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Abstract: Bioinformatics analysis has been playing a vital role in identifying potential genomic
biomarkers more accurately from an enormous number of candidates by reducing time and cost com-
pared to the wet-lab-based experimental procedures for disease diagnosis, prognosis, and therapies.
Cervical cancer (CC) is one of the most malignant diseases seen in women worldwide. This study
aimed at identifying potential key genes (KGs), highlighting their functions, signaling pathways,
and candidate drugs for CC diagnosis and targeting therapies. Four publicly available microarray
datasets of CC were analyzed for identifying differentially expressed genes (DEGs) by the LIMMA
approach through GEO2R online tool. We identified 116 common DEGs (cDEGs) that were utilized to
identify seven KGs (AURKA, BRCA1, CCNB1, CDK1, MCM2, NCAPG2, and TOP2A) by the protein–
protein interaction (PPI) network analysis. The GO functional and KEGG pathway enrichment
analyses of KGs revealed some important functions and signaling pathways that were significantly
associated with CC infections. The interaction network analysis identified four TFs proteins and
two miRNAs as the key transcriptional and post-transcriptional regulators of KGs. Considering
seven KGs-based proteins, four key TFs proteins, and already published top-ranked seven KGs-based
proteins (where five KGs were common with our proposed seven KGs) as drug target receptors,
we performed their docking analysis with the 80 meta-drug agents that were already published by
different reputed journals as CC drugs. We found Paclitaxel, Vinorelbine, Vincristine, Docetaxel,
Everolimus, Temsirolimus, and Cabazitaxel as the top-ranked seven candidate drugs. Finally, we
investigated the binding stability of the top-ranked three drugs (Paclitaxel, Vincristine, Vinorelbine)
by using 100 ns MD-based MM-PBSA simulations with the three top-ranked proposed receptors
(AURKA, CDK1, TOP2A) and observed their stable performance. Therefore, the proposed drugs
might play a vital role in the treatment against CC.

Keywords: cervical cancer; mRNA expression profiles; key genes; candidate drugs; integrated
bioinformatics analysis

1. Introduction

Cervical cancer (CC) is a type of malignancy that arises from the cervix (lower part
of the uterus) and is characterized by expulsion and irregular bleeding in the vagina,
pelvic pain, and pain during sexual intercourse [1]. It has been reported that the human
papillomavirus (HPV) infection causes CC in almost all cases [2]. Currently, CC is placed
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as the fourth most common type of malignancy among females with a high mortality
rate worldwide and the second most prevalent cancer among females in middle- and low-
income countries (MLICs) [3,4]. According to the 2018 Globocan report, about 569,847 new
CC cases with 311,365 mortalities are identified annually [3]. About 14,065 females are
diagnosed with CC every year in the United States, causing 5266 deaths [5]. In China, CC is
considered the eighth most common cancer in women but, surprisingly, the second most
common cancer in women between 15 and 44 years old. About 43% of CC patients are
<45 years of age, and 20–28% are <40 years of age [6]. However, cervical cancer has been
relatively well controlled for several decades in many high-income countries due to the
cervical screening initiatives and effective cancer treatment services, but it remains the most
prevalent cause of cancer-related mortality among women in MLICs [4,7,8]. There is still
debate about the precise molecular pathways between chronic high-risk HPV infection and
the CC pathological phase [9]. Growing research has shown that the irregular expression
of multiple genes is convoluted in the pathogenesis of CC [10]. Since tumorigenesis
involves various complex genetic and epigenetic events, including the overexpression of
oncogenes or the inactivation of suppressor genes [11], the revolution of dysregulated genes
in oncogenic pathways might highlight the molecular events underlying tumor formation,
which helps insight into CC treatment strategies. Therefore, it is crucial to elucidate the
potential molecular mechanisms underlying CC to offer novel therapeutic targets and
prognostic biomarkers of CC [12,13].

