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Tolerance to self antigens is a critical feature of the immune response . In the T
lymphocyte pool, it appears that tolerance induction primarily occurs during lym-
phocyte development in the thymus. Potentially autoreactive Tcells are deleted pre-
sumably upon exposure to the appropriate self antigen presented by either bone
marrow-derived cells or thymic stromal cells (1-4). While this mechanism is effec-
tive for inducing tolerance to antigens expressed on these tissues, it may not be as
effective in inducing tolerance to antigens expressed specifically in other nonlym-
phoid tissues (5). These tissue-specific antigens are of great interest since many of
the major failures of tolerance to self (i.e ., autoimmune disease) are due to immune
responses to these "parenchymal self" (6) antigens .
We have been interested in developing well defined models of self tissue-specific

antigens, and in studying the mechanisms used by the immune system to deal with
these antigens . In some cases, the study of tolerance to self has been greatly aided
by animal models ofspontaneous or experimentally induced autoimmunity. We sought
to supplement the existing models with a system of well defined model autoantigens
using transgenic technology. With this technology, expression of cloned genes can
be targeted to specific tissues by use of hybrid gene constructs (7, 8) . This approach
has been successfully used by a number of laboratories (7-11) . The advantages of
this system over models ofspontaneous autoimmunity include the ability to use an-
tigens well defined in terms of three-dimensional structure and Tcell subset responses .
Furthermore, expression can be targeted to tissues that are readily accessible for
histological analysis, and in some cases, timing of expression can be controlled .

In a previous study, we targeted expression of a class II MHC antigen I-E to the
pancreatic islet /3 cells in I-E- mice (insulin [INS]'-I-E transgenic mice ; reference
12) . The experiment was designed to test whether expression of class II MHC by
nonlymphoid cells made them capable of stimulating T cell responses to the class
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11 antigen and initiating an autoimmune response against the /3 cells . Specific ex-
pression was achieved, but the INS-I-E transgenic animals developed a nonimmuno-
logical form of insulin-dependent diabetes . Interestingly, the animals were found
to be tolerant to the I-E transgene antigen despite the absence of detectable I-E ex-
pression in the thymus or spleen . In vitro studies with the isolated I-E+ islet cells
(13) suggested that class II antigens on nonlymphoid cells were in fact not stimula-
tory to T lymphocytes . Instead, they paradoxically induced a specific paralysis; that
is, reactive T cells exposed to the islet cells were rendered anergic to subsequent
rechallenge by normal lymphoid class II+ stimulators. This T cell paralysis observed
in vitro may help explain the tolerance in the original INS-I-E transgenic mice (12-15) .
The mechanisms involved in tolerance induction in the transgenic mice are likely

to be rather complex . Even if T cell paralysis were the major mechanism for in-
ducing tolerance, it is still necessary to explain how all of the relevant T cells were
exposed to the peripheral I-E . There is also the perplexing observation that thymo-
cytes were tolerant to I-E (12) . Thus, for a more complete analysis ofthese phenomena,
we extended our system to include transgene expression targeted to another tissue :
the acinar cells ofthe exocrine pancreas (elastase [EL]-I-E transgenic mice) . In this
situation, there is more tissue available for histological analysis, and the diabetes
observed in INS-I-E mice could be avoided . Furthermore, since the new EL-I-E
transgenic mice were developed on an inbred C57BL/6J (B6) background, adoptive
transfer of lymphocytes could be done without concern for irrelevant histocompati-
bility antigen differences . In this report, we describe the immune status of EL-I-E
transgenic mice with respect to tolerance to the transgene I-E . From our experi-
ments we were able to establish that tolerance in T lymphocytes can be induced
and maintained by expression of a class II antigen exclusively in peripheral nonlym-
phoid cells . Since we were interested in determining what peripheral tolerance-in-
ducing mechanisms may be acting in these mice, we also studied the ability of EL-I-E
animals to induce tolerance in mature nontolerant T cells in vivo. Our adoptive transfer
studies indicated that T cells from tolerant mice can mediate resistance to organ-
specific immune attack, but the resistance may not involve specific Ts cells .

Materials and Methods
Mice .

	

All mice were bred and maintained in our animal facility at the University ofPenn-
sylvania School ofVeterinary Medicine . Inbred mouse stocks were obtained from TheJackson
Laboratory (Bar Harbor, ME). Ea transgenic line 107-1 (wild-type I-E expression ; reference
16), originally generated on inbred C57BL/10 and backcrossed several generations to B6,
were bred to be homozygous for the transgene . Ea transgenic line 78-1 (wild-type I-E expres-
sion ; reference 17), originally generated on (B6 x SJL)F2, was backcrossed several genera-
tions to B6 . For generation of EL-I-E transgenic mice, two hybrid genes were constructed,
similar to the hybrid constructs described in reference 12 . The first gene was constructed
by fusing 3 .5-kb of the 5' region of the rat elastase 1 gene (including the elastase enhancer
and promoter ; reference 18) to the structural gene coding the E', chain of I-E . The second
construct used 4.5 kb of the 5' region of rat elastase 1 fused to the gene coding the ER chain
of I-E . EL-I-E transgenic mice (lines 231-3 and 415-1) were generated as previously described
(19) . Briefly, fertilized eggs, (B6 x SJL)F2 for line 231-3 and inbred B6 for line 415-1, were
microinjected with a few hundred copies of each gene construct, and the eggs were trans-
ferred to pseudopregnant foster females . Mice were allowed to develop, and at weaning, tail
DNA was tested for integration of the transgene . Transgene-positive founder animals were
bred to generate transgenic lines, which are designated by the founder animal number.
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MixedLymphocyte Responses (MLR).

