In this way, the same basic structural core and catalytic mecha-

nism may accommodate a wide variety of cellular functions.

The SIPRIS clustering strategies described here accommodate further development. For example,

one might use consensus distances from multiple structures to reduce noise. An open question is

the significance of multiple BPPS-SIPRIS networks for a single subgroup, analogous to that for multi-

ple regions of similarity between two sequences (Karlin and Altschul, 1993). Additional strategies

include: applying BPPS-SIPRIS to functionally interacting proteins, treating them as a single
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sequence; and defining clusters using features such as secondary structure, surface accessibility or

electrostatic potential. BPPS identifies correlated residue patterns presumably associated with func-

tional specialization, and SIPRIS identifies correlations between defined residue sets and structural

features. In contrast, DCA identifies correlations between pairs of residues that presumably interact

structurally. Combining BPPS-SIPRIS with DCA may improve protein modeling and the characteriza-

tion of functional interactions. Given the statistical and information theoretic foundation of these

methods, one should be able to combine them in a principled manner.

In summary, the BPPS-SIPRIS system should aid the characterization of functionally interacting

residues remote from protein active sites.

Materials and methods

BPPS-SIPRIS overview
BPPS-SIPRIS analysis involves the following steps, as illustrated in Figure 7: (1) MAPGAPS (Neu-

wald, 2009) detects and aligns protein database sequences containing the domain of interest start-

ing from a representative (‘seed’) MSA or from an hiMSA, either of which may be either curated

manually or created automatically. This generates an MSA. (2) Bayesian Partitioning with Pattern

Selection (BPPS) (Neuwald, 2014a; Neuwald, 2014b; Neuwald and Altschul, 2016a) is applied in

three steps: (i) Step 1 uses Markov chain Monte Carlo (MCMC) sampling to partition the MSA into

hierarchically-arranged subgroups based on the correlated residue patterns most distinctive of each

subgroup. (ii) Step 2 converts the MSA into a hiMSA based on the BPPS hierarchy. (iii) Step 3 creates

subgroup ‘contrast alignments’ and corresponding SIPRIS input files. (3) The SIPRIS program per-

forms pattern residue cluster analyses and, as a runtime option, will create corresponding PyMOL

(Schrodinger, 2010) scripts for viewing clusters within 3D structures (as in Figures 1–6). Each step in

this process applies statistical criteria to ensure significance (see below).

Software and data availability
BPPS-SIPRIS software, source code, instructions, and the input data required to perform the analyses

described here are available at sipris.igs.umaryland.edu; this includes: (1) the MAPGAPS, BPPS, and

SIPRIS programs; (2) MSA format conversion programs; (3) a phylum annotation program (fatax); and

(4) the full multiple sequence alignments and pdb structural coordinate files used as input to BPPS

and SIPRIS. The source code is available at sourceforge (sourceforge.net/p/bpps-sipris/code/

; Neuwald, 2017). A copy is archived at https://github.com/elifesciences-publications/bpps-sipris-

code.. The fatax program annotates sequences by phylum and kingdom based on the National Cen-

ter for Biotechnology Information (NCBI) taxdump and prot.accession2taxid files, available at ftp://

ftp.ncbi.nlm.nih.gov/. MAPGAPS searches were performed on the NCBI nr, env_nr and translated

est databases (April 8, 2016 releases). Modeled hydrogen atoms were added to structural coordi-

nate files using the Reduce program (Word et al., 1999) (http://kinemage.biochem.duke.edu/soft-

ware/reduce.php).

MAPGAPS search and alignment
MAPGAPS (Neuwald, 2009) creates an MSA by: (1) Taking as input either a small but ideally very

accurate MSA, each sequence of which represents a distinct subgroup within a protein superfamily,

or, alternatively, a set of hierarchically aligned MSAs, each of which represents a distinct subgroup.