However, de novo (new) drug discovery is a tremendously challenging, time-consuming,
and expensive task due to several steps involved in this process, from the target-based drug
selection to clinical validation. Drug repurposing (DR) is a promising approach to overcome
many of those obstacles in discovering and developing new drugs by exploring the new
therapeutic applications of approved drugs that are established for different diseases [14].
It is considered as a supporting process to the conventional drug discovery. Exploring
more suitable repurposable drugs for a new disease requires identifying appropriate target
proteins associated with the disease. Hub genes/study genes mediated proteins have been
considered as the key drug target receptors. Transcriptomics analysis is a widely used
popular approach to explore genomic biomarkers [15–21]. By this time, several authors
have suggested several sets of hub genes/study genes to explore molecular mechanisms
and pathogenetic processes of CC [22–25]. CDK1 and TOP2A might play a critical role in
controlling the genetic network related to cervical cancer incidence, progression, and metas-
tasis [17,26,27]. Among them, some authors suggested candidate drugs for the treatment
against CC [16,28]. Nevertheless, none of them have investigated the resistance of their
suggested drugs against the independent receptors proposed by others. A question may
be raised, namely, how can a drug be effective globally for all people around the world.
Therefore, our main objectives are (i) computational identification of genomic biomark-
ers (drug targets) for CC, highlighting their functions, pathways, and regulatory factors,
(ii) exploring proposed genomic biomarkers-guided candidate drugs for the treatment
against CC, and (iii) in silico validation of the proposed drugs against the state-of-the-art
alternative top-ranked independent receptors proposed by others. The workflow of the
present research is displayed in Figure 1.
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DEGs between CC infections and control samples, and the DEGs in each dataset were 
presented using the volcano plots (Figure 2a–d), where blue and red dots represented the 
up-regulated and down-regulated genes, respectively. In GSE6791, a total of 4743 DEGs 
with 4232 up-regulated and 511 down-regulated genes; in GSE27678, a total of 596 DEGs 
with 154 up-regulated and 442 down-regulated genes; in GSE63514, a total of 4091 DEGs 
with 2631 up-regulated and 1460 down-regulated genes; in GSE9750, a total of 2640 DEGs 
with 711 up-regulated and 1929 down-regulated genes were identified by GEO2R online 
tool with |logFC| > 1.0 and adjusted p-value < 0.05. Then, we found 78 up-regulated 
cDEGs and 38 down-regulated cDEGs for CC patients (see Figure 2e; Table S3). 
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spectively. (e) Common up-regulated and down-regulated differentially expressed genes from CC 

Figure 1. The pipeline of this study.

2. Results
2.1. Identification of cDEGs

The datasets GSE6791, GSE27678, GSE63514, and GSE9750 were analyzed to identify
DEGs between CC infections and control samples, and the DEGs in each dataset were
presented using the volcano plots (Figure 2a–d), where blue and red dots represented the
up-regulated and down-regulated genes, respectively. In GSE6791, a total of 4743 DEGs
with 4232 up-regulated and 511 down-regulated genes; in GSE27678, a total of 596 DEGs
with 154 up-regulated and 442 down-regulated genes; in GSE63514, a total of 4091 DEGs
with 2631 up-regulated and 1460 down-regulated genes; in GSE9750, a total of 2640 DEGs
with 711 up-regulated and 1929 down-regulated genes were identified by GEO2R online
tool with |logFC| > 1.0 and adjusted p-value < 0.05. Then, we found 78 up-regulated
cDEGs and 38 down-regulated cDEGs for CC patients (see Figure 2e; Table S3).

Int. J. Mol. Sci. 2022, 23, x FOR PEER REVIEW 3 of 20 
 

 

 
Figure 1. The pipeline of this study. 

2. Results 
2.1. Identification of cDEGs 

The datasets GSE6791, GSE27678, GSE63514, and GSE9750 were analyzed to identify 
DEGs between CC infections and control samples, and the DEGs in each dataset were 
presented using the volcano plots (Figure 2a–d), where blue and red dots represented the 
up-regulated and down-regulated genes, respectively. In GSE6791, a total of 4743 DEGs 
with 4232 up-regulated and 511 down-regulated genes; in GSE27678, a total of 596 DEGs 
with 154 up-regulated and 442 down-regulated genes; in GSE63514, a total of 4091 DEGs 
with 2631 up-regulated and 1460 down-regulated genes; in GSE9750, a total of 2640 DEGs 
with 711 up-regulated and 1929 down-regulated genes were identified by GEO2R online 
tool with |logFC| > 1.0 and adjusted p-value < 0.05. Then, we found 78 up-regulated 
cDEGs and 38 down-regulated cDEGs for CC patients (see Figure 2e; Table S3). 

 
Figure 2. Screening of the overlapping DEGs among GSE6791, GSE27678, GSE63514, and GSE9750 
datasets. The volcano plots of DEGs in (a) GSE6791, (b) GSE9750, (c) GSE27678, and (d) GSE63514; 
red dots and blue dots represented the significantly down-regulated and up-regulated DEGs, re-
spectively. (e) Common up-regulated and down-regulated differentially expressed genes from CC 

Figure 2. Screening of the overlapping DEGs among GSE6791, GSE27678, GSE63514, and GSE9750
datasets. The volcano plots of DEGs in (a) GSE6791, (b) GSE9750, (c) GSE27678, and (d) GSE63514;
red dots and blue dots represented the significantly down-regulated and up-regulated DEGs, re-
spectively. (e) Common up-regulated and down-regulated differentially expressed genes from CC
visualized through a Venn diagram. Seventy-eight genes were founded common- up-regulated and
thirty-eight genes were founded common down-regulated in CC patients.
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2.2. PPI Network Analysis of cDEGs for Identification of KGs