	

MLRconditions were identical to those described pre-
viously (12) . Briefly, lymph node (LN) T cells were isolated from LN suspensions by treat-
ment with the anti-B cell antibody J11d plus guinea pig complement (GPC) and added to
flat-bottomed 96-well plates at 2 x 105/well . Thymocytes were used untreated at 2 x 106/well .
Stimulators were irradiated (1,650 rad) or mitomycin C-treated spleen cells from B6, B10.BR,
CBA/CaJ, or 107-1 transgenic mice, and added to cultures at 5 x 105/well . Culture media
consisted of RPMI 1640 supplemented with glutamine, 20 mM Hepes, antibiotics, 50 'UM
2-ME, and lo7o fresh mouse serum . Cultures were pulsed with 1 uCi [ 3H]TdR after 4 d of
culture and harvested on the fifth day. Data are the mean of triplicate cultures and presented
as cpm x 10-3 .

Adoptive Transfer Experiments .

	

In most experiments, B6 or 107-1 LN and/or spleen cells
were injected intravenously through the tail vein ofnonirradiated or irradiated (900 rad) 415-1
EL-I-E transgenic mice . In the experiments described in Tables III and IV, (B6 x SJL)F,
LN cells were injected into irradiated 231-3 EL-I-E mice . For Fig. 3, (B6 x SJL)F J LN cells
were injected into irradiated 187-7 INS-I-E mice (12) . For some experiments, T cells were
isolated from LN and spleen by treatment with Jlld plus GPC. Bone marrow was depleted
of T cells by treatment with antiThy-1 (T24, nonallele specific ; references 20 and 21) plus
GPC. For in situ priming, 107-1 spleen cells were either mixed with the T cell inoculum for
intravenous injection, or injected separately into footpads subcutaneously. 2 wk later (13-15
d after injection), animals were killed, and the pancreata processed for routine histology.

Histology.

	

For routine histology, tissues were fixed in Bouin's, then paraffin embedded,
sectioned, and stained with hematoxylin/eosin . For immunohistochemistry, tissues were frozen
in TissueTek OCT compound (Miles Scientific, Naperville, IL), sectioned on a cryostat (10 pm),
and air dried . Before staining, sections were fixed in acetone, then rehydrated in buffered
saline . Sections were then incubated with biotinylated mAb 14.4 .4s (anti-I-E, prepared by
Berkeley Antibody Co., Berkeley, CA) . Antibody binding was revealed by subsequent incuba-
tions with avidin/peroxidase (ABC Elite ; Vector Laboratories, Inc ., Burlingame, CA) and 3'3'-
diaminobenzidine . In some cases, the sections were counterstained with hematoxylin (Fig . 1) .

For scoring of immune-mediated damage to pancreatic acinar cells in transgenic mice,
slides were read by a pathologist, and scored according to the following grading system : 1+,
little or no inflammatory infiltrates and <20To loss of acinar cells (Fig . 2 a) ; 2+, significant
loss of acinar cells (>20%) with or without infiltrates (Fig. 2 6) ; 3+, >90% loss of acinar cells
with or without infiltrates (Fig . 2, c and d) . In the tables, each number represents the score
from an individual animal . It should be noted that the acini in pancreas sections from un-
manipulated EL-I-E transgenic mice do not look as uniform as those from nontransgenic
mice (data not shown) . This may reflect some nonimmune-mediated effects ofhyperexpres-
sion of the class II MHC transgene (10-12, 15) .

Results

Expression of Transgene I-E Exclusively in Nonlymphoid Tissues .

	

Our objective was
to direct expression of I-Eb (E«/E0b) to the acinar cells of the pancreas with hybrid
gene constructs produced by fusing the enhancer and promoter of the rat elastase
1 gene separately to the mouse E« and Ep structural genes (see Materials and
Methods) . The elastase sequences used in the hybrid constructs have been previ-
ously demonstrated to be effective in specifically directing expression of heterolo-
gous structural genes to the acinar cells of exocrine pancreas (18) . Two transgenic
lines were selected for expansion and further study. The first line, 231-3, was initially
generated on a (B6 x SJL)F2 background and subsequently backcrossed separately
to 136 or SJL . The second line, 415-1, was generated directly on an inbred B6 back-
ground . Analysis of mRNA and protein expression in both lines showed specific
expression limited to pancreas (data not shown) . Tissues found to be negative for
Ect mRNA included liver, kidney, lung, spleen, and thymus . Stained cryostat sec-
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tions demonstrated the presence of I-E only on acinar cells and not on duct cells,
pancreatic islets, blood vessels, or connective tissue (Fig. 1 a) . Furthermore, I-E pro-
tein could not be detected in thymus, spleen, LN, or Peyer's patches (Fig . 1 b and
data not shown) .

Tolerance ofTransgenic TLymphocytes In Vitro.

	

Peripheral T lymphocytes and thymo-
cytes from EL-I-E mice were studied in MLR for responses to I-E (Table I) . We
found that proliferative responses from EL-I-E T cells were much reduced relative
to nontolerant controls, although a small detectable proliferative response was often
detected . Further studies (described below) led us to believe that these proliferating
cells were not strongly reactive to I-E, and might be characterized as producing a
"sterile" MLR. That is, although the cells could proliferate in vitro, they could not
generate effector function in vivo.

FIGURE 1 .

