Supplementary information for manuscript

Identification of a Fusobacterial RNA-binding protein involved in host small RNAmediated growth inhibition

Pu-Ting Dong¹, Mengdi Yang^{2,#}, Jie Hu ^{3,4,#}, Lujia Cen¹, Peng Zhou⁵, Difei Xu^{3,4}, Peng Xiong^{3,4,*}, Jiahe

Li^{6,*}, and Xuesong He^{1,*}

¹Department of Microbiology, The American Dental Association Forsyth Institute, Cambridge, MA 02142, USA.

²Department of Bioengineering, Northeastern University, Boston, MA 02115, USA.

³University of Science and Technology of China, Hefei 230026, China.

⁴Department of Biomedical Engineering, Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou 215123, China.

⁵Department of Microbiology and Molecular Genetics, University of Texas McGovern Medical School, Houston, TX 77030, USA.

⁶Department of Biomedical Engineering, College of Engineering and School of Medicine, University of Michigan, Ann Arbor, MI 48109, USA.

[#]: These authors contribute equally.

*: Corresponding authors: Dr. Xuesong He (<u>xhe@forsyth.org</u>), Dr. Jiahe Li (<u>jiaheli@umich.edu</u>), Dr. Peng

Xiong (xiongxp@ustc.edu.cn).

This document includes:

Figure S1-S10 Table S1 for PtaT sequence alignment is provided in a separate file Table S2-S3

Supplementary Figure 1. Identification of PtaT by tsRNA-mediated affinity pulldown assay. a. Silver staining of denaturing SDS-PAGE gel for biotinylated tsRNA pulldown samples in three different ATCC *Fn* strains. Arrowheads indicate the gel bands, which were excised for protein identification by Mass Spectrometry analysis. **b.** Silver staining of denaturing SDS-PAGE gel for biotinylated tsRNA pulldown samples in six *Fn* clinical tumor isolates (CTIs). Arrowheads indicate the gel bands, which were excised for protein identification by Mass Spectrometry analysis. CTI-1: *F. nucleatum. ssp. animalis*; CTI-3: *F. nucleatum. ssp. animalis*; CTI-5: *F. nucleatum. ssp. animalis*; CTI-2: *F. nucleatum*, *ssp. nucleatum*; CTI-6: *F. nucleatum. ssp. polymorphum*; CTI-7: *F. nucleatum. ssp. vincentii.* **c.** Silver staining of denaturing SDS-PAGE gel for biotinylated tsRNA pulldown samples in *Streptococcus mitis* ATCC *6249 (Sm)* and *Porphyromonas gingivalis* ATCC *33277 (Pg).*

Supplementary Figure 2. Validation of the binding interaction between PtaT and tsRNA. a. Schematic of using anti-FLAG M2 magnetic beads and FLAG-tagged recombinant proteins to validate tsRNA binding *in vitro*. b. Western blotting of FLAG-tagged PtaT and STING (a negative control known to bind cyclic dinucleotides but not RNA oligos). c. Pull-down of naturally occurring tsRNA-000794, tsRNA-020498 or scramble control by purified FLAG-tagged PtaT and anti-FLAG antibody-conjugated magnetic beads. A FLAG-tagged irrelevant protein (STING) was used as a negative control for nonspecific binding. Unbound RNAs were quantified by stem-loop qPCR and normalized to the initial concentration. Results = Mean \pm SEM (N=4) and are representative of two biological replicates. Statistical analyses were performed by the two-way ANOVA followed by Dunnett' s Bonferroni multiple comparison tests. *p < 0.05, ** p < 0.01, *** p < 0.001.

