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Abstract

Dissorophoidea, a group of temnospondyl tetrapods that first appear in the Late Carbonifer-

ous, is made up of two clades −Olsoniformes and Amphibamiformes (Branchiosauridae

and Amphibamidae) − the latter of which is widely thought to have given rise to living

amphibians (i.e., Lissamphibia). The lissamphibian braincase has a highly derived morphol-

ogy with several secondarily lost elements; however, these losses have never been incorpo-

rated into phylogenetic analyses and thus the timing and nature of these evolutionary

events remain unknown. Hindering research into this problem has been the lack of phyloge-

netic analyses of Dissorophoidea that includes both taxonomically dense sampling and

specific characters to document changes in the braincase in the lineage leading to Lissam-

phibia. Here we build on a recent, broadly sampled dissorophoid phylogenetic analysis to

visualize key events in the evolution of the lissamphibian braincase. Our ancestral character

state reconstructions show a clear, step-wise trend towards reduction of braincase ossifica-

tion leading to lissamphibians, including reduction of the sphenethmoid, loss of the basiocci-

pital at the Amphibamiformes node, and further loss of both the basisphenoid and the

hypoglossal nerve foramina at the Lissamphibia node. Our analysis confirms that the highly

derived condition of the lissamphibian braincase is characterized by overall simplification in

terms of the number and extent of chondrocranial ossifications.

Introduction

The distinctive morphology of living lissamphibians (frogs, salamanders, and caecilians) has

been a leading cause in the lack of resolution of both their relationships to one another, and

from which group of extinct tetrapods they are derived. Different phylogenetic analyses have

placed them entirely within Temnospondyli [1–7], entirely within Lepospondyli [8–10], a

group that may be polyphyletic [11], or a combination thereof, where Batrachia (frogs and sal-

amanders) reside within Temnospondyli and Apoda (caecilians) reside within Lepospondyli

[12–15]. Despite all three hypotheses, and even a recent fourth that recovers Batrachia within

Dissorophoidea and Apoda within Stereospondyli [16], maintaining a presence in the litera-

ture, there has been a growing consensus that lissamphibians are a monophyletic assemblage
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derived from within Temnospondyli [4,7,17–22], and more specifically from within the

amphibamid dissorophoids [3,6–7,21–24].

This phylogenetic framework permits investigations of patterns of morphological evolution

of lissamphibians, including the origin of their highly derived form. A combination of new dis-

coveries [16,25–26] as well as extensive reanalysis of existing material [21,27–32] provide the

foundation for potentially high-resolution investigations of morphological evolution with

great numbers of taxa and forms. Unfortunately, many currently available phylogenetic analy-

ses take place at either very broad taxonomic levels [13,21,33–34], or very fine, taxonomically

exclusive, levels [19,35–36]. In the case of the former, detailed variation is glossed over by

pruning of many taxa to cover a broader sampling; whereas with the latter, the distribution of

traits at higher clade levels is missed due to entire clades being excluded.

One such series of evolutionary events concerns the origin of the relatively simple condi-

tion, in terms of the number of ossifications and the extent of ossification of individual bones,

of the braincase in lissamphibians in comparison to that of amniotes and to other temnospon-

dyls. Extant amniotes and extinct temnospondyls (e.g. Edops, Eryops) have numerous ossifica-

tions making up the braincase, including the parasphenoid (membrane bone often considered

part of the braincase), sphenethmoid, basisphenoid, prootics, opisthotics, paired exoccipitals

and median basioccipital (Fig 1) [37–44]. The presence of these braincase elements is consid-

ered to represent the ancestral condition for tetrapods [42]; however, the presence and degree

of ossification in these elements varies in temnospondyls, with basal members such as Edops
having a heavily ossified braincase compared to more derived members such as Eryops [43–

44]. Both stereospondyls and dissorophoids vary in the number and degree of ossifications in

the braincase, with many more derived stereospondyls lacking an ossified basioccipital (e.g.

Gerrothorax) or possessing a weakly ossified basisphenoid (e.g.Mastodonsaurus) when com-

pared to basal stereospondyls (e.g. Archegosaurus) [45–47]. In the dissorophoid lineage, some

members appear to possess an almost entirely cartilaginous braincase (e.g. branchiosaurids,

and micromelerpetids) [48–49].

Extant lissamphibians reduce the braincase even further compared to all other temnospon-

dyls as they possess only the parasphenoid, a reduced sphenethmoid, the otic elements and

paired exoccipitals as discrete ossifications (Fig 1) [6,37–42]. In the case of the basisphenoid

and basioccipital, the cartilaginous precursors are considered absent from the chondrocra-

nium of lissamphibians [7,37,40,42,50] (but see the Discussion). Additionally, other bones that

are commonly found in tetrapods are comparatively reduced (e.g. the sphenethmoid) [37,42]

or absent (e.g. supraoccipital [6,50]) in lissamphibians (Fig 1). In the case of the supraoccipital,

caecilian lissamphibians further lack its cartilage precursor, the tectum synoticum [37]. The

condition of the lissamphibian braincase has historically led some authors to propose it to rep-

resent the ancestral tetrapod condition [51–53]; however, other authors have considered it to

represent a derived condition [37,54–55]. Regardless, the timing and nature of morphological

evolutionary events leading to the origin of the reduced lissamphibian condition remain

unclear.