For the analyses here, we obtained from the NCBI conserved domain database (CDD) a set of hierar-

chically aligned MSAs or, if unavailable, a single curated MSA. A hiMSA from a previous BPPS analy-

sis may also be used. (2) Creating a hidden Markov model (HMM) profile for each subgroup based

on the input MSA. (3) Searching a protein sequence database and aligning each significantly scoring

sequence (i.e. with p�0.001) to the profile yielding the highest score. (4) Multiply aligning all the

sequences obtained in this way using an alignment among profiles as a template (Neuwald, 2009).

This process creates a large MSA that generally preserves the accuracy of the input alignment; BPPS

uses this MSA as input. Table 2 describes the structural diversity of proteins with known structure

identified in this way and included in our analysis. For a superfamily of domains near the limit of cur-

rent sequence analysis methods’ ability to identify as related, we find that an average RMSD of 3.75

Å is typical. The RMSDs for the GNAT, EEP and UDG/TDG superfamilies fall below this value. Those
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Figure 7. Overview of BPPS-SIPRIS analysis. (A) Steps required for a BPPS-SIPRIS analysis. The fatax program adds phylum-annotations to database

sequences. MAPGAPS detects and aligns database sequences containing the domain defined by a cma-formatted MSA or hiMSA. (MAPGAPS can also

convert an MSA from fasta- to cma-format.) This creates an MSA that step 1 of BPPS then partitions hierarchically into subgroups based on

discriminating pattern residues, as illustrated schematically in (B). Step E of BPPS checks for consistency between BPPS step 1 runs. Step 2 of BPPS

adjusts the sub-alignment for each subgroup to align and possibly assign pattern residues to regions uniquely conserved in that subgroup, thereby

creating a hiMSA. Step 3 of BPPS creates, for each node in the hiMSA, lineage-specific ‘contrast alignments’, as is illustrated schematically in (C), and a

corresponding input file to SIPRIS, which identifies statistically significant structural interaction networks associated with pattern residues. For further

descriptions, see text. (B) Schematic diagram of the node eight contrast alignment. Sequences assigned to node 8’s subtree (green subfamily nodes in

(C)) constitute a ‘foreground’ partition; sequences assigned to the other nodes of the subtree rooted at the parent of node 8 (gray subfamily nodes in

(C)) constitute a ‘background’ partition, and the remaining sequences constitute a non-participating partition. Green horizontal bars in (B) represent

foreground sequences. The green vertical bars in (B) represent conserved foreground residue patterns (as shown below each bar); these diverge from

(or contrast with) the background compositions at those positions (white vertical bars). Red vertical bars above quantify the degree of divergence. (C)

Schematic diagram of a BPPS-3-generated set of ‘contrast alignments’ corresponding to the node 9 lineage of the sequence hierarchy in (A). Within a

hiMSA, there is one such lineage for each leaf node. Horizontal lines represent aligned sequences and are colored by level in the hierarchy. Thin light

gray horizontal lines represent non-homologous and deleted regions. Vertical lines represent the contrasting pattern positions upon which the

hierarchy is based and are similarly colored by levels. The trees shown correspond to each subgroup along the lineage. The colored, gray and white

nodes in each tree correspond, respectively, to their alignment foreground, background and non-participating partitions. The background for the entire

superfamily (lower right) consists of standard amino acid frequencies at each position.
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for the GTPases are slightly higher, which can easily be explained by the conformational variability

arising from GTPases’ function as switches. The helicases yield unusually high RMSDs, which are

likely due to the large domain-domain movements typical of this clade.

MAPGAPS query alignments
Curated MSAs used for MAPGAPS searches were constructed as follows: The GNAT and GTPase

MSAs were curated by L. Aravind’s and A. Neuwald’s group, respectively. The NCBI CDD resource

group curated the other query MSAs; the CDD codes are: cd00046, DEAD-like helicase superfamily;

cd08372, Exonuclease-Endonuclease-Phosphatase (EEP) domain superfamily; and cd09593, Uracil-

DNA glycosylases (UDG) and related enzymes. Using these MSAs as MAPGAPS queries, we

searched the NCBI nr, env_nr and translated EST databases for matching sequences. For ESTs, we

obtained organism codon usage and taxonomic information from NCBI taxdump files.