Classification	Protein	Localization	Uniport	Groups
RNA metabolism	Polyribonucleotide nucleotidyltransferase	Cytoplasmic	D5RFI6	
Metal ion transport	Heavy metal translocating P-type ATPase	Membrane	D5RD38	tsRNA000794
	Uncharacterized		D5RA61	
Metabolic process	S-methyl-5-thioribose-1- phosphate isomerase		D5RDB1	
Metabolic process	Signal peptide peptidase SppA	Membrane	D5REW1	tsDNA000794
Transport	ABC transporter, substrate- binding protein		D5RBV3	132111000104
	Uncharacterized		D5RA61	
RNA metabolism	Ribonuclease J	Cytoplasmic	D5RD58	
RNA metabolism	Polyribonucleotide nucleotidyltransferase	Cytoplasmic	D5RFI6	piRNA_016792
	Uncharacterized		D5RA61	
RNA metabolism	Polyribonucleotide nucleotidyltransferase	Cytoplasmic	D5RFI6	
RNA metabolism	Ribonuclease R	Cytoplasmic	D5RAL6	piRNA_006465
	Uncharacterized		D5RA61	
Metabolic process	S-methyl-5-thioribose-1- phosphate isomerase		D5RDB1	Beads only

Supplementary Figure 3. Identification of RNA-binding proteins from *Fn* ATCC 23726 total lysate by RNA pulldown and Mass Spectrometry. P-type ATPase was highlighted by red in the table.

Supplementary Figure 4. A double crossover-mediated knockout of the full-length *ptaT* in *Fn* Δ *galK*. a. Generation of insertional mutagenesis via a double crossover at a 1kb central region of *galk* in *Fn* ATCC 23726. b. Double crossover-mediated complete knockout of the full-length *ptaT* in *Fn* ATCC 23726 Δ *galK*.

Supplementary Figure 5. The time-course growth kinetic monitored by optical density at 600 nm (OD₆₀₀) from *Fn* ATCC 23726, *Fn* Δ galK and *Fn* Δ galK Δ ptaT. N = 3.

Supplementary Figure 6. Clusters of orthologous groups (COG, a) and quantification of differentially expressed genes (b) from stationary-phase $Fn \Delta galK \Delta ptaT$ relative to $Fn \Delta galK$.

Supplementary Figure 7. The yield of total extracted RNA of both $Fn \Delta galK$ and $Fn \Delta galK \Delta ptaT$ from three biological replicates. Significant difference was determined through two-tailed unpaired Student's *t*-test.

Supplementary Figure 8. LDA analysis (LD3 versus LD2) of 200 Raman spectra from log-phase and stationary-phase $Fn \Delta galK$ and $Fn \Delta galK \Delta ptaT$.

Supplementary Figure 9. Structural analysis of the predicted complex model between scrambled control (a), tsDNA-000794 (b) and PtaT by AlphaFold 3.

Supplementary Figure 10. EMSA results of alanine scanning mutations. a. GST negative control and wild-type control; **b.** Single-site mutations; **c**. Double and multi-sites mutations.

Bacterial Species	Strains	Characteristics	Source
Porphyromonas gingivalis	ATCC 33277	WT	ATCC
Streptococcus mitis	ATCC 6249	WT	ATCC
F. nucleatum	ATCC 23726	ssp. nucleatum WT	ATCC
	ATCC 25586	ssp. nucleatum WT	ATCC
	ATCC 10953	ssp. nucleatum WT	ATCC
	Fn_AgalK	<i>galK</i> markerless deletion	this study
	$Fn_\Delta galK \Delta ptaT$	<i>ptaT</i> markerless deletion	this study
	CTI-1 (ssp. animalis)	clinical tumor isolate	Previous study ¹
	CTI-2 (ssp. nucleatum)	clinical tumor isolate	Previous study ¹
	CTI-3 (ssp. animalis)	clinical tumor isolate	Previous study ¹
	CTI-5 (ssp. animalis)	clinical tumor isolate	Previous study ¹
	CTI-6 (ssp. <i>polymorphum</i>)	clinical tumor isolate	Previous study ¹
	CTI-7 (ssp. vincentii)	clinical tumor isolate	Previous study ¹

Table S2 Bacterial strains and plasmids used in this paper

	CTI-2 ΔptaT	deletion of <i>ptaT</i> in CTI- 2	this study
Escherichia coli	NEB5a		NEB
	Rosetta (DE3)		NEB
	C2987	cloning host	NEB
Plasmids	Purpose	Characteristics	Source
pSH200-PtaT	PtaT purification	amp	this study
pHS31_FLAG_galK	In-frame deletion of <i>galK</i>	catP	this study
pHS31_FLAG-galK-∆ptaT	In-frame deletion of <i>ptaT</i>	catP	this study
pBCG02	<i>E. coli/Fusobacterium</i> shuttle vector	cm ^R /thia ^R	ref ²
pBCG02-CTI2-1787updn	Derivative of pBCG02 lacking repA and ori _{Fn} , deletion plasmid of ptaT		this study