The current study attempts to resolve these issues by utilizing a broadly sampled phylogeny

for Dissorophoidea such that details and patterns of braincase evolution in this group, and by

proxy lissamphibians, can be ascertained. Here we built on the recently published Dissoro-

phoidea matrix by Schoch [7] and sampled 42 dissorophoid taxa (four from Micromelerpeti-

dae, 17 from Olsoniformes, and 21 from Amphibamiformes). The original matrix by Schoch

[7] included 28 dissorophoid taxa (four from Micromelerpetidae, eight from Olsoniformes,

and 16 from Amphibamiformes). Our sampling is as inclusive as possible and represents an

improvement in this regard to earlier analyses. For example, Schoch [56] included 25 extinct

dissorophoid taxa, and Fröbisch and Schoch [19] included 31 extinct dissorophoid taxa.

Braincase simplification and the origin of lissamphibians
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Maddin et al. [21] is the only recent analysis to broadly sample both extinct and extant mem-

bers of Lissamphibia, but even this matrix only included 27 dissorophoid taxa, of which 10

were caecilian taxa. Our analysis and the resulting trees allow us to reconstruct the ancestral

character states and present a hypothesis of braincase evolution in the lineage leading to Lis-

samphibia. We discuss these results as they relate to the origin of the lissamphibian form.

Methods

Phylogenetic analysis

We approached this problem from the perspective that lissamphibians are monophyletic dis-

sorophoid temnospondyls, which is made up of two clades: the Olsoniformes, and the newly

proposed Amphibamiformes (Amphibamidae and Branchiosauridae [7]). To produce a

broadly sampled phylogeny for Dissorophoidea, we utilized the latest published matrix from

Schoch [7]. To this matrix we added three additional braincase characters to capture variation

in the presence or absence of braincase bones (S1 Appendix, characters 109–111). We took the

decision to include as many taxa as possible in order to avoid subjective user bias in the exclu-

sion of taxa that might actually be important. As such, twelve extinct taxa were also added to

the matrix: Eryopidae, Tambachia, Anconastes, Admiral and Rio Arriba taxa, Kamacops, Brevi-
dorsum, Reiszerpeton, Aspidosaurus, Platyhystrix, Rubeostratilia, and Plemmyradytes. Addi-

tionally, three extant taxa were added to the matrix: representatives for each of the extant

lissamphibian groups (Ascaphus for frogs,Hynobius for salamanders, and Rhinatrema for cae-

cilians). The final matrix thus consisted of 48 taxa, including the outgroup taxon, Dendrysekos
(= Dendrerpeton [44]) and 111 characters. Taxa were coded for characters not present in their

original matrix from the literature and some first-hand observations of specimens (see S2

Appendix for a full list of taxa and sources).

Fig 1. A comparison between the braincases of the extinct tetrapod Eryops (A, B) and the extant salamander Hynobius (C, D), in lateral (A, C) and occipital (B,

D) views, summarizing the main differences between lissamphibian braincase composition and morphology and that of other tetrapods. The sphenethmoid is

purple, the basioccipital is blue, the basisphenoid is red, the exoccipitals are green, the parasphenoid is yellow, the opisthotic is orange and the prootic is brown.

https://doi.org/10.1371/journal.pone.0213694.g001
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The final matrix was analyzed in PAUP using maximum parsimony and in MrBayes using

Bayesian Inference. The PAUP analysis was run using version 4.0a161 [57] for MacIntosh.

Dendrysekos was set as the outgroup for rooting. The heuristic search option and tree bisec-

tion-reconnection branch-swapping algorithm were used with 10 000 additional random

sequence replicates selected. Multistate taxa were treated as polymorphic, and all characters

were unordered and weighted equally. The Bayesian analysis was run in MrBayes version 3.1.2

[58] using the default Mk model and running a Markov chain Monte Carlo for 5 million gen-

erations, with a sampling frequency of 100 and a diagnostic frequency of 1 000. Resulting pos-

terior probabilities were inspected for convergence in the program Tracer v1.6 [59] for

MacIntosh.

Ancestral character state reconstruction

Ancestral characters state reconstructions were performed on the resulting strict consensus

tree from the parsimony analysis as well as on the All Compatible Clades consensus tree from

the Bayesian analysis. For the strict consensus tree, ancestral character state reconstruction

analysis was performed on the braincase characters (characters 93, 109, 110, and 111) using

Mesquite version 3.10 build 765 [60] and were estimated using both parsimony and the maxi-

mum likelihood (Mk1) statistical model, which calculates the proportional likelihoods of each

character state at ambiguous nodes. For the All Compatible Clades tree generated by the

Bayesian analysis, the evolutionary scenarios for the braincase characters were again analysed

with maximum likelihood ancestral reconstructions, with the assumption of equal rates of evo-

lution. This method was completed in R [61] using ACE (ancestral character estimation) and

phytools packages [62]. This dual approach for ancestral character state reconstruction follows

the currently widely accepted methodologies in the literature [21, 63–67].