The PPI network of cDEGs was constructed using STRING database (Figure 3a), which
contained 92 nodes and 1790 edges. We selected top-ranked eleven (11) cHubGs {AR,
AURKA, BRCA1, CCNB1, CDK1, ECT2, ESR1, EZH2, MCM2, NCAPG2, and TOP2A},
applying four topological measures in the PPI network. Then, using MCODE, clusters were
selected from the PPI network. It was shown that the most significant cluster had 42 nodes
and 850 edges. MCODE analysis demonstrated that the most significant cluster contained
the seven hub genes {AURKA, BRCA1, CCNB1, CDK1, MCM2, NCAPG2, and TOP2A} (see
Figure 3b). So, we considered these seven key genes (KGs) for further analysis.
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Figure 3. (a) Protein–protein interaction network for common differentially expressed genes of CC,
and edges specify the interconnection in the middle of two genes. The analyzed network holds
92 nodes and 1790 edges. Surrounding nodes (AR, AURKA, BRCA1, CCNB1, CDK1, ECT2, ESR1,
EZH2, MCM2, NCAPG2, and TOP2A) represented the hub genes. (b) Module analysis network
obtained from MCODE analysis. Surrounding nodes (AURKA, BRCA1, CCNB1, CDK1, MCM2,
NCAPG2, and TOP2A) were found to be common across 11 hub genes, so we considered these
7 genes as the key genes. The network represents highly interconnected regions of the PPI network.
The network holds 42 nodes and 850 edges.

2.3. The Regulatory Network Analysis of KGs

The network analysis of KGs with TFs detected top-ranked four significant TFs
(SP1, TP53, NFYA, and E2F1) as the key transcriptional regulatory factors for KGs (see
Figure 4). We found TP53 as key TFs for six KGs (AURKA, BRCA1, CCNB1, CDK1, MCM2,
and TOP2A), SP1 for four KGs (AURKA, BRCA1, CCNB1, and CDK1), NFYA for four KGs
(AURKA, BRCA1, CCNB1, and NCAPG2), and E2F1 for four KGs (AURKA, CDK1, MCM2,
and TOP2A). Similarly, the network analysis of KGs with miRNAs identified top-ranked
two significant miRNAs, denoted as hsa-mir-24 and hsa-let-7b, that were considered as
the key post-transcriptional regulatory factors for KGs sets {AURKA, BRCA1, and CDK1},
{CCNB1, CDK1, and NCAPG2}, respectively (see Figure 4).
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2.4. GO Functions and KEGG Pathway Enrichment Analysis of cDEGs Highlighting KGs

Table 1 displayed the top five significantly enriched GO terms and KEGG pathways by
involving KGs of CC diseases that are also supported by the literature review [17,19,23,29–36].
The top five GO terms of the biological process, including DNA replication, cell division,
G1/S transition of mitotic cell cycle, DNA replication initiation, mitotic nuclear division,
were significantly enriched by the KGs sets {BRCA1, CDK1, MCM2}, {NCAPG2, AURKA,
CCNB1, CDK1}, {CDK1, MCM2}, {MCM2}, and {NCAPG2, AURKA, CDK1}, respectively.
The MFs GO terms ATP binding, protein binding, DNA helicase activity, chromatin bind-
ing, and DNA binding were significantly enriched by the KGs sets {TOP2A, AURKA,
CDK1, MCM2}, {TOP2A, NCAPG2, BRCA1, MCM2, AURKA, CCNB1, CDK1}, {MCM2},
{TOP2A, CDK1}, and {TOP2A, BRCA1, MCM2}, respectively. The cellular components
GO terms nucleoplasm, midbody, MCM complex, nucleus, and spindle were significantly
enriched by the KGs sets {TOP2A, NCAPG2, BRCA1, MCM2, AURKA, CCNB1, CDK1},
{AURKA, CDK1}, {MCM2}, {TOP2A, NCAPG2, BRCA1, MCM2, AURKA, CCNB1, CDK1},
and {AURKA}, respectively. We observed that KEGG pathway including DNA replication,
cell cycle, p53 signaling pathway, Oocyte meiosis, and Fanconianemia were significantly
enriched by the KGs sets {MCM2}, {CCNB1, CDK1, MCM2}, {CCNB1, CDK1}, {CCNB1,
CDK1, AURKA}, and {BRCA1}, respectively. The other significantly enriched GO terms
and KEGG pathways of cDEGs were given in Table S4.

Table 1. The top five significantly (p-value < 0.001) enriched GO functions and KEGG pathways by
cDEGs involving KGs with CC diseases.