Primer Name	Sequence (5' to 3')	Description	
B267	cgaaaacctgtacttccagggatccAAAAATGATAATT TACTCGCTT	Fwd primer to clone <i>ptaT</i> from <i>Fn</i> genome.	
B268	tggtggtggtgctcgagtgcggccgcTTATCATTTGTC ATCGTCGTCTTTGTAGTCATTAGTTTTAT ATCATATTTTAATAAT	Rev primer to clone <i>ptaT</i> from <i>Fn</i> genome.	
B406	tttaaaagcggccgcggtacGTTATTAAAAATTTTA AAATTATTCAAAGTCTTGGAAG	Fwd primer to clone 750bp upstream gene of <i>ptaT</i>	
B407	tatctcctcttggttaTTATCTCCCTTCTAATTCACT C	Rev primer to clone 750bp upstream gene of <i>ptaT</i>	
B408	ATAAtaaccaagaggagataaaATGAAAAAGTTG ACTATTACAATG	Fwd primer to clone 750bp downstream gene of <i>ptaT</i>	
B409	agggacactttttcactcgaAGTTACATATTTTTCAT TAAATTGACAATAGTCAC	Rev primer to clone 750bp downstream gene of <i>ptaT</i>	
B422	aaagaaaaactgccgggtacTGTTAATCCATTTGCT ACTGTTATTGC	Fwd primer to clone 1kb upstream gene of <i>galK</i>	
B423	tagaaactagcCCAATTAAATTCACTCTACCTG GTGA	Fwd primer to clone 1kb upstream gene of <i>galK</i>	
B424	aatttaattggGCTAGTTTCTATATAGCAAATAT TGGAG	Fwd primer to clone 1kb downstream gene of <i>galK</i>	
B425	cggggatcgatcccgggtacCTCTCCAAGCTTTTAA AGTTTTATCTGC	Fwd primer to clone 1kb downstream gene of <i>galK</i>	
B459	tttaaaagcggccgcggtacCAACTTGGAACTATTC AAGAACAAT	Fwd primer to verify <i>ptaT</i> deletion	
B462	agggacactttttcactcgaTATTCGTTCCATAAAAT TTTCCTTAATAATT	Rev primer to verify <i>ptaT</i> deletion	

Table S3 Primers used for strain construction.