Results

Phylogenetic analysis

The analysis ran in PAUP resulted in 81 922 most parsimonious trees, each with 345 steps in

length (consistency index, 0.3623; retention index, 0.7287; Fig 2, right). The strict consensus

tree from the PAUP analysis is overall poorly resolved at the finer taxonomic levels (Fig 2,

right), whereas the All Compatible Clades consensus tree from the Bayesian analysis has virtu-

ally no polytomies (Fig 2, left). The broader family level divisions, and subgroupings within,

are very similar between both analyses (Fig 2). For example, in both analyses, the Amphibami-

formes form a clade that includes Amphibamidae, Branchiosauridae, and a monophyletic Lis-

samphibia. In both analyses caecilians and Eocaecilia are found to be the sister group of

Batrachia; however, in the parsimony analysis Karaurus plus salamanders form an internal

clade that occurs in a polytomy with frogs and Triadobatrachus. Gerobatrachus forms the sister

taxon to Lissamphibia in the Bayesian analysis (Fig 2, left), whereas in the parsimony analysis

Gerobatrachus, Georgenthalia, and Lissamphibia are recovered in a polytomy (Fig 2, right).

The Dissorophidae and Trematopidae clades that make up the Olsoniformes are recovered

here, although the former is poorly resolved internally in the parsimony analysis. In both anal-

yses the Olsoniformes is the sister clade to the Amphibamiformes (Fig 2, right). Also, in both

analyses, Micromelerpetidae is found to be the sister group to the Olsoniformes and Amphiba-

miformes clade and represents the basalmost branch within Dissorophoidea. Perryella is the

sister taxon to Dissorophoidea. One node below this, Sclerocephalus and Eryopidae form a

clade in both analyses, with Acanthostomatops on their stem. Finally, in both analyses, Trimer-
orhachis forms a polytomy with the outgroup Dendrysekos, at the base of the tree.

Braincase simplification and the origin of lissamphibians
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Fig 2. The results of the phylogenetic analyses of Dissorophoidea. The Bayesian analysis All Compatible Clades tree (left) obtained from MrBayes and the strict

consensus tree (right) of 81 922 most parsimonious trees obtained from PAUP.

https://doi.org/10.1371/journal.pone.0213694.g002
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Ancestral character state reconstruction

Ancestral character state reconstructions were conducted for the braincase characters only

(characters 93, 109, 110 and 111) and were estimated using both parsimony and maximum

likelihood on the results of the parsimony analysis, and maximum likelihood on the results of

the Bayesian analysis. The results of all three methodologies revealed the lineage leading to

crown Lissamphibia is characterized by three absences that are identified to be secondary

losses within the Amphibamiformes clade. These losses were found at the same nodes using

the maximum likelihood methods for the parsimony and Bayesian trees; however, some of

these losses were ambiguous using parsimony methods of ancestral state reconstruction. We

summarize the results for all three methods below.

The first is the complete loss of the basioccipital (i.e. of both the ossified element and the

cartilaginous precursor), which occurs at the base Amphibamiformes (Fig 3, Node B). The

basioccipital is retained in all other lineages studied here. The loss of the basioccipital at the

base of Amphibamiformes (Fig 3, Node B) was reconstructed as unambiguous using parsi-

mony and with a proportional likelihood of 0.99 using maximum likelihood on the strict con-

sensus tree from the parsimony analysis. This is the same location reconstructed by maximum

likelihood on the Bayesian tree with a likelihood value of 0.41 at the base of Amphibamiformes

(Fig 3, Node B), and with a likelihood value of 0.92 at the node that includes all Amphibami-

formes except Rubeostratilia and Plemmyradytes.
The second loss occurs in the higher Amphibamiformes, where an ossified basisphenoid is

lost (Fig 3, Node C). Branchiosaurids apparently have a cartilaginous basisphenoid [48–49],

and in lissamphibians the basisphenoid is absent as either a cartilaginous or ossified element

(Fig 3, Node D). The parsimony reconstruction failed to resolve an unambiguous location of

the complete loss of the basisphenoid on the strict consensus tree from the parsimony analysis

(Fig 3A). As a result, the zone of ambiguity spans the nodes that include the branching of Geor-
genthalia, Gerobatrachus and Lissamphibia. The maximum likelihood reconstruction on the

strict consensus tree recovered the complete loss of the basisphenoid as occurring at the base

of Lissamphibia (Fig 3, Node D) with a proportional likelihood of 0.97. This is the same loca-

tion obtained for the maximum likelihood reconstruction on the Bayesian-derived tree with a

likelihood value of 0.54.

The parsimony reconstruction again failed to resolve an unambiguous location for the loca-

tion of the loss of foramina for cranial nerve XII and the reduction of the sphenethmoid to

small, paired elements (Fig 3). The zone of ambiguity for both of these characters spans the

nodes that include the higher amphibamids (Branchiosauridae, Georgenthalia, and Gerobatra-
chus; Fig 3A, Node C). The maximum likelihood reconstruction on the strict consensus tree

recovered the loss of cranial nerve XII foramina and the sphenethmoid change at the base of

Lissamphibia (Fig 3, Node D) with a proportional likelihood of 0.93 for the former and 0.96

for the latter. This is the same location for both of these character state changes obtained for

the maximum likelihood reconstruction on the Bayesian-derived tree with a likelihood value

of 0.61 for the loss of cranial nerve XII foramina and 0.81 for the change to the sphenethmoid.