	

Expression of I-E
molecules in EL-I-E mice. a,
Pancreas ; b, thymus. Cryostat
sections of 415-1 EL-I-E mice
were stained for I-E as described
in Materials and Methods. Note
expression of I-E limited to pan-
creatic acinar cells. No I-E was
seen in pancreatic islets (I) or
ducts, or in thymus . The gran-
ules in the thymus reflect en-
dogenous peroxidase activity in
granulocytes .
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Tolerance in thymocytes and peripheral T cells in MLR . LN T cells and thymo-
cytes from control (B6 x SJL)F1 mice responded well to I-E stimulator 107-1,
while cells from EL-I-E (231-3) mice responded only poorly . EL-I-E (231-3) mice
were backcrossed to B6(H-2i') . Similar results were obtained from 415-1 mice
(see also Table IX) .

It was possible that I-E was expressed in the thymus of EL-I-E transgenic mice
at levels below our limits of detection in mRNA and protein assays, but at levels
sufficient to induce tolerance by clonal deletion . To address this possibility, we took
advantage of the fact that one indicator of I-E expression in the thymus and the
induction of intrathymic tolerance to I-E is the'deletion of T cells using the TCR
V317a gene (identified by the mAb KJ23; reference 2) . Although the actual specificity
of TCRs using the gene is unclear (22), it is well established that expression of I-E
in the thymus, especially by bone marrow-derived cells, causes a major reduction
in the numbers of KJ23 + T cells leaving the thymus (2, 23). Since the V/317a gene
is not expressed in B6 mice, the transgenic mice (line 231-3) were backcrossed sev-
eral generations to SJL/J to make them homozygous for the V017a gene (23) .

Peripheral LN T cells from I-E- control SJL/J, I-E + control 107-1 Ea transgenics
backcrossed to SJL/J, and 231-3 EL-I-E transgenics backcrossed to SJL/J were stained
with KJ23 . As expected, N9 .8% (SE 2 .6, n = 4) of SJL T cells stained with KJ23,
while 2.5% (SE 1 .7, n = 3) of the I-E + control 107-1 Ea transgenic T cells stained.
The reduction in the number of KJ23+ T cells in 107-1 transgenics was presum-
ably due to clonal deletion in the thymus, mostly by I-E+ bone marrow-derived cells
(2, 23) . Interestingly, T cells from EL-I-E mice were 8.6% (SE 0.9, n = 5) positive
when stained with KJ23, indicating that there was no significant clonal deletion by
I-E+ cells in the thymus .

Finally, to confirm that the tolerant phenotype was independent of the presence
of the transgene in cells of the immune system, the thymus and bone marrow-de-
rived cells oftransgenic 415-1 EL-I-E mice were replaced with nontransgenic tissue .
This was achieved by adult thymectomy, grafting of a B6 neonatal thymus under
the kidney capsule, and lethal irradiation and reconstitution using Tdepleted B6
bone marrow (ATx/Thy/BM) . 6-8wk after reconstitution, T cells from these recon-
structed mice were tested for reactivity to I-E in MLR (Table II, Exp. 1 and 2) .
As with the unmanipulated transgenic mice, T cells responded only poorly, if at
all, to I-E+ stimulator spleen cells . Similarly, B6->231-3 irradiation chimeras were
also tolerant to I-E (Table II, Exp. 3) . These results demonstrate that expression

Primary MLR
TABLE I

of EL-I-E LN T Cells and

Proliferative response

Thymocyles

to stimulators
Responders B6(H-2b) B10 .BR(H-2 k ) 107-1(H-2b
LNT
(B6 x SJL)F1 control 0 .4 39 .8 4 .1
EL-I-E (231-3) 0 .3 52 .4 1 .4

Thymus
(B6 x SJL)F1 control 0 .2 16 .2 16 .2
EL-I-E (231-3) 0 .2 15 .4 0 .2
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EL-I-E mice whose immune system was replaced with nontransgenic B6 tissue responded
poorly to I-E . Although their responses were higher than responses by tolerant 107-1 T cells,
there was no histological evidence of autoimmune attack of the EL-I-E pancreas . 6-8 wk
later, LN T cells were tested in MLR against stimulators as noted above . In Exp .3, (B6 x
SJL)Fi and 231-3 EL-I-E mice were irradiated and reconstituted with T-depleted B6 bone
marrow, and assayed 6-8 wk later .
415-1 EL-I-E mice were thymectomized, grafted with a neonatal B6 thymus, then lethally
irradiated (900 rad) and reconstituted with 2 x 10 6 T-depleted B6 bone marrow (ATx/
Thy/BM) .

of I-E in pancreatic parenchymal cells alone can still induce tolerance in all periph-
eral T cells regardless of the presence of the transgene in lymphoid cells or thymus .
Immune Destruction ofI-E+ Tissue by Adoptive Transfer ofNontolerant TLymphocytes In