CTI2-1787upF	GAGTGTGATATGTATGGAAGCTACGAAA GATGAAAGATAAAACG	pBCG02-CTI2-1787updn	
CTI2-1787upR	CCATAGCAAAATTTTCTTTTATCTCAATT TCAGATTTTAAAG	pBCG02-CTI2-1787updn	
CTI2-1787dnF	CTTTAAAATCTGAAATTGAGATAAAAGA AAATTTTGCTATGG	pBCG02-CTI2-1787updn	
CTI2-1787dnR	CGGAAATTTCACTAGTTCTAGGACGCTTG ATTTTTCTTATATAG	pBCG02-CTI2-1787updn	
Det-1787-F	GAAAGATGAAAGATAAAACG	Confirms ptaT deletion	
Det-1787-R	GCTTGATTTTTCTTATATAG	Confirms ptaT deletion	
pCWU6-F	GTCCTAGAACTAGTGAAATTTCCG	Removes repA and oriFn from pBCG02	
pCWU6-R	GTAGCTTCCATACATATCACACTC	Removes repA and oriFn from	
		pBCG02	
	Beginning of sequencing primers for plasmid	pBCG02 Is confirmation	
S99	Beginning of sequencing primers for plasmid	pBCG02 Is confirmation T7 terminator Rev; sequencing pHS200	
S99 S101	Beginning of sequencing primers for plasmid AACCCCTCAAGACCCGTTTA TAATACGACTCACTATAGGG	pBCG02 Is confirmation T7 terminator Rev; sequencing pHS200 T7 promoter Fwd; sequencing pHS200	
S99 S101 S124	Beginning of sequencing primers for plasmid AACCCCTCAAGACCCGTTTA TAATACGACTCACTATAGGG CCCAGTCACGACGTTGTAAAACG	pBCG02 Is confirmation T7 terminator Rev; sequencing pHS200 T7 promoter Fwd; sequencing pHS200 M13	
S99 S101 S124 S133	Beginning of sequencing primers for plasmid AACCCCTCAAGACCCGTTTA TAATACGACTCACTATAGGG CCCAGTCACGACGTTGTAAAACG CAGAAGATAATGTAAAAAGAGTTC	pBCG02 Is confirmation T7 terminator Rev; sequencing pHS200 T7 promoter Fwd; sequencing pHS200 M13 <i>ptaT</i> internal primer for <i>Fn</i> 23726	
S99 S101 S124 S133 S136	Beginning of sequencing primers for plasmid AACCCCTCAAGACCCGTTTA TAATACGACTCACTATAGGG CCCAGTCACGACGTTGTAAAACG CAGAAGATAATGTAAAAAGAGTTC CCACTTCGACTGCACTCCCGAC	pBCG02 Is confirmation T7 terminator Rev; sequencing pHS200 T7 promoter Fwd; sequencing pHS200 M13 <i>ptaT</i> internal primer for <i>Fn</i> 23726 pHS31 digestion site Fwd	
S99 S101 S124 S133 S136 S137	Beginning of sequencing primers for plasmid AACCCCTCAAGACCCGTTTA TAATACGACTCACTATAGGG CCCAGTCACGACGTTGTAAAACG CAGAAGATAATGTAAAAAGAGTTC CCACTTCGACTGCACTCCCGAC GTCCCTAGCGCCTACGGGGAAT	pBCG02 Is confirmation T7 terminator Rev; sequencing pHS200 T7 promoter Fwd; sequencing pHS200 M13 <i>ptaT</i> internal primer for <i>Fn</i> 23726 pHS31 digestion site Fwd pHS31 digestion site Rev	
S99 S101 S124 S133 S136 S137 S139	Beginning of sequencing primers for plasmid AACCCCTCAAGACCCGTTTA TAATACGACTCACTATAGGG CCCAGTCACGACGTTGTAAAACG CAGAAGATAATGTAAAAAGAGTTC CCACTTCGACTGCACTCCCGAC GTCCCTAGCGCCTACGGGGAAT TTAGGACGGCAATCAATCAA	pBCG02 Is confirmation T7 terminator Rev; sequencing pHS200 T7 promoter Fwd; sequencing pHS200 M13 <i>ptaT</i> internal primer for <i>Fn</i> 23726 pHS31 digestion site Fwd pHS31 digestion site Rev <i>CatP</i> Fwd on pHS31	
S99 S101 S124 S133 S136 S137 S139 S140	Beginning of sequencing primers for plasmid AACCCCTCAAGACCCGTTTA TAATACGACTCACTATAGGG CCCAGTCACGACGTTGTAAAACG CCAGAAGATAATGTAAAAAGAGTTC CCACTTCGACTGCACTCCCGAC GTCCCTAGCGCCTACGGGGAAT TTAGGACGGCAATCAATCAA AAACGGCAAATGTGAAATCC	pBCG02 Is confirmation T7 terminator Rev; sequencing pHS200 T7 promoter Fwd; sequencing pHS200 M13 <i>ptaT</i> internal primer for <i>Fn</i> 23726 pHS31 digestion site Fwd pHS31 digestion site Rev <i>CatP</i> Fwd on pHS31 <i>CatP</i> Rev on pHS31	

*The lower letters are the overlap region. Fwd, forward; Rev, reverse. Nucleotides with upper case indicate sequences complementary to the genome; nucleotides with lower case indicate sequences matched to digested plasmid pHS31 for genetic knockout. Underlined are primer sequences specific to the ends of the corresponding assembly.