Discussion

Here we produce a revised, broadly sampled matrix that includes phylogenetically informative

braincase characters for the inference of the intrarelationships of Dissorophoidea, and for the

investigation of braincase evolution in the lineage leading to modern amphibians. Our exten-

sive matrix samples from all dissorophoid clades and is inclusive of both Olsoniformes and the

Amphibamiformes lineages of Dissorophoidea. Additionally, representative members from

earlier diverging temnospondyl lineages have been included here for completeness and

Braincase simplification and the origin of lissamphibians
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context. Although the Bayesian Inference tree is well resolved, the parsimony tree reveals some

problems may still exist with regards to resolving the relationships within the smaller clades.

With overall patterns of relationships largely congruent between analytical methods, it is

hoped that this matrix, with its wide sampling of taxa and characters, provides a baseline for

future analyses of this important group. As this analysis builds on other, previous phylogenetic

Fig 3. Summary of the ancestral character state reconstructions of the braincase characters on slightly pruned

trees derived from both parsimony and Bayesian analyses. A) Parsimony and maximum likelihood ancestral

character state reconstructions of the braincase characters on the strict consensus tree derived from the parsimony

analysis. Coloured lines represent zones retrieved as ambiguous for the optimization of each character state under the

parsimony criterion, and dots represent the locations retrieved as most probable location for each character state. B)

Maximum Likelihood ancestral character state reconstructions of the braincase characters on the All Compatible

clades consensus tree derived from the Bayesian analysis. The discrete states of the four characters used in this analysis

(93, basioccipital loss in blue; 109, basisphenoid loss in red; 110 hypoglossal nerve, n. XII, foramina lost in green; 111,

sphenethmoid reduced to paired structures in purple) are described in the locations where states were optimized.

Other reductions that are described in the text, but unable to be confirmed in fossil taxa (certain potential reductions)

are indicated with asterisks.

https://doi.org/10.1371/journal.pone.0213694.g003

Braincase simplification and the origin of lissamphibians

PLOS ONE | https://doi.org/10.1371/journal.pone.0213694 March 22, 2019 7 / 15

https://doi.org/10.1371/journal.pone.0213694.g003
https://doi.org/10.1371/journal.pone.0213694


analyses for lissamphibian origins, only a few key aspects of the resulting topology are noted

here.

Overall, the addition of the braincase characters did not cause the topology of the phylogeny

to change much relative to topologies found in other morphological analyses, such as those

completed by Schoch [7], which was the basis for this analysis, Maddin et al. [31], Schoch [56],

Fröbisch and Schoch [19], Fröbisch and Reisz [68], and Huttenlocker et al. [69]. One differ-

ence in topology was the recovery of Gerobatrachus as the closest relative to Lissamphibia in

our analysis, as opposed to its position as a stem batrachian recovered by Maddin et al. [21]

and Anderson et al. [11]. However, this position is identical to that found by Schoch [7], where

Gerobatrachus and Georgenthalia form a polytomy with Lissamphibia. Classically, Doleserpe-
ton has been found as the most closely related amphibamid to Lissamphibia [11,21]. In the cur-

rent analysis, Gerobatrachus, Georgenthalia, and Branchiosauridae are all found as more

closely related to Lissamphibia than Doleserpeton. Interestingly, the present analysis obtains

Branchiosauridae nested within the group traditionally referred to as Amphibamidae (Fig 2).

This relationship differs from the sister taxon relationship between Amphibamidae and Bran-

chiosauridae, which has previously been found in other analyses [11,16,19,21,33,70]. However,

see Schoch [7] for a revised, more exclusive, definition of Amphibamidae that maintains its

monophyly in this topological arrangement. Together the Amphibamidae, Branchiosauridae

and previously recognized amphibamids form the group recently named Amphibamiformes

[7].

For the olsoniform portion of the tree, the traditional division of Olsoniformes into trema-

topids and dissorophids is found (Fig 2). Unlike in the Maddin et al. [31] and Schoch [56]

analyses, where Platyhystrix is found as the sister taxon to the armored dissorophids, here Pla-
tyhystrix has a much more basal position as the sister taxon to the other Olsoniformes in the

parsimony analysis. Interestingly, earlier analyses of Dissorophidae were better resolved than

the present parsimony analysis. This suggests the inclusion of additional olsoniform and

amphibamiform taxa is causing topology conflicts as adding only braincase characters to

Schoch’s [7] matrix did not change the topology (tree not shown). Detailed work on braincase

anatomy in these taxa, and the many poorly understood dissorophids that we chose to include,

may help resolve these polytomies in future studies using parsimony. These issues, however,

were not found in the Bayesian analysis, suggesting future study into various factors influenc-

ing the systematic approaches may also lead to improved resolution in a parsimony analysis.

In terms of braincase evolution, a previous, qualitative analysis of braincase transformations

in the lissamphibian lineage led to the hypothesis that a series of secondary losses characterized

the origin of the form of the lissamphibian braincase [42]. This evolutionary pattern, in addi-

tion to the absence of a supraoccipital generally accepted for all temnospondyls at the time,

was suggested to be consistent with an amphibamid temnospondyl origin of Lissamphibia

[42]. However, the braincase loss characters were never actually added to a matrix, and thus,

their distribution had not been rigorously tested in an analysis of all of the characters. The

quantitative analyses performed here has, for the first time, demonstrated and incorporated

into evolutionary hypotheses that the lissamphibian braincase is the product of a stepwise

sequence of reductions and losses, confirming it is not the ancestral condition for tetrapods

and is indeed secondarily derived in its reduced state [37,42,54,71].