Vivo. Since transgenic animals were tolerant by MLR, they were clearly exposed
to I-E in some tolerogenic form . No I-E was detected in the thymus, so it was pos-
sible that exposure to I-E in the periphery would result in tolerance . Evidence for
tolerance induction to MHC antigens expressed by nonlymphoid cells has been
reported previously (24) . More recently, studies by a number of workers have sug-
gested that inappropriate presentation of class II MHC antigens on T cells (25),
as purified class II on planar membranes (26), as chemically fixed spleen cells (27),
or on class II-expressing nonlymphoid cells (13, 28), can induce a state of clonal
paralysis in T cells in vitro. Therefore, to see if peripheral tolerance could be in-
duced in nontolerant T cells in vivo by exposure to the nonlymphoid I-E+ acinar
cells, B6 T cells were injected into irradiated EL-1-E (415-1) mice . The irradiation
was intended to remove host lymphocytes so that the injected T cells could be recov-
ered later and assayed for reactivity to I-E .
Mature nontolerant T cells were not tolerized by this adoptive transfer. Instead,

they caused rapid destruction of the host transgenic I-E + exocrine pancreas (Fig.
2 c, Table III, and subsequent tables). T lymphocytes recovered from the animals
responded well to I-E in MLR (Table IV). Cell depletion experiments established
that the destruction of the I-E+ pancreas depended on I-E-reactive T lymphocytes,
since LN cells depleted of T cells did not cause pathology (Table III), and T cells
from I-E' transgenic mice (tolerant to I-E) also had no effect (Table V) .
The irradiation of the transgenic EL-I-E recipients may have contributed to the

TABLE II

Primary MLR of "Reconstructed" EL-I-E LN T Cells

Proliferative response to stimulators
Exp . LNT responders B6(H-26 ) CBA/Ca(H-2 k ) 107-1(H-2b
1 B6 control 0 .4 26 .4 6 .0

EL-I-E (415-1) ATx/Thy/BM` 0.4 47 .9 1 .0

2 B6 control 0 .3 58 .1 14 .0
107-1(H-2 b + I-E) 0 .3 71 .0 0 .3
EL-I-E (415-1) ATx/Thy/BM' 0 .7 27 .0 2 .3
EL-I-E (415-1) ATx/Thy/BM` 0.8 18 .6 2 .3

B6(H-2h) B10.BR(H-2 k ) 107-1(H-2b
3 B6 control 1 .6 88 .0 10 .5

136 - (136 x SJL)F1 2 .0 83 .2 28 .7
B6 -+ 231-3 1 .9 117 .0 2 .2
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TABLE III
Transfer of Nontolerant T Cells into Irradiated EL-I-E Mice

Nontolerant T cells injected into irradiated EL-I-E mice induce pancreas destruction .
Pathology graded as described in Materials and Methods .

1 LN cells were depleted of T cells by treatment with anti-Thy-1 plus GPC .
5 Plus 3 x 106 ATBM.

pancreas destruction by setting up a nonspecific inflammatory process in the pan-
creas, leading to the nonspecific accumulation and activation of lymphocytes. Any
paralysis-inducing capacity ofthe pancreas might be obscured by this possible source
of costimulatory activity (29) . Previous experiments suggested, however, that
nonspecific inflammation could not provide effective costimulatory activity, since
the inflammation associated with pancreas grafting did not induce rejection ofINS-
I-E islets (13) . Furthermore, fixed spleen cells were still capable of inducing specific
nonresponsiveness in vivo despite the possible presence of costimulatory activity (27) .
Nonetheless, to address this possibility, a group of EL-I-E mice was injected with
nontolerant T cells 10 d after irradiation. By this time after irradiation, the nonspecific
inflammation is gone (data not shown) . In this situation, the pancreas was still de-
stroyed (3/3 mice scoring 3 +), suggesting that the nonspecific inflammation wasnot
required for the destruction of the pancreas .

To remove host lymphocytes without using irradiation, a group of EL-I-E 415-1
mice were thymectomized, then treated with a combination of antiThy-1 antibody
T24 with or without cortisone acetate (ATx/antiThy-1/cortisone, ATx/antiThy-1). This
treatment has been shown to be effective at depleting T lymphocytes in vivo (20,
21). The mice were then injected with lymphocytes from either nontolerant B6 donors
or I-E-tolerant 107-1 donors . Interestingly, here too the pancreas was specifically
destroyed within 2 wk by B6 LN cells but not by 107-1 LN cells (Table V) . To confirm
that the destruction of the pancreas in this situation was due to I-E-reactive T lym-

TABLE IV
MLR of T Cells Recovered from Adoptive Transfer

Nontolerant T cells injected into irradiated EL-I-E mice are not tolerized to I-E .
Recip-1 and Recip-2 were 231-3 EL-I-E mice given 900 rod then 4 x 10 7 Fl
plus BM . 4 wk later, LN cells were recovered and used as responders in MLR .
In all EL-I-E recipients, the pancreas was destroyed (graded 3 + ) .

Proliferative response to stimulators
LNT responders 116 B10.BR 107-1
(B6 x SJL)F1 control 0 .3 57 .4 7 .0
Recip-1 0 .5 42 .9 11 .4
Recip-2 0 .6 35,0 4 .4

Cells injected Irradiation of recipients Pathology'
rod

None 9004 1 + ,1 + ,1 +
(B6 x SJL)Fl LN (10) 900§ 3+,3+,3+
(B6 x SJL)Fl LN (10 6 ) 9005 1+,1+,2+
(B6 x SJL)Fl anti-Thy-1 LN1 (10) 9005 1+,1+,2+
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TABLE V

Transfer of Nontolerant T Cells into EL-1-E Mice Depleted
of T Cells without Irradiation

Nontolerant T cells injected into T-depleted EL-I-E mice destroy the pancreas,
as seen in irradiated EL-I-E recipients . EL-I-E (415-1) mice were thymectomized,
then treated with anti-Thy-1 with or without cortisone acetate (ATx/anti-
Thy-1/cortisone or ATx/anti-Thy-1) . 2 wk later, they were injected with non-
tolerant B6 or tolerant 107-1 cells as indicated, and pathology was assessed 2
wk later (see also Table IX) .

phocytes, Tcells were recovered from the ATx/anti Thy-1/cortisone animals 2 wk after
cell injection to assay for reactivity in MLR. As expected, T cells recovered from
recipients of B6 cells responded very strongly against I-E+ stimulators, while T cells
recovered from recipients of 107-1 cells responded poorly (Table VI).