BPPS sampling
Step 1 of the BPPS (Neuwald, 2014a, Neuwald, 2014b) program stochastically partitions an MSA

into hierarchically arranged subgroups (i.e. nodes). Starting from a single root node, it attaches or

removes leaf nodes, moves subtrees, inserts or deletes internal nodes, moves sequences between

nodes, and modifies the ‘discriminating’ pattern for each node. BPPS samples from among possible

patterns for each subgroup based on how well each pattern distinguishes subgroup-assigned

sequences (termed ‘foreground’ sequences) from sequences assigned to the rest of the parent

node’s subtree (termed ‘background’ sequences); Figure 7B illustrates this schematically. An

optional Step E checks for consistency between BPPS Step 1 runs. Step 2 of BPPS (Neuwald and

Altschul, 2016a) uses a combination of multiple sequence alignment and BPPS MCMC sampling.

The Gibbs Sampler for Multi-alignment Optimization (GISMO) (Neuwald and Altschul, 2016b)

adjusts each sub-group’s alignment by adding regions conserved in the subgroup but not in the

superfamily as a whole. Further BPPS sampling then adjusts subgroup sequence and pattern assign-

ments taking into consideration these newly aligned regions. This converts the MSA into a hierarchi-

cal interrelated MSA (hiMSA) (Figure 7C). Step 3 creates, for individual nodes in the hiMSA, both a

rich text formatted (rtf) contrast alignment (as shown, for example, in figure source data files) and

corresponding SIPRIS input files. Table 3 summarizes results for the five superfamilies analyzed here.

SIPRIS
SIPRIS relies on a statistical approach termed Initial Cluster Analysis (ICA), which addresses the fol-

lowing questions: Consider a string of 0 s and 1 s of length L and containing D 1 s. Are some or all

of the 1 s significantly clustered near the start of the sequence, and, if so, how surprising is the most

significant such clustering? Elsewhere we describe and validate ICA (Altschul and Neuwald, 2017),

which has a variety of biomedical applications. Here, we focus on the statistical and information the-

oretical bases of ICA as applied to BPPS-SIPRIS analysis.

Table 2. Structural diversity among proteins identified and aligned by MAPGAPS.

Superfamily structures* RMSD† (Å) Domain length‡ Resolution (Å)

% ID No. Avg Min Max S.D. MSA Avg S.D. Avg Max

GNAT 27 16 3.25 1.0 6.7 1.4 125 139.8 17.0 1.94 2.61

GTPases 30 20 3.96 0.6 14.7 3.5 164 195.9 41.6 2.31 3.10

Helicases 40 12 6.39 2.6 9.8 1.8 466 482.8 60.7 2.86 3.56

EEP 40 16 3.02 0.8 5.2 0.95 241 259.0 27.6 2.07 2.99

UDG/TDG 40 8 2.54 1.1 3.6 0.69 125 135.9 12.7 1.83 2.58

*NMR and poor resolution structures were not used; no two proteins in each set contained more than the indicated level of percent sequence identity (%

ID); pdb identifies for these are given in supplementary file 1.
†RMSDs were computed using MUSTANG (Konagurthu et al., 2006) with default parameters; the structural coordinates used for the analysis were limited

to the domain of interest.
‡The number of aligned columns in the MSA, and the average length and standard deviation of the domain ‘footprint’.
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BPPS-defined residue sets
Step 2 of BPPS generates a hiMSA (Figure 7). For each subgroup (i.e. subtree) G within a hierarchy,