We propose the following stepwise sequence of loss events in the origin of the form of the

lissamphibian braincase. In several cases, additional reductions in the size and extent of ossifi-

cations also occur within each loss or reduction event. Some of these would be impossible to

determine with certainty in the fossil record, and so were not included in the character defini-

tions, but are instead mentioned here. The first is the reduction of the basioccipital from an

ossified element to an absent element at the base of the amphibamiform clade (Fig 3, Node B).

Braincase simplification and the origin of lissamphibians
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Temnospondyls have generally been noted to have a reduced basioccipital that fails to contrib-

ute to the occipital condyle in many lineages, however the degree of ossification is variable. For

example, Edops, a basal temnospondyl, has a large, heavily ossified basioccipital that partici-

pates in the occipital condyle [43–44]. Schoch [41] noted that the basioccipital is reduced from

a large element in taxa such as Eryops, to a smaller element in dissorophoids (Fig 2, Node A),

where the basioccipital makes minimal contributions to the occipital condyles and is reduced

in the posterior braincase region. BothMicropholis [34] and Pasawioops [68] (basal Amphiba-

miformes) have been described as possessing a cartilaginous basioccipital, and Doleserpeton
[20] is described as having a basioccipital that is impossible to distinguish from the exoccipi-

tals. In Doleserpeton this is perhaps indicative of the complete absence of the basioccipital bone

and cartilage. Schoch [7] coded Tersomius,Micropholis, Eoscopus, Amphibamus, and Doleser-
peton as lacking a basioccipital, noting this includes loss of the basioccipital cartilage. Addi-

tionally, adult branchiosaurids [7] lack a basioccipital bone. However, the character state may

be more variable for extant lissamphibians because although many sources note the absence of

an ossified basioccipital, and its cartilaginous precursor [6,7,40], some older descriptions indi-

cate a cartilage referred to as a basioccipital in some frogs and less often in salamanders ([72]

and sources synthetized within [73]). Most recent descriptions do not mention a basioccipital

as contributing to the chrondrocranium or the ossified braincase in lissamphibians (e.g. [74–

77]). Clearly this region of the skull requires further investigation to determine the homology

of the structure termed basioccipital by some authors and determine with certainty if this ele-

ment is completely lost (including cartilage precursor) in extant lissamphibians. In the mean-

time, based on more recent assessments of its presence/absence, the ancestral character state

reconstructions unanimously placed the complete loss of the basioccipital at the base of

Amphibamiformes.

Next is a reduction of the basisphenoid. The basisphenoid typically forms the osseous walls

and support to the hypophyseal region of the brain (i.e., sella turcica) [37,78]. The basisphe-

noid also undergoes a reduction from an extensive element in Eryops to a smaller element in

the dissorophoid Kamacops (Fig 3, Node A) and then to a rudimentary ossified element in the

amphibamid Tersomius (Fig 3, Node B) [41]. While branchiosaurids have a cartilaginous basi-

sphenoid [48–49], lissamphibians have been described as lacking the basisphenoid, including

its cartilaginous precursor [40,50]. Data concerning the basisphenoid are unfortunately not

available for other higher Amphibamiformes, Georgenthalia and Gerobatrachus. Our analysis

suggests this loss took place at the base of Lissamphibia (Fig 3, Node D). However, the reduc-

tion of the basisphenoid may have been more gradual before its eventual loss. This is difficult

to characterize in the amphibamid lineage, as it is an internal structure often not visible in

many taxa but may improve as more CT datasets become available.

The loss of foramina for the hypoglossal nerve (n. XII) on the exoccipitals also occurs at the

base of the clade containing Lissamphibia (Fig 3, Node D). This final loss is consistent with the

trend of braincase reduction, as it implies a reduction in the number of occipital somites that

would have enclosed n. XII within the braincase, as in amniotes [42,79]. All dissorophoids

(except for lissamphibians), and all tetrapods in general, possess foramina for n. XII. Develop-

mentally this is interpreted as corresponding to the presence of an amniote-like number of

occipital somites contributing to the braincase (e.g., four or more) [37,51,79]. In lissamphi-

bians, n. XII occurs posterior to the braincase due to the lack of incorporation of the somites

associated with it (e.g., anteriormost three or fewer) [37,51,80–81]. This appears to be a trait

unique to lissamphibians in this analysis, but arguably is not determinable in Gerobatrachus.
The final aspect of braincase reduction investigated in the present analysis is the transfor-

mation of the sphenethmoid from a large, single median U or Y-shaped element to a paired,

smaller element in lissamphibians (Fig 1). In basal temnospondyls (e.g. Edops, Eryops), the
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sphenethmoid is a broad element [43–44]. In Eryops the sphenethmoid is a large, robust ele-

ment that is fused with the basisphenoid and, together with the lateral sphenoids, it covers the

entire midbrain and anterior brain regions, enclosing cranial nerve II and possibly other