To determine if the presence of host T cells could inhibit the response of trans-
ferred nontolerant T cells, B6 T cells were injected into unmanipulated (no irradia-
tion, no thymectomy, etc.) EL-I-E transgenic mice to see ifthese animals would also
develop pancreatic infiltrates (Table VII) . In this case the nonirradiated recipient
animals did not develop infiltrates, and the pancreas was not destroyed within 2 wk .
4 wk after injection, the pancreas was still intact (Table VII, Exp. 1), indicating that
there was no chronic immune response in these animals. Thus, it appeared that the
presence of host T lymphocytes provided resistance to pancreas destruction.

TABLE VI

MLR of IN T Cells Recoveredfrorn
ATx/Anti-Thy-1/Cortisone 415-1 Recipients

LN T cells were recovered from the EL-I-E adoptive transfer recipients and
assayed in MLR . Recip Tol-1 and Tol-2 were 415-1 EL-I-E recipients of tolerant
107-1 T cells (from Table V, Exp . 1, group 2) . Recip Nontol-1-3 were from
the same experiment group 3, recipients of nontolerant B6 T cells .

* The pancreas of Nontol-1 remained intact in contrast to the other three animals
in that group, and appeared to be a failure of injected cells to survive (note
poor response to B10.BR) .

Exp . Cells injected Treatment of recipients Pathology
1 None ATx/anti-Thy-1/cortisone 1 + ,1 +

107-1 LN/spleen (10 8) ATx/anti-Thy-1 /cortisone 1 + ,1 +
B6 LN/spleen (10 8 ) ATx/anti-Thy-1/cortisone 1 + ,3 + ,3 + ,3

2 107-1 LN (6 x 10') ATx/anti-Thy-1 1+,1+,2+
B6 LN (6 x 107 ) ATx/anti-Thy-1 1 +,3+,3+

LNT responders
Proliferative

136
response to
B10.BR

stimulators
107-1

B6 0.4 30 .9 41 .8
Recip Tol-1 1 .1 41 .0 1 .2
Recip Tol-2 1 .0 12 .5 0 .9
Recip Nontol-1 * 0 .2 4 .2 0 .2
Recip Nontol-2 9 .1 14 .9 23 .7
Recip Nontol-3 3 .1 15 .7 42 .9
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TABLE VII
Transfer of Nontolerant T Cells into Unmanipulated EL-I-E Mice

Nontolerant T cells injected into nonirradiated EL-I-E mice do not induce pancreas destruction .

Destruction ofthe pancreas in irradiated and Tdepleted EL-I-E animals mayhave
been mediated by donor T cells previously activated in the donor animals by an
environmental antigen in the context of self I-A (self I-A plus X complex) that was
crossreactive with I-E. Thymocytes were injected in another experiment (Table VII,
Exp. 2), based on the possibility that thymocytes are less likely to have been acti-
vated by environmental antigens . The thymocytes had no effect on the pancreas of
nonirradiated EL-I-E mice, but they still destroyed the pancreas of irradiated recipients .

It could be argued that the destruction of the I-E+ acinar cells by injected non-
tolerant T cells might be due to some peculiar property of these exocrine cells . There-
fore, similar experiments were also done using irradiated INS-I-E mice as recipients
of nontolerant lymphocytes. INS-I-E transgenic mice specifically express I-E on en-
docrine islet (3 cells . In this situation, infiltrates were found specifically in pancreatic
islets in a manner resembling the insulitis described in models of spontaneous au-
toimmune diabetes (Fig . 3) .

Assays for Suppression In Vitro and In Vivo.

	

Since the evidence suggested that host
T cells in EL-I-E mice were responsible for resistance to pancreas destruction, it
was possible that they maymediate the resistance through specific suppression. Cell
mixing was tried to see if MLR responses to I-E would be suppressed by tolerant
cells . T cells from EL-I-E mice mixed with nontolerant T cells did not suppress the
response (Table VIII). To test for the presence of I-E-specific suppressor cells in vivo,
mixtures of tolerant transgenic T cells and nontolerant T cells were injected into
irradiated EL-I-E mice . Using 1 :1 mixes, there was no evidence for suppression,
as all groups injected with nontolerant T cells showed complete destruction of the
I-E+ pancreas (Table IX, Exp. 1) .

It was possible that the suppressor cells needed to be "primed" by an injection
of a large number ofnontolerant Tcells (30, 31). We attempted to prime suppressors
in 415-1 EL-I-E mice by injecting 108 LN and spleen cells from nontolerant B6 mice.
2 wk later, spleen cells from the primed EL-I-E mice were used as a source of sup-
pressors . Mixtures of spleen cells and nontolerant B6 LN cells were injected at 2 :1
and 4:1 ratios into irradiated EL-I-E (415-1) recipients . Again, all injected groups
showed complete destruction of the pancreas within 2 wk (Table IX, Exp. 2) . This
suggests that suppressor cells were not present in EL-I-E mice even after priming
in vivo .