References:

- 1 Abed, J. *et al.* Fap2 mediates *Fusobacterium nucleatum* colorectal adenocarcinoma enrichment by binding to tumor-expressed Gal-GalNAc. *Cell Host & Microbe* **20**, 215-225 (2016).
- 2 Peluso, E. A., Scheible, M., Ton-That, H. & Wu, C. Genetic manipulation and virulence assessment of *Fusobacterium nucleatum*. *Current Protocols in Microbiology* **57**, e104 (2020).

Table S1

CLUSTAL W (1.81) multiple sequence alignment

23726

MKNDNLLACEIVHRLRGRIRIKSKAFKYIGNPLKSEIEKQLLQVRYIENVEISLVTGTIL CTI-2 MKNDNLLACEIVHRLRGRIRIKSKAFKYIGNPLKSEIEKQLLQVRYIENVEISLVTGTIL 25586 MKNDNLLACEIVHRLRGRIRIKSKAFKYIGNPLKSEIEKQLLQVRYIENVEISLVTGTIL 10953 MKNDNLLACEIVHRLRGRIRIKSRAFKYIGNSLKAQIEKQLLQVRYIENVEISLITGTIL CTI-6 MKNDNLLACEIVHRLRGRIRIKSKAFKYIGNSLKSEIEKQLLQVRYIENVEISLITGTIL CTI-7 MKNDNLLTCEIVHRLRGRIRIKSKAFKYVGNSLKLEIEKHLL0VRYIKSVEISLITGTIL CTI-3 MKNDNLLTCEIVHRLRGRIRIKSKAFKYVGNSLKSEIEKQLLQVRYIKSVEISLITGTIL CTI-1 MKNDNLLTCEIVHRLRGRIRIKSKAFKYVGNSLKSEIEKQLLQVRYIKSVEISLITGTIL CTI-5 MKNDNLLTCEIVHRLRGRIRIKSKAFKYVGNSLKSEIEKOLLOVRYIKSVEISLITGTIL 23726 IYFEDVSLSD0NLISLI0NTLNSHIFEICKNEKVEKSSKYIIERKLQEESPKEIMKKIVT CTI-2 IYFEDVSLSDONLISLIONTLNSHIFEICKNEKVEKSSKYIIERKL0EESPKEIMKKIVT 25586 IYFEDVSLSDQNLISLIQNTLNSHIFEICKNEKVEKSSKYIIERKLQEESPKEIMKKIVT 10953 IYFEDVSLSDQNLISLIQNTLNSHIFEICKNEKIEKSSKYVIERKLQEESPKEIMKKILT CTI-6 IYFEDVSLSDQNLISLIQNTLNSHIFEICKNEKIEKSSKYVIERKLQEESPKEIMKKILT CTI-7 IYFEDVSLSDQNLINLIQNTLNSHIFEICKNEKIEKSSKYVIERKLQEESPKEIVKKIIA CTI-3 IYFEDVSLSDONLINLIONTLNSHIFEICKNEKVEKSSKYVIERKL0EESPKEIVKKIIA CTI-1 IYFEDVSLSDQNLINLIQNTLNSHIFEICKNEKVEKSSKYVIERKLQEESPKEIVKKIIA CTI-5 IYFEDVSLSDQNLINLIQNTLNSHIFEICKNEKVEKSSKYVIERKLQEESPKEIVKKIIA 23726 TAGLLGYNLFFKSKSTVALTGIRRFLNYNTLSTLALAMPVLKNGINSLIKNKRPNADTLS CTI-2TAGLLGYNLFFKSKSTVALTGIRRFLNYNTLSTLALAMPVLKNGINSLIKNKRPNADTLS 25586