nerves [82]. The dissorophoid sphenethmoid is less robust, less well-ossified posteriorly and

open dorsally yielding a U-shape (e.g. Doleserpeton, Acheloma) or Y-shape (e.g. Rubeostratilia)

in cross-sectional outline (Fig 3, Node A) [20,35,83]. The sphenethmoid of all members of Lis-

samphibia is reduced to a pair of small bones that lack a ventral floor adjoining left and right

sides. Even in caecilians and Eocaecilia, where what is termed the sphenethmoid has a median

component in the anterior region (e.g. the unpaired mesethmoid and basiethmoid), the poste-

rior portion that is homologous with the sphenethmoid of other taxa (i.e. the orbitosphenoid

portion) is a paired element that lacks an ossified ventral floor [21,50,84–85]. In frogs and sala-

manders, the element is so reduced that only the small elements in the interorbital region

remains [85]. The analysis performed here reveals the absence of an ossified ventral floor is a

loss that occurs at the base of Lissamphibia (Fig 3, Node D). It further appears as though the

cartilaginous precursor of the ventral portion of the sphenethmoid is also lost in lissamphi-

bians [37,86]. This latter feature would be difficult to evaluate in fossil taxa, and so the distinc-

tion between sphenethmoid ventral cartilage present but not ossified, and cartilage totally

absent could not be made here in the character definitions.

The reduction of all of these elements in temnospondyls and in dissorophoids has been

used as support of a temnospondyl ancestry for lissamphibians, as lepospondyls do not show

the same reductions in the braincase during their evolution [6,21,42]. Many lepospondyls do

share a number of losses with lissamphibians, however, these tend to be components of the

dermal skull [87], which experience higher rates of homoplasy than the braincase. Of further

importance is the result that each of the loss events identified here currently appear to be

unique to the lissamphibian lineage and have occurred in the braincase, a region known to

have a stronger phylogenetic signal than other regions of the skull or postcranium [21,42,88–

90]. We admit that the loss of non-braincase skull bones is something that happens commonly

over the course of tetrapod evolution. For example, in addition to the losses discussed here, all

lissamphibians or members within Lissamphibia have lost numerous skull and lower jaw

bones additional to those described in the current analysis, including the jugals, supratempor-

als, intertemporals, postfrontals, postorbitals, postparietals, tabulars, coronoids, splenials, and

surangulars, among others [22,49,91]. These widespread losses often resemble losses in other

tetrapod lineages, but have happened in a convergent context. This context is especially rele-

vant when similar processes, such as certain heterochronic processes or body size reduction,

also happen convergently and bring along with them their correlated morphological outcomes.

This is particularly important here because 1) the origin of the lissamphibian form has been

tied to heterochronic processes that bear predictable outcomes (i.e., paedomorphosis) and 2)

controversy surrounding their origins has been complicated by a lack of knowledge regarding

which of these predictable features are homologous versus homoplastic.

For lissamphibians, heterochronic processes leading to paedomorphosis have long been

suggested to have been important drivers in the origin of their form [1,3,23,49]. In a careful

analysis, Schoch [92] demonstrated the extent to which similar morphologies could be pro-

duced when widely separated lineages undergo similar heterochronic processes, and addition-

ally when these lineages undergo miniaturization. That the loss events noted here in the

lissamphibian braincase do not seem to be homoplastic with most other Paleozoic tetrapods

that also underwent similar heterochronic processes such as miniaturization [19,92] speaks to

the resilience of the braincase against such developmental perturbations and to their promis-

ing indications of an amphibamiform affinity.
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The patterns of reduction and ultimately morphological and compositional simplification

noted here as characterizing the origin of the lissamphibian braincase is not limited to this part

of the body. There are numerous examples of additional reduction and losses of the dermal

elements contributing to the skull as well as the dentition leading to lissamphibians [22,49,91].

For example, the loss of dentition on the basal plate of the parasphenoid, and the fangs on the

palatal elements (e.g. vomer, palatine, and ectopterygoid) are all lost at various stages within

Amphibamidae leading to lissamphibians. The driving forces behind the unique pattern of

braincase reduction in lissamphibians, in spite of the resilience of this region to morphological

change, are ultimately unknown and our research represents an important first step in under-

standing the unique lissamphibian body plan. Importantly, our analysis contributes a piece to

the broader story of simplification in the origin of lissamphibian form in general.

Conclusions

The analysis performed herein demonstrated that the reduced condition of the lissamphibian

braincase is a derived state compared to its closest temnospondyl relatives. Our broadly sampled

phylogenetic analysis reveals the stepwise sequence of three loss events and one reduction as part

of the evolutionary transformation leading to the origin of the form of the lissamphibian brain-

case. Furthermore, the significant steps in the sequence, as well as the sequence of braincase

reduction itself appears to be unique to lissamphibians, consistent with an amphibamid temnos-

pondyl origin. While previous research in early tetrapods (e.g. stereospondyls) has indicated that

the degree of braincase ossification has little phylogenetic significance [45,71], in more recent

years and in many lineages (e.g. lissamphibians, acanthodians, and mammals), the braincase has

revealed itself to be an important tool for phylogeneticists, as it is strongly influenced by early

developmental constraints and appears to be less influenced by external factors than other skull

components (e.g. the craniofacial skeleton) [21,42,88–90]. Our research shows that the braincase

is indeed a useful tool for at least the temnospondyl lineage leading to lissamphibians. The future

addition of more braincase characters, especially those that may be more phylogenetically infor-

mative, will permit an even more detailed analysis of this transformation, and will help resolve

details of the phylogenetic relationships within this important clade of tetrapods.
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44. Schoch RR, Milner AR. Handbuch Der Paläoherpetologie: Encyclopedia of Paleoherpetology. Temnos-

pondyli I/by Schoch Rainer R. & Milner Andrew R. Pfeil; 2014.