BPPS defines a corresponding set of ‘discriminating’ residues that most distinguish members of that

subgroup from closely related subgroups. This set is ordered from the most to the least distinguish-

ing residues. We assume that these residues are likely responsible for functions specific to subgroup

G. Although such a set typically includes residues with well-characterized functions, our focus is on

residues of unknown functional relevance. When mapped to available structures, these distinguishing

residues may readily suggest plausible hypotheses; in this respect, a BPPS analysis is informative by

itself. However, SIPRIS can obtain deeper insight into and corroboration of a BPPS analysis by identi-

fying significant overlap between BPPS-defined discriminating residues and structurally defined resi-

due sets; we term the intersection of two such sets a BPPS-SIPRIS cluster. SIPRIS analysis was

motivated, in part, by Karlin and Zhu’s approach (Karlin and Zhu, 1996) for identifying significant

clusters of residues that share physical-chemical properties.

BPPS-SIPRIS predefined clusters
The simplest BPPS-SIPRIS analysis is based on a specific, predefined structural cluster of n residues.

This corresponds to a ball-in-urn problem, in which the BPPS-defined distinguishing residues corre-

spond to N1 red balls, the remaining residues to N2 black balls, and the cluster to n balls drawn from

the urn. The probability that at least x of the n residues are distinguishing (i.e. are ‘red’) is given by

the cumulative hypergeometric distribution:

P x;n;N1;N2ð Þ ¼
X

min n;N1ð Þ

i¼max x;n�N2ð Þ

N1

i

� �

N2

n� i

� �

2

4

3

5�
N1þN2

n

� �

BPPS-SIPRIS optimized-clusters
Similar to BPPS-predefined clustering is choosing the optimal BPPS-structural cluster among various

alternatives. To construct these, we start from a well-defined position in space, and sequentially add

‘structurally adjacent’ residues (variously defined, as described in Results) to generate a set of

nested, structurally defined clusters. From this nested set, we select the structural cluster that opti-

mally overlaps with the BPPS-defined residue set by applying the Minimum Description Length

Table 3. Summary of BPPS results for five superfamilies.

Superfamily Subgroup # Sequences % Identity* # Nodes in subtree Minimum subtree size

GNAT 237,359 98 44 200

Gna1 family 1243 1

GTPases 127,418 95 121 500

R4 family 18,901 26

Rab subfamily 7002 12

Rab8 sub-subfamily 3.312 7

TF family 25,224 10

EFTu/CysN subfamily 4429 3

Helicases 131,321 98 47 300

RNA helicases 36,788 8

EEP 45,799 99 166 100

exoIII-AP-endo 13,711 47

INPP5 3855 14

TDG/UDG 23,592 98 47 100

TDG 1639 6

UDG 376 1

*The maximum % identity allowed between any two sequences in the set
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(MDL) principle (Grunwald, 2007), as described in the next section. Optimizing over different start-

ing residues, or different numbers of discriminating residues, requires further p-value adjustment, for

which we currently apply the overly-conservative Bonferroni correction to obtain an upper bound.

The MDL principle
To avoid overfitting BPPS-SIPRIS statistical models to observed data, we apply the MDL principle

(Grunwald, 2007), which can be understood as formalizing Occam’s Razor (‘a model should not be

needlessly complex’). Conceptually, this principle claims that the best among a set of alternative

models is that which minimizes the description length of the model, plus the maximum-likelihood

description length of the data given the model. This approach accounts for the implicit number of

independent tests performed when optimizing the parameters of a model, and strikes a balance

between a model’s complexity and its ability to fit the data—in our case to describe biologically rele-

vant amino acid residue patterns. More formally, a theory is a probability distribution over all possi-

ble sets of data, and a model is a parameterized set of theories. The description length of the data

D given a model M, is then defined by DL(D|M) � -log P(D|T), where T is maximum-likelihood theory

contained in M (i.e. the theory which yields the greatest probability for D). The description length of

the model M is defined by DL(M) � log(N), where N is the number of the effectively distinct theories

(i.e. parameter settings) M accommodates (Grunwald, 2007). The MDL principle aims to minimize

DL(D|M)+DL(M).