GO ID GO Term cDEGs
(Counts) p-Value Associated KGs

B
io

lo
gi

ca
l

Pr
oc

es
s

(B
Ps

)

GO:0006260 DNA replication 18 1.58 × 10−16 BRCA1, CDK1, MCM2
GO:0051301 Cell division 22 7.94 × 10−15 NCAPG2, AURKA, CCNB1, CDK1
GO:0000082 G1/S transition of mitotic cell cycle 12 5.61 × 10−11 CDK1, MCM2
GO:0006270 DNA replication initiation 8 1.18 × 10−9 MCM2
GO:0007067 Mitotic nuclear division 13 7.29 × 10−8 NCAPG2, AURKA, CDK1
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Table 1. Cont.

GO ID GO Term cDEGs
(Counts) p-Value Associated KGs

M
ol

ec
ul

ar
Fu

nc
ti

on
(M

Fs
)

GO:0005524 ATP binding 30 3.80 × 10−8 TOP2A, AURKA, CDK1, MCM2

GO:0005515 Protein binding 83 2.65 × 10−7 TOP2A, NCAPG2, BRCA1, MCM2,
AURKA, CCNB1, CDK1

GO:0003678 DNA helicase activity 6 3.77 × 10−7 MCM2
GO:0003682 Chromatin binding 12 4.13 × 10−5 TOP2A, CDK1
GO:0003677 DNA binding 25 1.20 × 10−4 TOP2A, BRCA1, MCM2

C
el

lu
la

r
C

om
po

ne
nt

GO:0005654 Nucleoplasm 56 4.91 × 10−17 TOP2A, NCAPG2, BRCA1, MCM2,
AURKA, CCNB1, CDK1

GO:0030496 Midbody 13 2.54 × 10−11 AURKA, CDK1
GO:0042555 MCM complex 6 1.04 × 10−9 MCM2

GO:0005634 Nucleus 65 2.18 × 10−9 TOP2A, NCAPG2, BRCA1, MCM2,
AURKA, CCNB1, CDK1

GO:0005819 Spindle 10 6.21 × 10−8 AURKA

hsa ID Pathways cDEGs
(Counts) p-Value Associated cHubGs

K
EG

G
Pa

th
w

ay

hsa03030 DNA replication 9 7.97 × 10−11 MCM2
hsa04110 Cell cycle 12 5.37 × 10−10 CCNB1, CDK1, MCM2
hsa04115 p53 signaling pathway 5 0.001158992 CCNB1, CDK1
hsa04114 Oocyte meiosis 5 0.007240129 CCNB1, CDK1, AURKA
hsa03460 Fanconianemia pathway 3 0.0485697 BRCA1

2.5. Survival Analysis with KGs

The log-rank test was used to test the significant difference between two survival
curves corresponding to low- and high-risk groups based on the seven KGs (AURKA,
BRCA1, CCNB1, CDK1, MCM2, NCAPG2, and TOP2A). We observed a significant dif-
ference between the two survival probability curves (Figure 5), which indicates that the
proposed KGs have strong prognostic power in detecting CC.
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2.6. Drug Repurposing by Molecular Docking

To explore candidate drugs by molecular docking simulation, we considered m = 11 drug
target proteins (receptors) corresponding to our proposed seven KGs and their regulatory
four key TFs and 80 meta-drug agents (ligands) as mentioned in Section 4.3. We down-
loaded the 3D structure of our proposed 11 receptors (AURKA, BRCA1, CCNB1, CDK1,
MCM2, TOP2A, SP1, TP53, NFYA, E2F1) from the Protein Data Bank (PDB) [37] with source
codes 1mq4, 1n5o, 2b9r, 4y72, 4uuz, 1zxm, 1sp1, 1aie, 6qmq, 2aze, respectively. The 3D
structure of the NCAPG2 target protein was downloaded from AlphaFold source using
UniProt [38] ID of Q86XI2. The 3D structures of 80 drugs (see Table S1) were downloaded
from the PubChem database [39] as mentioned previously.

On the other hand, we reviewed 52 published articles associated with CC infections
that provided transcriptome-guided hub proteins (genomic biomarkers) for cross-validation
of the proposed key genes and the candidate drug agents. There were 255 hub genes
reported in those 52 articles, with 7 hub proteins (AURKA, PCNA, CCNB1, CDC45, MCM2,
TOP2A, CDK1) appearing in at least 5 articles (Table S2) [15–21,23–27,40–51]. Five (AURKA,
CCNB1, MCM2, TOP2A, and CDK1) of the seven reported hub proteins were found to be
similar to our suggested seven KGs. We downloaded the 3D structure of the published
remaining receptors (CDC45, PCNA) from PDB with source codes 5dgo, 1u76, respectively.
Then, molecular docking was carried out between total m = 13 receptors (proposed and
published) and n = 80 meta-drug agents to calculate the binding affinity scores (kcal/mol)
for each pair of receptors and agents. Then, we ordered the target receptors in descending
order of row sums of the binding affinity matrix A = (Aij) and drug agents, according to
the column sums, to select a few drug agents as the candidate drugs (see Figure 6). Thus,
we selected top-ranked three drug agents (Paclitaxel, Vinorelbine, Vincristine) as candidate
drugs with binding affinity scores −7.5 kcal/mol ≤ against the 13 receptors.
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star (**) denoted only published receptors, and the receptors with the black color indicated only
proposed receptors.