TAGLLGYNLFFKSKSTVALTGIRRFLNYNTLSTLALAMPVLKNGINSLIKNKRPNADTLS

TAGLLGYNLFFKSKNTAALTGIRRFLNYNTLSTLALAMPVLKNGINSLVKNKRPNADTLS CTI-6 TAGLLGYNLFFKSKSTVALTGIRRFLNYNTLATLALAMPVLKNGINSLVKNKRPNADTLS CTI-7 TAGLLGYNLFFKSKSTVALTGIRKFLNYNTLSTLALAMPVLKNGINSLIKNKRPNADTLS CTI-3 TAGLLGYNLFFKPKSTVALTGIRRFLNYNTFSTLALAMPVLKNGVNSLIKNKRPNADTLS CTI-1 TAGLLGYNLFFKSKSPVALTGIRRFLNYNTLSTLALAMPVLKNGVNSLIKNKRPNADTLS CTI-5 TAGLLGYNLFFKPKSTVALTGIRRFLNYNTLSTLALAMPVLKNGVNSLIKNKRPNADTLS 23726 SSAIISSILLGKESAALTIMFLEEVSELLTVYTMEKTRGAIKDMLSVGENYVWKEISEDN CTI-2SSAIISSILLGKESAALTIMFLEEVSELLTVYTMEKTRGAIKDMLSVGENYVWKEISEDN 25586 SSAIISSILLGKESAALTIMFLEEVSELLTVYTMEKTRGAIKDMLSVGENYVWKEISEDN 10953 SSAIISSILLGKESAALTIMFLEEVSELLTVYTMEKTRGAIKDMLSVGENVVWKEISEDN CTI-6 SSAIISSILLGKESAALTIMFLEEVSELLTVYTMEKTRGAIKDMLSVGENYVWKEISEDN CTI-7 SSAIISSILLGKESAALTIMFLEEVSELLTVYTMEKTRGAIKDMLSVGENYVWKEISEDN CTI-3 SSAIISSILLGKESAALTIMFLEEVSELLTVYTMEKTRGAIKDMLSVGENVVWKEISEDN CTI-1 SSAIISSILLGKESAALTIMFLEEVSELLTVYTMEKTRGAIKDMLSVGENYVWKEISEDN CTI-5 SSAIISSILLGKESAALTIMFLEEVSELLTVYTMEKTRGAIKDMLSVGENYVWKEISEDN 23726 VKRVPIEEIQKDDIIVVQTGEKISVDGKIIRGEALIDQSSITGEYMPIKKSEGEEVYAGT CTI-2 VKRVPIEEIQKDDIIVVQTGEKISVDGKIIRGEALIDQSSITGEYMPIKKSEGEEVYAGT 25586 VKRVPIEEIQKDDIIVVQTGEKISVDGKIIRGEALIDQSSITGEYMPIKKSEGEEVYAGT 10953 VKRVPIEEI0KDDIIVV0TGEKISVDGKIIRGEALID0SSITGEYMPIKKSIGEDVYAGT CTI-6 VKRVPIEEI0KDDIIVV0TGEKISVDGKIIRGEALID0SSITGEYMPIKKSIGEDVYAGT CTI-7 VKRVPIEEIKKDDIIVVQTGEKISVDGKIIRGEALIDQSSITGEYMPIKKSVEDDVYAGT CTI-3 VKRVPIEEI0KDDIIVV0TGEKISVDGKIIKGEALID0SSITGEYMPIKKSKGDDVYAGT