Exp . Cells injected Irradiation of recipients Pathology
1 78-1 T cells (4 x 10 7 ) None 1 +,1 +,1 + (2 wk)

B6 T cells (4 x 10 7 ) None 1 + ,1 + ,1 + (2 wk)
1+,1+,1+ (4 wk)

B6 T cells (10 7 ) None 1 + ,1 + ,1 + (2 wk)
1+,1+,1+ (4 wk)

2 B6 thymus (4 x 10 7 ) None + 2 x 10 6 B6 ATBM 1 + ,1 + ,1 +
136 thymus (10 7 ) None + .2 x 10 6 B6 ATBM 1 + ,1 + ,1 +
136 thymus (4 x 10 7 ) 900 rad + 2 x 10 6 B6 ATBM 3 + ,3 + ,3 +
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Nontolerant T Cells Can Be Primed In Situ in EL-I-E Mice.

	

Since cell mixing studies
failed to provide direct evidence for specific suppression, we sought to identify other
potential mechanisms to explain the failure ofnontolerant T cells to destroy the pan-
creas of nonirradiated EL-I-E mice . It was formally possible that the injected cells
died soon after injection . We do not believe this to be the case, however, since studies
have demonstrated survival of a significant proportion of injected T cells, even across
minor histocompatibility antigen differences (32, 33) . In the studies described here
using the 415-1 EL-I-E line, completely syngeneic B6 combinations (except for the
transgene) were used . Considering this, we believed it more likely that the trans-
ferred nontolerant cells persisted in EL-I-E recipients, but were diluted out by the
greater numbers of tolerant host T cells . Activation of some nontolerant T cells in
the pancreas might be damped as the host cells would absorb the released lymphokines .
Yet if the nontolerant cells remained in the animal, it was possible that a stronger
stimulus would be sufficient to induce an effective immune response against the I-E'
acinar cells .
We attempted to prime the injected nontolerant T cells in situ by two methods

TABLE VIII

Cell Mixing in MLR to Assay Suppression

Cell mixing in vitro fails to reveal suppression .

FICURE 3 . Islet infiltrates in
INS-I-E mice after irradiation
and injection of nontolerant LN
cells. Note that infiltrates are
specific for the I-E' islets rather
than exocrine tissue .

Proliferative response to stimulators
LNT responders B6 B10.BR 107-1
B6 0 .9 24 .7 34 .1
415-1 0 .7 39 .9 3 .0
B6 (2 x 105) + 415-1 (2 x 105 ) 4.7 - 38 .8
B6 (2 x 105) + 415-1 (4 x 10 5 ) 22 .7 - 52 .8
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Exp,

2

Cell mixing in vivo fails to reveal suppression . In Exp . 2, suppressor donors (415-1 EL-I-E
mice) were primed with 10 8 B6 LN/spleen intravenously . 2 wk later, spleen cells from these
mice were mixed with 136 LN cells before injection into irradiated 415-1 EL-I-E mice .

* Plus 2 x 106 B6 ATBM .

(Table X) . With the first method, I-E+ spleen cells were coinjected intravenously
with the nontolerant T cells, With the second method, I-E+ spleen cells were in-
jected subcutaneously into the rear footpads of mice injected the same day intrave-
nously with nontolerant T cells . Control EL-I-E mice were injected with equivalent
numbers of nontolerant T cells only. As expected from previous experiments (Table
VII), the pancreata of the control animals remained intact at the end of2 wk, without
evidence of lymphocytic infiltrates . However, after priming by either protocol, the
recipient EL-I-E pancreas was destroyed within 2 wk.
The results suggest that injected nontolerant T cells survive in nonirradiated EL-

I-E recipients and remain receptive to priming to I-E antigens by I-E+ spleen cells
in situ . Destruction of the pancreas was probably due to activation of the injected

TABLE X

Priming of Adoptively Transferred Nontolerant T Cells In Situ

Nontolerant T cells do not destroy EL-I-E pancreas when injected alone, but they can be induced in situ
to attack the pancreas by coinjections of I-E` spleen cells . In all three experiments, 136 cells were injected
intravenously . In some groups, I-E' 107-1 spleen cells were coinjected intravenously, while in other groups,
107-1 spleen cells were injected subcutaneously into the foo'?ads .

Exp . Cells injected Treatment of recipients Pathology
1 B6 LN/spleen intravenously (108 ) None 1 + ,1 + ,1 +

B6 LN/spleen intravenously (10 8 ) 107-1 spleen intravenously (2 x 10 7 ) 1 + ,3+,3+
B6 LN/spleen intravenously (10 8 ) 107-1 spleen subcutaneously (2 x 10 7 ) 2 + ,3 + ,3 +

2 B6 T cells (3 x 10 7 ) None 1 + ,1 + ,1 + ,1 +
B6 T cells (3 x 10 7 ) 107-1 spleen intravenously (2 x 10 7 ) 1 + ,1 + ,1 + ,1 +
B6 T cells (3 x 10 7 ) 107-1 spleen subcutaneously (2 x 10 7 ) 1 + ,1 + ,2 + ,3 +

3 B6 T cells (5 .5 x 10 7) None 1 + ,1 +
B6 T cells (5 .5 x 10 7 ) 107-1 spleen subcutaneously (4 x 10 7 ) 3+,3+

TABLE IX

Cell Mixing in Adoptive Transfer to Assay for Suppression

Cells injected Irradiation of recipients Pathology
rad

B6 LN (5 x 10 6 ) 900* 3+,3+,3+
415-1 LN (5 x 106) 900* 1 + ,1 + ,1 +
107-1 LN(5 x 106) 900* 1+,1+,1+
B6 LN (5 x 10 6 ) +