The docked complexes of the top three virtual hits from AutoDock-Vina docking
were further considered for protein–ligand interaction profiling. As shown in Figure 7a,
AURKA_paclitaxel complex showed three hydrogen bonds with lys141, lys162, asp274
residues. Although the ligand formed major hydrophobic interactions with leu139, val147,
leu210, thr217, tyr219, glu260, leu263 residues, and lys162 residue showed additional salt
bridges interactions with the ligand. On the other hand, CDK1_vinorelbine (Figure 7b)
formed hydrophobic interactions with tyr15, lys88, leu135 residues. In the case of the
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TOP2A_vincristine complex, vincristine showed hydrogen bonding to the active site, where
the interaction was maintained by glu66 residue. Vincristine also formed hydrophobic
interactions with glu66, pro111, lys233, leu257 residues. Furthermore, vincristine also
formed π-cation interactions with lys233 residue (see Figure 7c).
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(b) indicated CDK1_pinorelbine, and (c) indicated TOP2A_pincristine.

2.7. MD Simulations

Among the proposed candidate drugs, Paclitaxel, Vinorelbine, and Vincristine were
the top-ranked three candidate drugs (Figure 6). Therefore, these top three drug agents
were selected for their stability analysis through 100 ns MD-based MM-PBSA simulations.

From Figure 8, we observed that all the three systems were significantly stable between
the variations of moving and initial drug–target complexes. We calculated their RMSD (root
mean square deviation). Figure 8a represented the RMSD corresponding to the proposed
receptors (AURKA, CDK1, TOP2A). All the systems projected the RMSD around 1 Å to
2.5 Å, except TOP2A complex, which shows the RMSD around 2 Å to 3.7 Å. The average
RMSD for AURKA, CDK1, TOP2A complexes were 1.59 Å, 2.11 Å, and 2.80 Å, respectively.
CDK1 complex showed slight fluctuation in around 20,000 ps to 28,000 ps and was stabilized
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in the remaining simulation. As can be seen from the plot, AURKA showed a more rigid
conformation than the other proteins, also achieved equilibrium at 3 ns, and remained
stable afterward. In contrast, TOP2A showed a dramatic increase in flexibility, with RMSD
values rising gradually from 2 Å to 3.5 Å over time. Here, we calculated the MM-PBSA
binding energy for three drug agents as mentioned previously, Figure 8b represented the
binding energy with the top-ranked three proposed potential biomarkers (AURKA, CDK1,
TOP2A). On an average, AURKA, CDK1, TOP2A complexes produced binding energies
−192.65 kJ/mol, −26.36 kJ/mol, and 41.56 kJ/mol, respectively.
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3. Discussion

CC is the second most common type of malignant tumor in females with a 5-year
survival rate of only about 52%. Thus, more research is required to discover potential
biomarkers and candidate drugs for improving the 5-year survival rate and reducing the
mortality rate of CC patients [16].

To investigate the genetic influence of CC infections, we identified 116 shared cDEGs.
Among them, we detected seven cDEGs as KGs highlighting their functions, pathways,
regulatory factors, and candidate drugs. The literature review suggested that AURKA was
an enhanced potential target for cervical cancer treatment [15,25,27,43,45]. BRCA1 enhanced
the sensitivity of cervical squamous cell carcinoma (CSCC) patients to cisplatin-based
CCRT by up-regulating STAT1 to activate the JAK/STAT pathway [50]. CCNB1 played
vital roles in the progression of CC through different signaling pathways [17,18,26,46,51].
CDK1 contributed to the occurrence and development of CSCC [18,23,25–27,40,41,44,46].
MCM2 involved in the carcinogenesis of cervical cancer [16,19–21,23,27,42]. TOP2A is
regarded as a biomarker for the improved diagnosis of CC [16,17,19,23,24,26,27,41,43,45].
We also investigated the multivariate survival analysis of CC patients with KGs and
found a substantial difference between two survival probability curves, indicating that the
suggested KGs have a better prognostic capacity for CC detection. Four transcriptional
(TFs) and two post-transcriptional (miRNAs) regulatory factors of KGs were introduced
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in Section 2.3. The four TFs proteins (SP1, TP53, NFYA, E2F1) were further utilized
as the drug target receptors. Previous studies also supported that SP1 is an important
biomarker for CC [52]. Khan M.A et al. revealed that TP53 has an association with cervical
cancer pathogenesis [53]. NFYA promoted cell proliferation and tumorigenic properties by
transcriptional activation of SOX2 in cervical cancer [54]. The E2F1 protein is considered as
a potential biomarker for CC [55].