MDL applied to BPPS-SIPRIS clustering
BPPS-optimized clustering presents several mathematical challenges. Computing valid p-values

requires adjusting for the multiple tests implicit in optimizing over starting residues and clusters.

Also, this optimization itself may carry an implicit bias favoring small or large clusters, as outlined

below.

We start with a null model in which discriminating residues (e.g. defined by BPPS) are distributed

randomly throughout an entire sequence. Given a fixed number of discriminating residues, this

model yields a uniform likelihood for all sets of data, and serves as a basis of comparison for likeli-

hoods generated by an alternative model. This model divides the sequence into an initial segment

of length x (which we refer to as a cluster) having m discriminating residues, and a terminal segment

of length y having n discriminating residues. The model assumes discriminating residues are gener-

ated with different probabilities in the initial and terminal segments, and its maximum-likelihood the-

ory assigns the likelihood p ¼ m=xð Þm x� mð Þ=xð Þx�m
n=yð Þn y� nð Þ=yð Þy�n to the data. For a particular

cut-point x, this likelihood requires choosing the discriminating-residue probabilities m/x and n/y for

the initial and terminal segments, and is easily normalized for the selection of these parameters. Our

aim, however, is to pick the x (i.e. cluster) that yields the greatest likelihood for the data. Applying

the MDL principle requires calculating the effective number of independent tests N implicit in choos-

ing x (Altschul and Neuwald, 2017). By treating x as a continuous as opposed to a discrete parame-

ter, we are able to calculate its Fisher information (Altschul and Neuwald, 2017), and thus N.

One subtlety is that simply choosing the cut point x yielding the greatest likelihood implicitly

favors low or high values of x. This occurs because the Fisher information is greater at extreme val-

ues of x, implying that the likelihoods are more independent of one another at those values. Empiri-

cal analyses show that this bias toward large and small clusters often yields suboptimal results from

a biological perspective. However, by adding an x-dependent correction, derived from the Fisher

information, to our optimization, we may flatten the implicit prior associated with x (Altschul and

Neuwald, 2017). Random simulation shows that analytic p-values computed using our approach fall

within about 20% of empirical p-values. We still need to adjust these p-values for clusters found

using different starting residues. Absent a better approach, we currently apply the simple but overly

conservative Bonferroni correction (Bonferroni, 1936).

Runtimes
The runtime bottleneck in an analysis is BPPS. BPPS runtimes depend on the desired depth of the

hierarchy, on the width of and the number of sequences in the input MSA and on the minimum num-

ber of sequences required to define a leaf node. For example, on a 64-bit Linux workstation, a

125,000-sequence GTPase MSA requires about 4 weeks to generate a 120 node hierarchy up to
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eight nodes deep and with a minimum leaf node size of 500 sequences. Note that much of this time

is spent marginally refining a hierarchy. This approach is not recommended. Instead, we suggest run-

ning an initial analysis at a depth of 1 and then using the BPPS ‘focus’ option with a maximum depth

of 2–4 to expand the subtree for a specific major node of interest. For the GTPase MSA, this

approach takes less than a few days.

MSA cma format
The programs used here require cma-formatted MSAs. The cma (collinear multiple alignment) for-

mat, which is unique to our programs, allows the specification of a hierarchically-arranged set of

MSAs, such as are created in step 2 of BPPS and which serve as input to the MAPGAPS program.