415-1 LN (5 x 10 6) 900* 3+,3+,3+
B6 LN (5 x 10 6 ) +

107-1 LN (5 x 106 ) 900* 3+,3+,3 +

B6 LN (2 x 10 7 ) 900* 3+,3+,3+
B6 LN (2 x 10 7 ) + primed

EL-I-E spleen (4 x 107 ) 900* 3+,3+,3+
136 LN (2 x 10 7 ) + primed

EL-I-E spleen (8 x 107 ) 900* 3 +,3+,3 +
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nontolerant T cells, since infiltrates were not found in EL-I-E mice primed with
I-E + spleen but not injected with nontolerant T cells (data not shown) . The activa-
tion of reactive T cells appeared to be more effective when the stimulator I-E +
spleen cells were injected subcutaneously in the footpads rather than intravenously.
This may reflect a requirement for a concentration of stimulator cells in a single
LN. Interestingly, LN cells from donor animals primed to I-E by the same protocol
did not destroy the pancreas when transferred to nonirradiated EL-I-E mice, even
though primed cells generated a much greater MLR response to I-E than unprimed
cells (data not shown). The number of nontolerant T cells injected appears to be
important, since the priming induced pancreas destruction most effectively when
108 LN plus spleen or 5 .5 x 10' LN T cells were injected as a source of nontolerant
cells (Table X, Exp. 1 and 3) as compared with when only 3.0 x 10' LN T cells
were injected (Table X, Exp. 2) .

Discussion
From the studies presented here, we draw two major conclusions. First, mice ex-

pressing a transgene class II antigen exclusively in nonlymphoid tissues do not de-
velop spontaneous autoimmune disease, and both thymocytes and peripheral Tlym-
phocytes are tolerant assayed both by MLR and adoptive transfer studies. These
results complement our previous observations on INS-I-E transgenic mice (12-14),
suggesting that our conclusions may also be generalized in some manner to non-
transgenic mice . That is, self antigens may be capable of inducing tolerance in T
cells by associating with class II MHC antigens on nonlymphoid cells. The mecha-
nism for inducing this tolerance is still unclear, but our in vitro studies with isolated
I-E + islet cells from INS-I-E mice suggested that clonal paralysis of T cells may be
an important factor (13, 14). Our second conclusion is that I-E-expressing paren-
chymal cells are susceptible to immune destruction by nontolerant T cells, but host
T lymphocytes can provide some resistance to immune damage . This resistance is
probably distinct from the tolerance induction described above.

It is important to note that the transgenic mice used in the present study were
developed to address mechanisms of tolerance only to nonlymphoid organ-specific
antigens, not to all self antigens nor to injected exogenous soluble antigens . Our
results do not conflict with studies on tolerance to lymphoid self antigens, which
most likely involves clonal deletion of reactive cells in the thymus (2-4). In addition,
the adoptive transfer studies presented here were intended to specifically study whether
peripheral tolerance-inducing mechanisms were present in the transgenic mice that
might induce tolerance in transferred nontolerant Tcells . Those studies do not neces-
sarily bear on the question of why the unmanipulated transgenic mice were them-
selves already tolerant to the transgene I-E.
The transgenic T cells were actually tolerant to I-E by two criteria . First, they

showed reduced reactivity in MLR. Second, they were functionally unable to generate
an immune response to I-E+ acinar cells in vivo, even after in vivo priming by I-E+
spleen cells . Although the absence ofdominant nonresponsiveness is consistent with
clonal deletion in the thymus, Tcells expressing V/3 genes associated with reactivity
to I-E were not deleted from the T cell pool, suggesting that clonal deletion did not
occur.
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Clonal paralysis may be an explanation for the persistence of potentially autoreactive
T cells, but it is still unclear how it occurs in vivo . It is possible that newly generated
cells from the thymus are more susceptible to paralysis, but it seems unlikely that
all ofthese Tcells would encounter the transgene I-E expressed only in the pancreas .
Pancreas destruction induced by Tcells injected into irradiated or Tdepleted EL-I-E
mice clearly show that nontolerant mature T cells are not universally susceptible
to paralysis in vivo. This is consistent with our previous observations that I-E+ islet
grafts did not induce tolerance in naive graft recipients in vivo, nor could they pre-
vent immune destruction by I-E-primed T cells (13) .

As noted previously, it is especially perplexing that thymocytes also appeared to
be tolerant despite the absence of detectable I-E in the thymus . Our studies appear
to have ruled out thymus expression of I-E as a cause of tolerance in EL-I-E T cells,
since EL-I-E mice whose thymus andbone marrow had been replaced by nontrans-
genic tissue were still tolerant to I-E in MLR. One possible explanation is that I-E
from the pancreas was transported back to the thymus (assuming that processed I-E
is tolerogenic) . Yet if processed I-E is at all similar to native I-E, we might have
expected deletion of Va17a+ T cells .