Braincase simplification and the origin of lissamphibians

PLOS ONE | https://doi.org/10.1371/journal.pone.0213694 March 22, 2019 13 / 15

https://doi.org/10.1093/sysbio/syp029
http://www.ncbi.nlm.nih.gov/pubmed/20525586
https://doi.org/10.1371/journal.pone.0050743
https://doi.org/10.1371/journal.pone.0050743
http://www.ncbi.nlm.nih.gov/pubmed/23227204
https://doi.org/10.7717/peerj.3727
http://www.ncbi.nlm.nih.gov/pubmed/28848692
https://doi.org/10.1111/azo.12164
https://doi.org/10.1371/journal.pone.0213694


45. Schoch RR. The neurocranium of the stereospondyl Mastodonsaurus giganteus. Palaeontology. 2002;

45: 627–645.

46. Witzmann F. Developmental patterns and ossification sequence in the Permo-Carboniferous temnos-

pondyl Archegosaurus decheni (Saar-Nahe Basin, Germany). J Vert Paleontol. 2006; 26: 7–17.

47. Witzmann F, Schoch RR, Hilger A, Kardjilov N. Braincase, palatoquadrate and ear region of the plagio-

saurid Gerrothorax pulcherrimus from the Middle Triassic of Germany. Palaeontology. 2012; 55: 31–50.

48. Boy JA. Die Branchiosaurier (Amphibia) des saarpfälzischen Rotliegenden (Perm, SW-Deutschland).

Hessisches Landesamt für Bodenforschung; 1972.

49. Boy JA, Sues HD. 2000. Branchiosaurs: Larvae, metamorphosis and heterochrony in temnospondyls

and seymouriamorphs. In: Heatwole H, Carroll RL, editors. Amphibian Biology, vol. 4. Chipping Norton:

Surrey Beatty & Sons; 2000. pp. 1150–1197.

50. Müller H. Ontogeny of the skull, lower jaw, and hyobranchial skeleton of Hypogeophis rostratus

(Amphibia: Gymnophiona: Caeciliidae) revisited. J Morphol. 2006; 267: 968–986. https://doi.org/10.

1002/jmor.10454 PMID: 16700055

51. Augier M. Squelette cephalique. In: Poirier P, Charpy A, editors. Traité d’anatomie humaine, vol. 1.
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68. Fröbisch NB, Reisz RR. A new Lower Permian amphibamid (Dissorophoidea, Temnospondyli) from the

fissure fill deposits near Richards Spur, Oklahoma. J Vert Paleontol. 2008; 28: 1015–1030.

69. Huttenlocker AK, Pardo JD, Small BJ. Plemmyradytes shintoni, gen. et sp. nov., an Early Permian

amphibamid (Temnospondyli: Dissorophoidea) from the Eskridge Formation, Nebraska. J Vert Paleon-

tol. 2007; 27: 316–328.

Braincase simplification and the origin of lissamphibians

PLOS ONE | https://doi.org/10.1371/journal.pone.0213694 March 22, 2019 14 / 15

https://doi.org/10.1002/jmor.10454
https://doi.org/10.1002/jmor.10454
http://www.ncbi.nlm.nih.gov/pubmed/16700055
http://www.ncbi.nlm.nih.gov/pubmed/8330517
https://doi.org/10.1016/j.ydbio.2004.01.013
http://www.ncbi.nlm.nih.gov/pubmed/15081358
http://www.ncbi.nlm.nih.gov/pubmed/11524383
https://doi.org/10.1186/s12862-015-0358-5
http://www.ncbi.nlm.nih.gov/pubmed/25989795
https://doi.org/10.1186/s12862-017-1071-3
http://www.ncbi.nlm.nih.gov/pubmed/29207942
https://doi.org/10.1038/srep34130
http://www.ncbi.nlm.nih.gov/pubmed/27677839
https://doi.org/10.7717/peerj.3103
http://www.ncbi.nlm.nih.gov/pubmed/28344905
https://doi.org/10.1371/journal.pone.0213694


70. Schoch RR, Milner AR. The intrarelationships and evolutionary history of the temnospondyl family Bran-

chiosauridae. J Syst Palaeontol. 2008; 6: 409–431.

71. Clack JA, Holmes RB. The braincase of the anthracosaur Archeria crassidisca with comments on the

interrelationships of primitive tetrapods. Palaeontology. 1988; 31: 85–107.

72. Parker WK. XXIV. On the structure and development of the skull in the batrachian—Part II. Philos.

Trans. Royal Soc. 1876; 166: 601–669.