(MAPGAPS will also take as input a single MSA either in cma or fasta format.) For a single MSA, the

cma format consists of a header line, such as ‘[0_(1)=name(135){go = 10000,gx = 2000,pn = 1000.0,

lf = 0,rf = 0}:’. The leftmost ‘0’ labels this as the root node of a hierarchical MSA; ‘(1)’ indicates a sin-

gle aligned block (this parameter is utilized during MCMC sampling); ‘name’ labels the MSA; ‘135’

indicates the number of aligned sequences; and the string in curly brackets gives parameter settings

that are not used here. This is followed by a second header line, such as ‘(20)********************’,

where ‘20’ indicates the number of aligned columns and the asterisks designate which columns

MCMC column should be sampled (Neuwald et al., 1997).

Each sequence in the MSA is specified by three lines. An example of the first line is ‘$41 = 34

(28):’, where ‘$41’ indicates that this is the 41st sequence, ‘34’ indicates the total number of residues

in the sequence and ‘28’ the number of residues and gaps (‘-‘) minus the number of insertions (this

information is required for MCMC sampling). The second line gives a fasta formatted identifier and

description, such as ‘>4ABC_A’. And the third line, such as ‘{(QEYP)ID-QTGKCEPYigqiTKCStfLPNST

(NVTN)}*’, specifies the aligned sequence where residues within parentheses represent regions

flanking the aligned region on either side; upper- and lower-case letters represent matching and

insertion residues, respectively; and gap characters represent deletions. The curly brackets on each

end allow multiple aligned blocks to be defined during MCMC sampling. The last line of the MSA,

such as ‘_0].’, indicates the end of the MSA; this syntax allows multiple (hierarchically arranged)

MSAs to be included within a single input file.

Additional considerations
BPPS assigns a log-odds score to each pattern residue; ranked by these scores, a specific number of

positions are considered by SIPRIS. SIPRIS identifies the statistically most significant intersection, if

any, between the BPPS- and structurally defined residue sets; adjusting its p-value for the number of

starting residues considered. Note that discriminating residues outside of the intersection may have

BPPS scores as high as or higher than those within; SIPRIS makes no distinctions in this regard.

PyMol 3D visualization
Given structural coordinates as input, the BPPS and SIPRIS programs will generate PyMol (Schro-

dinger, 2010) scripts to aid visualization of BPPS-defined residues and of BPPS-SIPRIS structural net-

works, respectively.
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BPPS-SIPRIS and functional binding sites
BPPS-SIPRIS does not seek to identify functional binding sites per se, though it often reveals

such sites after the fact. We illustrate this by comparing our analyses of Gna1, Rab4 and Rab8

with annotations on the Inferred Biomolecular Interactions Server (IBIS) (Shoemaker et al.,

2012)—keeping in mind that BPPS-SIPRIS will also identify residues having other roles.

Thirteen of the 22 residues in the Gna1 family-specific network are among the 27 residues

annotated on the IBIS as binding either to substrate (N-acetyl-D-glucosamine-6-phosphate) or

to the other homodimeric subunit. Eleven of the 14 residues in the Rab4 subfamily-specific

network are among the 15 Rabenosyn-5 binding residues annotated by the IBIS. Structures are

available for Rab8 bound to Ocrl1 (3qbt) (Hou et al., 2011), to the guanine nucleotide

exchange factor Rabin8 (4lhx) (Guo et al., 2013), and to the bMERB domain of Mical-cL (5szi)

(Rai et al., 2016). The IBIS annotates nine Rab8 residues as binding to all three components:

K10, I43, D44, F45, I47, W62, I73, Y77, and R79. Seven of these (all but the flanking residues,

K10 and R79) are included among the 19 Rab8 subfamily and sub-subfamily residues that

interact with the Ocrl1 binding interface defined by SIPRIS. Of course, SIPRIS performs a

benchmarking role similar to that of the IBIS inasmuch as both utilize 3D interactions within

high quality crystal structures as gold standards.

Benchmarking BPPS against the SFLD
We benchmarked BPPS by applying it to eight superfamilies within the Structure Function

Linkage Database (SFLD) (Akiva et al., 2014); other SFLD superfamilies contained too few

sequences or subgroups (<2) for BPPS. SFLD classifies each superfamily into subgroups based

on sequence and structural considerations and, to a very limited extent, on experimental data.