Alternatively, it may be possible that the thymocyte MLR was produced only by
mature T cells that had returned to the thymus from the periphery. Thus, trans-
genic mature T cells may have encountered I-E in the pancreas, became paralyzed
there, and returned to the thymic medulla. Although kinetic studies suggest that
recirculation of T cells back to the thymus cannot account for the majority of ma-
ture phenotype T cells there (34), it has not been determined which cells respond
in thymocyte MLRs. A number of studies have suggested that T cells, especially
activated cells, are capable of returning to the thymic medulla (20, 33, 35), and such
activated cells are probably very effective responders in MLR. Paralyzed cells may
resemble activated T cells and may be equally capable of returning to the thymus,
since it has been shown that encounter with tolerogenic class II can still induce cell
volume increase and some lymphokine production (26) .
When nontolerant T cells were transferred to irradiated or T-depleted EL-I-E or

INS-I-E mice, the I-E` parenchymal tissue was destroyed . Destruction was prob-
ably mediated by T cells that were previously activated in the nontolerant donor
animal by an environmental antigen in the context of self I-A (I-Ab plus X Com-
plex) that was crossreactive with I-E . Yet nontolerant T cells in recipients of INS-I-E
islet grafts generally ignored the islets (13), and nontolerant cells did not destroy
the pancreas in nonirradiated EL-I-E mice. T cell depletion experiments (Table V)
indicated that host T cells were responsible for the resistance to pancreas destruction
in EL-I-E mice . Ts cells might be invoked to explain this phenomenon, but numerous
experiments based on conventional in vitro and in vivo assays suggested that resis-
tance in EL-I-E mice is not maintained by specific Ts cells . First, dominant non-
responsiveness could not be demonstrated in either in vitro or in vivo cell mixing
experiments . Second, "priming" for suppressors did not reveal dominant nonrespon-
siveness . Finally, nontolerantT cells injected into EL-I-E mice can still be activated
by I-E+ spleen cells in situ to destroy the pancreas, suggesting that host resistance
can not interfere with the specific activation of nontolerant T cells to self antigens .
We propose an alternative explanation for the apparent T cell-mediated host re-

sistance to pancreas destruction by injected nontolerant T cells . The injected non-
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tolerant T cells were probably diluted by an excess of tolerant host T cells. Acting
as an effective "lymphokine sink ;' these cells could absorb lymphokines produced
by the small number of reactive cells and modulate the immune response . Since
immune responses probably require the expansion and differentiation of T cells
through the action of lymphokines, the absorption of lymphokines by tolerant cells
may prevent the immune response from developing. In any immune response the
vast majority of T cells are not specific for the antigen, so this effect might
nonspecifically dampen anyimmune response . However, it could be overcome through
at least twomechanisms . First, the precursor frequency of reactive cells maybe high
enough such that the response cannot be damped . Second, the stimulus may be en-
hanced by concentrating the antigen in a LN or by increasing the effectiveness of
the stimulator cells (as with the injected I-E + spleen cells; Table X) .
The absence of lymphokine absorption capacity could then explain why tissue

destruction occurs in T-depleted or irradiated hosts. Lymphopenia probably allows
the development of immune responses when the precursor frequency to a particular
antigen is very low and antigen presentation is suboptimal . In the absence of a large
number of T cells to absorb excess lymphokines, a small number of reactive cells
may develop into effector cells through autocrine stimulation.

Observations on a number of rodent models of autoimmunity to organ-specific
antigens appear to fit well in this context . For example, spontaneous autoimmune
diabetes in the BB rat is associated with lymphopenia (36) . Lymphopenia is also
amajor feature ofawhole complex oforgan-specific autoimmunity induced by neo-
natal thymectomy. Day 3 thymectomized mice can develop a whole spectrum ofspon-
taneous autoimmune diseases involving the thyroid, gonads, gastric mucosa, and
prostate (37-39). The demonstrated ability to transfer resistance to disease in these
models might be interpreted in part as an augmentation of the immune system's
capacity to absorb lymphokines.
Given the above hypothesis, a number of testable predictions can be made. For

example, the ability of cells to confer resistance to autoimmune destruction may
best correlate with their capacity to bind lymphokines. Paralyzed T cells with the
phenotype described by Schwartz and others (25-27, 29) may be one type of cell
ideal for this function, since these cells can recognize antigen, and may respond by
increasing lymphokine receptors. If specific immune responses are damped by ab-
sorption oflymphokines by T cells ofirrelevant specificity (or paralyzed specific cells),
then the absorbed lymphokines might induce a higher state of activation in the en-
tire immune system . Such a phenomenon has already been described in the case
of neonatal tolerance to lymphoid antigens (40) . Thus, injection of nontolerant T
cells into nonirradiated EL-I-E mice may induce a greater proportion of blast T
cells in LN draining the pancreas . We are currently addressing these possibilities.

Summary
To study the nature of tolerance to antigens not expressed by cells ofthe lymphoid

system, expression of class II MHC I-E was targeted to the acinar cells of the exo-
crine pancreas in transgenic mice (elastase [EL]-I-E). Despite the absence ofdetect-
able I-E in the thymus of EL-I-E transgenic mice, both thymocytes and peripheral
T lymphocytes were tolerant to I-E, and the pancreas was free of autoimmune
infiltrates . Nontolerant T cells adoptively transferred into irradiated or T-depleted
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transgenic mice rapidly destroy the I-E + components of the pancreas ; however,
adoptive transfer of nontolerant T lymphocytes into nonirradiated transgenic mice
do not . These results suggest that tolerance in transgenic mice is maintained by some
peripheral tolerance mechanism . However, further studies indicate that tolerance
in transgenic mice is not maintained by specific Ts cells . For example, cell mixing
experiments both in vitro and in vivo fail to reveal dominant unresponsiveness . Fur-
thermore, nontolerant T cells injected into otherwise unmanipulated EL-I-E mice
can be primed in situ (by injections of I-E+ spleen cells) to destroy the I-E + acinar
cells.

We thank Drs . H. Quill, E . Heber-Katz, R. Behringer, and E . Sandgren for helpful discus-
sions, Dr. T. Van Winkle for evaluation of histological sections, and K. Hughes, M. Avar-
bock, and F. Oram for expert technical assistance .
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