To investigate the common pathogenetic processes of KGs, we selected the top five
common GO terms for each of BPs, MFs and cellular components, and KEGG pathways that
were significantly associated with cervical cancer disease through the cDEGs, including KGs.
Among them, the association of the top five common BPs (DNA replication, cell division,
G1/S transition of mitotic cell cycle, DNA replication initiation, mitotic nuclear division)
with CC was supported by some other individual studies [17,19,30]. The top five common
MFs (ATP binding, protein binding, DNA helicase activity, chromatin binding, and DNA
binding) that were significantly associated with CC disease also received support from
some individual studies [17,19,31–33]. Similarly, the association of the top four cellular
components (nucleoplasm, midbody, MCM complex, nucleus, and spindle) with CC disease
was supported by the literature review [19,34–36]. We selected the top five significantly
enriched common KEGG pathways (DNA replication, cell cycle, p53 signaling pathway,
Oocyte meiosis, and Fanconianemia pathway) that were also reported by some other
studies [17,23,29].

To explore effective candidate drugs for the treatment against CC disease, we con-
sidered top-ranked proposed receptors and their regulatory four key TFs proteins as the
drug target receptors and performed their docking analysis with 80 meta-drug agents
(see Table S1). For cross-validation, we considered seven published hub proteins, where
five proteins were common with our proposed KGs (see Figure 9). On the other hand,
five articles at a time explored four hub genes individually, two articles explored three
hub genes individually, etc. Moreover, TOP2A gene supported by 11 articles, CDK1 gene
was supported by 10 articles, MCM2 gene was supported by 7 articles, CDC45 gene was
supported by 6 articles, and (AURKA, CCNB1, PCNA) genes were supported by 5 articles
(see Figure 9). Then, we selected top-ranked three drugs as the candidate drugs, where
the first three drugs showed strong binding affinities with all target proteins (Figure 6),
where red * denoted published and proposed receptors, and blue ** denoted published
receptors. Some other independent studies also recommended our suggested drugs, includ-
ing Vincristine [56,57], Vinorelbine [57,58], and Paclitaxel [56–60], for the treatment against
CC. Finally, we examined the stability of top-ranked three drugs (Vincristine, Vinorelbine,
Paclitaxel) by using 100 ns MD-based MM-PBSA simulations for three top-ranked proposed
receptors (AURKA, CDK1, TOP2A) and observed their stable performance according to
the laws of physics [61,62]. Therefore, the proposed candidate drugs might play a vital role
in the treatment against CC with comorbidities, since our proposed target proteins are also
associated with several comorbidities. The present study emphasizes the further wet-lab
experimental validation for both the proposed target proteins and candidate drugs.
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4. Materials and Methods
4.1. Data Sources and Descriptions

We used both original data and meta-data to reach the goal of this study as de-
scribed below.

4.2. Collection of Microarray Exploring Profiles for Genomic Biomarkers and Drug
Target Receptors

We collected microarray profiles for cervical cancer (CC) disease from the National
Center for Biotechnology Information (NCBI) Gene Expression Omnibus (GEO) website
(http://www.ncbi.nlm.nih.gov/geo/, (accessed on 10 March 2022)). CC patients microar-
ray datasets of GSE6791 [63], GSE27678 [64], and GSE63514 [65] were all based upon the
GPL570 Platforms ((HG-U133_Plus_2) Affymetrix Human Genome U133 Plus 2.0 Array),
which included 20 CC tissues and 8 normal cervical tissues, 28 CC tissues and 3 nor-
mal cervical tissues, and 28 CC tissues and 24 normal cervical tissues, respectively. The
GSE9750 [66] dataset used the GPL96 Affymetrix Human Genome U133A Array platform
and included 33 CC tissue samples that were primarily marked by HPV16 or HPV18 and
21 normal cervical samples.

4.3. Collection of Meta-Drug Agents for Exploring Candidate Drugs

We collected host-transcriptome-guided 80 meta-drug agents by the literature review
of CC disease (see Table S1) for exploring candidate drugs. Thus, we considered 80 drug
agents to explore candidate drugs by molecular docking with our proposed receptors.

http://www.ncbi.nlm.nih.gov/geo/
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4.4. Collection of Independent Meta-Receptors for Cross-Validation with the Proposed Drugs

To select the top-ranked hub genes (independent meta-receptors) associated with CC
disease, we reviewed 52 published articles and selected the top-ranked 7 target proteins as
the independent meta-receptors (see Table S2).