Most SFLD superfamilies also include unannotated and automatically annotated sequences,

which were used to enlarge the input sets, but not for benchmarking. We aligned the

sequences for each superfamily using GISMO (Neuwald and Altschul, 2016b), and then

removed both redundant (>98% identical) sequences and sequences having deletions in more

than 30% of aligned columns. To ensure sufficient statistical support, we required that each

BPPS leaf node correspond to at least 100 to 800 sequences, depending on superfamily size

and diversity.

BPPS misclassified at most 0.14% of the annotated sequences overall (Appendix 1—table

1). For some superfamilies, BPPS assigned some subgroups to multiple nodes or several

subgroups to a single node; in such cases, however, there were no inherent conflicts. As

illustrated in Appendix 1—table 2, for haloacid dehalogenases (HADs): (i) BPPS assigned

certain SFLD subgroups (SGs) to the root node, presumably due to their being too small or

lacking a significant distinguishing pattern. (ii) For certain SFLD subgroups BPPS assigns some

sequences to the root node due to a significant number of pattern mismatches (e.g., SG1138).

(iii) BPPS misclassified 101 HAD sequences, probably due to misalignments. (This MSA

contains a large number of indels rendering it relatively inaccurate—a problem that is

addressed in Materials and Methods.) (iv) Several sequences appear to be erroneously

assigned by SFLD to SG1129 (Appendix 1—table 3). BPPS assigned 108 of the 129 sequences

in SG1129 to the root, but 21 sequences to four other nodes. As shown in Appendix 1—table

3, using the criterion of mean BLAST score, the sequences assigned to each node better

match non-SG1129 sequences of that node than they do SG1129 sequences assigned to other

nodes. This analysis avoids problems that may arise from MSA errors and suggests how best

to reassign misclassified sequences (Appendix 1—figure 1 and Appendix 1—table 4). A

similar analysis of the radical SAM superfamily indicates that 326 sequences assigned by SFLD

to SG1118 are more closely related to SG1066 than they are to other SG1118 sequences. The

respective high mean BLAST scores of 429 and 210 may suggest that SG1118 and SG1066

should be merged. In this way, BPPS may be useful for protein subgroup database curation.
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Appendix 1—figure 1. Eleven haloacid dehalogenase sequences that the SFLD assigned to

SG1129, but that are more closely related to SG1130 sequences. The Venn diagram shows the

overlap between the subgroups BSG15, SG1129 and SG1130 with the numbers of sequences

indicated. The table gives the mean pairwise gapped BLAST scores for the 11 sequences

assigned to both SG1129 and BSG15 versus the sequence sets shown; this analysis indicates

that the 11 sequences should be reassigned from SG1129 to SG1130. Similar analyses indicate

that four other sequences in SG1129 should be reassigned to SG1135 (based on mean scores

of 27 versus 139) and that a sequence in SG1136 should be reassigned to SG1137 (based on a

mean score of 8 versus 149).

DOI: https://doi.org/10.7554/eLife.29880.022

Appendix 1—table 2. Correspondence between BPPS and SFLD subgroups for haloacid

dehalogenases*.

Subgroup IDs SFLD& SFLD#

BPPS SFLD‡ BPPS§ Total %

root† various 1531 1618 96.2

1138 82 833 9.8

Appendix 1—table 2 continued on next page
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Appendix 1—table 2 continued