10953

CTI-2 IIKNGNISIIAEKVGDDRTVSRIIKLVEDANSNKADIONYADTFSA0LIPLNFILAGIVY 25586 **IIKNGNISIIAEKVGDDRTVSRIIKLVEDANSNKADIQNYADTFSAQLIPLNFILAGIVY** 10953 IVKNGNISIIAEKVGDDRTVSRIIKLVEDANSNKADIONYADTFSA0LIPLNFILAGIVY CTI-6 IVKNGNISIIAEKVGDDRTVSRIIKLVEDANSNKADIONYADTFSA0LIPLNFILAGIVY CTI-7 IVKNGNISIIAEKVGDDRTVSRIIKLVEDANSNKADIONYADTFSAOLIP------CTI-3 IVKNGNISIIAEKVGDDRTVSRIIKLVEDANSNKADIONYADTFSAQLIPLNFILAGIVY CTI-1 **IVKNGNISIIAEKVGDDRTVSRIIKLVEDANSNKADIQNYADTFSAQLIPLNFILAGIVY** CTT-5 IVKNGNISIIAEKVGDDRTVSRIIKLVEDANSNKADIQNYADTFSAQLIPLNFILAGIVY 23726 ASTRSITKAMSMLVIDYSCGIRLSTAVAFSAAINTAAKNGILVKGSNFIEELSKSETVIF CTI-2 ASTRSITKAMSMLVIDYSCGIRLSTAVAFSAAINTAAKNGILVKGSNFIEELSKSETVIF 25586 ASTRSITKAMSMLVIDYSCGIRLSTAVAFSAAINTAAKNGILVKGSNFIEELSKSETVIF 10953 ASTRNITKAMSMLVIDYSCGIRLSTAVAFSAAINTAAKNGILVKGSNFIEELSKAETVIF CTI-6 ASTRNITKAMSMLVIDYSCGIRLSTAVAFSAAINTAAKNGILVKGSNFIEELSKAETVIF CTI-7 CTI-3 ASTRSLTKAMSMLVIDYSCGIRLSTAVAFSAAINTAAKNGILVKGSNFIEELSKAETVIF CTI-1 ASTRSLTKAMSMLVIDYSCGIRLSTAVAFSAAINTAAKNGILVKGSNFIEELSKAETVIF CTI-5 ASTRSLTKAMSMLVIDYSCGIRLSTAVAFSAAINTAAKNGILVKGSNFIEELSKAETVIF 23726 DKTGTITEGKPKV0SIEVFDNNMSENEMIGLAGAAEE0SSHPLATAIMSEIKDRGIEIPK CTI-2

CTI-1 VKRVPIEEIQKDDIIVVQTGEKISVDGKIIKGEALIDQSSITGEYMPIKKSKGDDVYAGT CTI-5 VKRVPIEEIQKDDIIVVQTGEKISVDGKIIKGEALIDQSSITGEYMPIKKSKGDDVYAGT

IIKNGNISIIAEKVGDDRTVSRIIKLVEDANSNKADIONYADTFSA0LIPLNFILAGIVY

23726

DKTGTITEGKPKVQSIEVFDNNMSENEMIGLAGAAEEQSSHPLATAIMSEIKDRGIEIPK 25586 DKTGTITEGKPKVQSIEVFDNNMSENEMIGLAGAAEEQSSHPLATAIMSEIKDRGIEIPK 10953 DKTGTITEGKPKVQSIEVFDNSISENEMIGLAGAAEEQSSHPLAIAIMSEIKDRGIEIPK CTI-6 DKTGTITEGKPKVQSIEVFDNSISENEMIGLAGAAEEQSSHPLATAIMSEIKDRGIEIPK CTI-7 CTI-3 DKTGTITEGKPKVQSIEIFDNSISENEMIGLAGAAEEQSSHPLATAIMSEIKDRGIEIPK CTI-1

DKTGTITEGKPKVQSIEIFDNSISENEMIGLAGAAEEQSSHPLATAIMSEIKDRGIEIPK CTI-5

DKTGTITEGKPKVQSIEIFDNSISENEMIGLAGAAEEQSSHPLATAIMSEIKDRGIEIPK

23726

HNKIKTVVSRGVETKIGKGKEAKIIRVGSKKYMLENNIDLTLATEAERGIISRSEIGLYV CTI-2 HNKIKTVVSRGVETKIGKGKEAKIIRVGSKKYMLENNIDLTLATEAERGIISRSEIGLYV 25586 HNKIKTVVSRGVETKIGKGKEAKIIRVGSKKYMLENNIDLTLATEAERGIISRSEIGLYV 10953 HNKIKTVVSRGVETKVGKGKEAKTIRVGSKKYMLENNIDLTLATEAERGIISRSEIGLYV CTI-6 HNKIKTVVSRGVETKVGKGKEAKTIRVGSKKYMLENNIDLTLATEAERGIISRSEIGLYV CTI-7

CTI-3

HNKIKTVVSRGVETKIGKGKDAITIRVGSKKYMLENNVDLTLATNAERGIISRGEIGLYV CTI-1 HNKIKTVVSRGVETKIGKGKDAITIRVGSKKYMLENNVDLTLATNAERGIISRGEIGLYV CTI-5