4.5. Identification of cDEGs for CC Patients

The identification of cDEGs was a key step of this study. To identify cDEGs, we identi-
fied DEGs for each of GSE6791, GSE27678, GSE63514, and GSE9750 datasets separately, by
using linear models for microarray (LIMMA) approach through GEO2R online tool [67]
with |logFC| > 1.0 and adjusted p-value < 0.05. The LIMMA approach calculates the
p-value by using the modified t-statistics to test the significance of differential gene ex-
pressions between two conditions, and p-value is then adjusted by using the Benjamini–
Hochberg procedure [68]. Finally, we selected the common DEGs by using four DEGs sets
derived from four publicly available microarray datasets.

4.6. Construction of Protein–Protein Interaction (PPI) Network for Identification of KGs

The PPI network of cDEGs was constructed through the STRING online database
(https://string-db.org/, (accessed on 10 March 2022)) [69]. To improve the quality of PPI
network, we used the Cytoscape software [70]. The Cytoscape plugin cytoHubba was
used to select the common Hub Genes (cHubGs) or common Hub Proteins (cHubPs) from
PPI network [70,71]. The PPI network provides several nodes and edges, which indicate
proteins and their interactions, respectively. A node with the largest number of significant
interactions/connections/edges with other nodes is considered as the top-ranked cHubGs.
The cHubGs were selected by using four topological analyses (Degree [72], BottleNeck [73],
Betweenness [74], and Stress [75]) of the PPI network. Molecular Complex Detection
(MCODE) (http://apps.cytoscape.org/apps/mcode, (accessed on 10 March 2022)) plugin
of Cytoscape software was used to detect the most profound modules from the PPIs
network. Highly interconnected portions were identified through MCODE clustering that
assists the research in effective drug designing. For representing molecular complexes in
the PPI network, MCODE was used by detecting the densely connected areas [76]. Then,
we selected the important key genes (KGs) that were shared by both cHubGs and MCODE
clustering genes.

4.7. Regulatory Network Analysis of KGs

To explore key transcriptional regulatory transcription factors (TFs) and post-transcriptional
regulatory micro-RNAs (miRNAs) of KGs, we performed TFs–TGs and miRNAs–KGs in-
teraction network analysis, respectively, by using the NetworkAnalyst web platform [77].
The TFs–KGs and miRNAs–KGs interaction networks were constructed by using the
ENCODE (https://www.encodeproject.org/, (accessed on 10 March 2022)) [78] and Reg-
Network repository [79] databases, respectively. The Cytoscape software [70] was used to
improve the quality of networks. The key regulators were selected by using two topological
analyses (Degree [72] and Betweenness [74]) of networks.

4.8. GO Terms and KEGG Pathway Enrichment Analysis of KGs

Gene ontology (GO) functional and Kyoto Encyclopedia of Genes and Genomes
(KEGG) pathway enrichment/annotation/over-representation analysis [80,81] is a widely
used approach to determine the significantly annotated/enriched/over-represented func-
tions/classes/terms and pathways by the identified cDEGs/cHubGs. It is an important
part for revealing the molecular mechanisms of actions and cellular roles of genes. The GO
terms are categorized into Biological Process, Cellular Component, and Molecular Func-
tion [82]. We performed GO and KEGG enrichment analysis using DAVID web tool
(https://david.ncifcrf.gov/tools.jsp, (accessed on 10 March 2022)) [83]. The significance
level was set to p-value < 0.05.

https://string-db.org/
http://apps.cytoscape.org/apps/mcode
https://www.encodeproject.org/
https://david.ncifcrf.gov/tools.jsp
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4.9. Survival Analysis

To examine the prognostic performance of KGs in detecting CC, we performed a mul-
tivariate survival analysis of CC patients based on expressions of KGs by using SurvExpress
online tool [84]. The significance level was set to p-value < 0.05.