Subgroup IDs SFLD& SFLD#

BPPS SFLD‡ BPPS§ Total %

34 0 200 21768 0.9

1129 3 129 2.3

23 0 101 21768 0.5

1124 1 495 0.2

1135 125 9423 1.3

21 0 158 21768 0.7

1124 91 495 18.4

1145 2 43 4.7

20 0 46 21768 0.2

1131 162 201 80.6

25 0 76 21768 0.3

1135 311 9423 3.3

2 0 1915 21768 8.8

2 10091 11846 85.2

3 0 937 21768 4.3

1129 4 129 3.1

1134 1 866 0.1

1135 4500 9423 47.8

1139 4 1851 0.2

1140 1 821 0.1

4 0 2422 21768 11.1

2 1 11846 0.0

1137 9 1430 0.6

1140 3 821 0.4

1141 53 278 19.1

1142 2 236 0.8

1144 2497 2759 90.5

5 0 229 21768 1.1

2 986 11846 8.3

6 0 342 21768 1.6

1124 360 495 72.7

7 0 330 21768 1.5

1134 628 866 72.5

33 0 100 21768 0.5

1134 153 866 17.7

8 0 57 21768 0.3

1133 400 400 100

32 0 32 21768 0.1

1139 218 1851 11.8

31 0 28 21768 0.1

1139 216 1851 11.7

9 0 195 21768 0.9

Appendix 1—table 2 continued on next page
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Appendix 1—table 2 continued

Subgroup IDs SFLD& SFLD#

BPPS SFLD‡ BPPS§ Total %

1134 1 866 0.1

1139 942 1851 50.9

10 0 105 21768 0.5

1137 896 1430 62.7

11 0 284 21768 1.3

1135 3 9423 0.0

12 0 478 21768 2.2

1136 1 246 0.4

1137 178 1430 12.4

13 0 117 21768 0.5

1138 751 833 90.2

14 0 1034 21768 4.8

1135 32 9423 0.3

15 0 525 21768 2.4

1129 11 129 8.5

1130 809 836 96.8

1132 6 227 2.6

1135 63 9423 0.7

1139 3 1851 0.2

16 0 337 21768 1.5

1135 1 9423 0.0

1140 670 821 81.6

17 0 230 21768 1.1

1135 288 9423 3.1

18 0 505 21768 2.3

1135 950 9423 10.1

19 0 197 21768 0.9

1129 3 129 2.3

22 0 338 21768 1.6

24 0 110 21768 0.5

1135 107 9423 1.1

*Erroneous, ambiguous and corrected classifications are shown as italicized, underlined, and bold,

respectively.
†Averages over 12 root-assigned subgroups.
‡SFLD subgroups represented in each BPPS subgroup; zero indicates the SFLD unannotated sequence set.
§The number of sequences in both the SFLD and BPPS subgroups in each row.
#Total number of sequences in each SFLD subgroup and the percentage of these in the BPPS subgroup.

DOI: https://doi.org/10.7554/eLife.29880.024

Dependency of BPPS-SIPRIS on the input MSA
We assessed the dependence of BPPS-SIPRIS on the quality of the input using jackhmmer

(Finn et al., 2015) MSAs, which should be less accurate than the MAPGAPS MSAs used here

(see Materials and methods and Figure 7). Jackhmmer, which applies a query-centric

iterative algorithm similar to that of PSI-BLAST (Altschul et al., 1997), was run over the EV-
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fold website (evfold.org) with its default parameter settings (five iterations; aligned columns

or sequences with >30% deletions ignored). Using Gna1, APE1, Rho1 and eIF4AIII as

queries, jackhmmer yielded MSAs of 107,738, 36,297, 99,838 and 107,213 sequences,

respectively; these correspond to four of the five superfamilies examined here. (For the

UDG/TDG superfamily, jackhmmer pulled in too few sequences for a valid comparison.) In

each case, BPPS-SIPRIS identified nearly the same residue sets using either type of MSA

(Appendix 1—table 5), with the p-values for jackhmmer MSAs tending to be less significant.

Thus, BPPS-SIPRIS yields fairly consistent results using very different MSAs, although using

MAPGAPS with a curated MSA helps detect more sequences and improve sensitivity.
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