73. Rose CS. The developmental morphology of salamander skulls. Amphib Bio. 2003; 5: 1684–1781.

74. Bonebrake JE, Brandon RA. Ontogeny of cranial ossification in the small-mouthed salamander, Ambys-

toma texanum (Matthes). J Morphol. 1971; 133: 189–203. https://doi.org/10.1002/jmor.1051330206

PMID: 5542240

75. Carroll RL, Holmes R. The skull and jaw musculature as guides to the ancestry of salamanders. Zool J

Linnean Soc. 1980; 68: 1–40.

76. Trueb L, Hanken J. Skeletal development in Xenopus laevis (Anura: Pipidae). J Morphol. 1992; 214: 1–

41. https://doi.org/10.1002/jmor.1052140102 PMID: 1433306

77. Lukas P, Olsson L. Sequence and timing of early cranial skeletal development in Xenopus laevis. J Mor-

phol. 2018; 279: 62–74. https://doi.org/10.1002/jmor.20754 PMID: 28960402

78. Romer AS. The vertebrate body. 3rd ed. Philadelphia: W.B. Saunders, 1962.

79. Maddin HC, Piekarski N, Hanken J. Experimentally induced homeotic shifts in anterior axial patterning

mimic events in the evolution of the tetrapod skull. Integr Comp Biol. 2014; 54: E130.

80. Piekarski N, Olsson L. Muscular derivatives of the cranialmost somites revealed by long-term fate map-

ping in the Mexican axolotl (Ambystoma mexicanum). Evol Dev. 2007; 9: 566–578. https://doi.org/10.

1111/j.1525-142X.2007.00197.x PMID: 17976053

81. Piekarski N, Olsson L. Resegmentation in the Mexican axolotl, Ambystoma mexicanum. J Morphol.

2014; 275: 141–152 https://doi.org/10.1002/jmor.20204 PMID: 24127283

82. Dempster WT. The braincase and endocranial cast of Eryops megacephalus (Cope). J Comp Neurol.

1935; 62: 171–196.

83. Polley BP, Reisz RR. A new Lower Permian trematopid (Temnospondyli: Dissorophoidea) from Rich-

ards Spur, Oklahoma. Zool J Linnean Soc. 2011; 161: 789–815.

84. Wake MH, Hanken J. Development of the skull of Dermophis mexicanus (Amphibia: Gymnophiona),

with comments on skull kinesis and amphibian relationships. J Morphol. 1982; 173: 203–223. https://

doi.org/10.1002/jmor.1051730208 PMID: 30086607

85. Maddin HC. Deciphering morphological variation in the braincase of caecilian amphibians (Gymno-

phiona). J Morphol. 2011; 272: 850–871. https://doi.org/10.1002/jmor.10953 PMID: 21538474

86. Rose CS. The developmental morphology of salamander skulls. In: Heatwole H, Davies M, editors.

Amphibian Biology, vol. 5. Chipping Norton: Surrey Beatty & Sons; 2003. pp. 1684–1781.

87. David Marjanović, Laurin M. Reevaluation of the largest published morphological data matrix for phylo-

genetic analysis of Paleozoic limbed vertebrates. PeerJ PrePrints. 2015;e1596v1.

88. Cardini A, Elton S. Does the skull carry a phylogenetic signal? Evolution and modularity in the guenons.

Biol J Linnean Soc. 2008; 93: 813–834.

89. Goswami A, Polly PD. The influence of modularity on cranial morphological disparity in Carnivora and

Primates (Mammalia). PLoS ONE. 2010; 5: e9517 https://doi.org/10.1371/journal.pone.0009517 PMID:

20209089

90. Brazeau MD, de Winter V. The hyoid arch and braincase anatomy of Acanthodes support chondrichth-

yan affinity of ’acanthodians’. P R Soc B. 2015; 282: e20152210.

91. Benton MJ. Vertebrate palaeontology. 3rd ed. Malden: Blackwell Science Ltd; 2014.

92. Schoch RR. How body size and development biased the direction of evolution in early amphibians. Hist

Biol. 2013; 25: 155–165.

Braincase simplification and the origin of lissamphibians

PLOS ONE | https://doi.org/10.1371/journal.pone.0213694 March 22, 2019 15 / 15

https://doi.org/10.1002/jmor.1051330206
http://www.ncbi.nlm.nih.gov/pubmed/5542240
https://doi.org/10.1002/jmor.1052140102
http://www.ncbi.nlm.nih.gov/pubmed/1433306
https://doi.org/10.1002/jmor.20754
http://www.ncbi.nlm.nih.gov/pubmed/28960402
https://doi.org/10.1111/j.1525-142X.2007.00197.x
https://doi.org/10.1111/j.1525-142X.2007.00197.x
http://www.ncbi.nlm.nih.gov/pubmed/17976053
https://doi.org/10.1002/jmor.20204
http://www.ncbi.nlm.nih.gov/pubmed/24127283
https://doi.org/10.1002/jmor.1051730208
https://doi.org/10.1002/jmor.1051730208
http://www.ncbi.nlm.nih.gov/pubmed/30086607
https://doi.org/10.1002/jmor.10953
http://www.ncbi.nlm.nih.gov/pubmed/21538474
https://doi.org/10.1371/journal.pone.0009517
http://www.ncbi.nlm.nih.gov/pubmed/20209089
https://doi.org/10.1371/journal.pone.0213694