HNKIKTVVSRGVETKIGKGKDAITIRVGSKKYMLENNVDLTLATNAERGIISRGEIGLYV

23726

AQDEKIIGLIGVSDPPRENIKKAINRLRNYGVDDIVLLTGDLRQQAETIASRMSIDRYES CTI-2 AQDEKIIGLIGVSDPPRENIKKAINRLRNYGVDDIVLLTGDLRQQAETIASRMSIDRYES 25586 AQDEKIIGLIGVSDPPRENIKKAINRLRNYGVDDIVLLTGDLRQQAETIASRMSIDRYES 10953 SQDEKIIGLIGVSDPPRENIKKAINRLRNYGVDDIVLLTGDLRQQAETIASRMSIDRYES CTI-6 AQDEKIIGLIGVSDPPRENIKKAINRLRNYGVDDIVLLTGDLRQQAETIASRMSIDRYES CTI-7

CTI-3

AQNEKIIGLIGVSDPPRENIKKAINRLRNYGVDDIVLLTGDLRQQAETIASRMSIDRYES CTI-1 AQNEKIIGLIGVSDPPRENIKKAINRLRNYGVDDIVLLTGDLRQQAETIASRMSIDRYES CTI-5 AONEKIIGLIGVSDPPRENIKKAINRLRNYGVDDIVLLTGDLROOAETIASRMSIDRYES

23726

ELLPEDKAKNILKFQSKGSNVIMIGDGVNDAPALSYANVGVALGSTRTDVAMEAADITIT CTI-2 ELLPEDKAKNILKFQSKGSNVIMIGDGVNDAPALSYANVGVALGSTRTDVAMEAADITIT

25586 ELLPEDKAKNILKFQSKGSNVIMIGDGVNDAPALSYANVGVALGSTRTDVAMEAADITIT 10953

ELLPEDKAKNILKFQSKGSNVIMIGDGVNDAPALSYANVGVALGSTRTDVAMEAADITIT CTI-6

ELLPEDKAKNILKFQSKGSNVIMIGDGVNDAPALSYANVGVALGSTRTDVAMEAADITIT CTI-7

CTI-3

ELLPEDKAKNILKFQSKGSNVIMIGDGVNDAPALSYANVGVALGSTRTDVAMEAADITIK CTI-1 ELLPEDKAKNILKFQSKGSNVIMIGDGVNDAPALSYANVGVALGSTRTDVAMEAADITIT CTI-5 ELLPEDKAKNILKFQSKGSNVIMIGDGVNDAPALSYANVGVALGSTRTDVAMEAADITIT

23726

QDNPLLVPGVIGLSKNTVKTIKENFAMVIGLNTFALVLGATGILAPIYASVLHNSTTILV CTI-2 QDNPLLVPGVIGLSKNTVKTIKENFAMVIGLNTFALVLGATGILAPIYASVLHNSTTILV 25586 QDNPLLVPGVIGLSKNTVKTIKENFAMVIGLNTFALVLGATGILAPIYASVLHNSTTILV 10953 QDNPLLVPGVIGLSKNTVKTIKENFAMVIGLNTFALVLGATGILAPIYASVLHNSTTILV CTI-6 QDNPLLVPGVIGLSKSTVKTIKENFAMVIGLNTFALVLGATGILAPIYASVLHNSTTILV CTI-7

CTI-3

QDNPLLVPGVIGLSKNTVKTIKENFAMVIGLNTFALVLGATGILAPIYASVLHNSTTILV CTI-1

QDNPLLVPGVIGLSKNTVKTIKENFAMVIGLNTFALVLGATGILAPIYASVLHNSTTILV CTI-5 QDNPLLVPGVIGLSKNTVKTIKENFAMVIGLNTFALVLGATGILAPIYASVLHNSTTILV

23726	VMNSLKLLKYDIKTN
CTI-2	VMNSLKLLKYDIKTN
25586	VLNSLKLLKYDIKTN

10953	VLNSLKLLKYDIKTN
CTI-6	VMNSLKLLKYDIKTN
CTI-7	
CTI-3	VMNSLKLLKYDIKTN
CTI-1	VMNSLKLLKYDIKTN
CTI-5	VMNSLKLLKYDIKTN