4.10. Drug Repurposing by Molecular Docking Study

To propose in silico validated efficient candidate drugs for the treatment against CC,
we employed a molecular docking study of our proposed receptor proteins with the drug
agents. We considered our proposed KGs-based key proteins (KPs) and their regulatory
key TFs proteins as the drug target proteins and 80 drug agents as mentioned earlier in
Section 4.3 (see Table S1). The molecular docking study requires three-dimensional (3D)
structures of both receptor proteins and drug agents/ligands. We downloaded the 3D struc-
ture of all targeted proteins from the Protein Data Bank (PDB) [37] and SWISS-MODEL [85].
The 3D structures of all drug agents were downloaded from PubChem database [39].
The 3D structures of the target proteins were visualized using Discovery Studio Visualizer
2019 [86], and protein chains that were not part of the gene were removed. PDB2PQR
and H++ servers were utilized to assign the protonation state of target proteins [87,88].
All the missing hydrogen atoms were also appropriately added. The pKa for target pro-
teins residues were investigated under the physical conditions of salinity = 0.15, internal
dielectric = 10, pH = 7, and external dielectric = 80. Further, the protein was prepared for
molecular docking by removing ligand heteroatoms and water molecules and by addition
of polar hydrogens on AutoDock tools 1.5.7 (developed by ADT, The Scripps Research
Institute, La Jolla, CA, USA) [89]. The drug agents/ligands were prepared for molecular
docking simulation by setting the torsion tree and rotatable/non-rotatable bonds present
in the ligand through AutoDock tools 1.5.7. Then, binding affinities between the target
proteins and drug agents were calculated using AutoDock Vina [90]. The exhaustiveness
parameter was set to 10. Discovery Studio Visualizer 2019 [86], PLIP [91], and PyMol [92]
were used to analyze the docked complexes for surface complexes, types, and distances
of non-covalent bonds. Let Aij denotes the binding affinity between ith target protein
(I = 1, 2, . . . , m) and jth drug agent (j = 1, 2, . . . , n). Then, target proteins were ordered
according to the descending order of row sums ∑n

j=1 Aij, j = 1, 2, . . . , m, and drug agents
were ordered according to the descending order of column sums ∑m

i=1 Aij, j = 1, 2, . . . ,
n, to select the few top-ranking drug agents as the candidate drugs. Then, we validated
the proposed repurposed drugs by molecular docking study with the top-listed receptor
proteins associated with CC infections that were obtained by the literature review. To select
the top-listed receptor proteins associated with CC infections, we reviewed 52 recently
published articles and selected the top-ranked seven receptor proteins (see Table S2).

4.11. Molecular Dynamic (MD) Simulations

MD simulations were carried out by using YASARA Dynamics software [93] and the
AMBER14 force field [94] to study the dynamic behavior of the top-ranked protein–ligand
complexes. A total of six different systems were used to run MD simulations. The systems
included the top three hits, AURKA_paclitaxel, CDK1_vinorelbine, and TOP2A_vincristine
complexes corresponding to our proposed receptors.

For the complexes, the parameters of ligands were assigned through AutoSMILES [95]
algorithms, where unknown organic molecules are parameterized fully automatically by
the calculation of semi-empirical AM1 Mulliken point charges with the COSMO solvation
model, assigning of AM1BCC [96] atom and bond types, and also assigning general AMBER
force field (GAFF) [97] atom types and the remaining force field parameters. Before the
simulation, the protein–ligand complexes hydrogen bonding network was optimized and
solvated by a TIP3P [98] water model in a simulation cell. Periodic boundary conditions
were maintained with a solvent density of 0.997 g L−1. Titratable amino acids in the
protein complex were subjected to pKa calculation during solvation. The initial energy
minimization process of each simulation system, consisting of 55,410 ± 10, 72,287 ± 10,
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and 96,252 ± 10 atoms for AURKA_paclitaxel, CDK1_vinorelbine, and TOP2A_vincristine
complexes, was performed by a simulated annealing method, respectively, using the
steepest gradient approach (5000 cycles). Each simulation was run with a multiple-time-step
algorithm [99], using a time-step interval of 2.50 fs under physiological conditions (298 K,
pH 7.4, 0.9% NaCl) [100]. All bond lengths were constrained using the linear constraint
solver (LINCS) [101] algorithm, and SETTLE [102] was used for water molecules. Long-
range electrostatic interactions were described by the PME [103] methods, and finally, 100 ns
MD simulation was accomplished at Berendsen thermostat [104] and constant pressure. The
trajectories were recorded every 250 ps for further analysis, and subsequent analysis was
implemented by the default script of YASARA [105] macro and SciDAVis software available
at http://scidavis.sourceforge.net/, (accessed on 10 Mar 2021). All snapshots were then
subjected to YASARA software’s MM-Poisson–Boltzmann surface area (MM-PBSA) binding
free energy calculation using the formula below [106]:

Binding free Energy
= EpotReceptor + EsolvReceptor + EpotLigand + EsolvLigand
− EpotComplex − EsolvComplex

(1)

Here, MM-PBSA binding energy was calculated using YASARA built-in macros using
AMBER 14 as a force field, with larger positive energies indicating better binding [107].

5. Conclusions

The present study utilized various well-established bioinformatics tools to reveal KGs,
highlighting their regulatory factors and dysregulated molecular functions and pathways
that were responsible for CC progression. The five KGs were common between our pro-
posed seven KGs and the top-ranked seven KGs published by others, which indicated
that our proposed KGs received more support by the literature review compared to any
other individual studies. Finally, we suggested potential drugs, such as vincristine, vinorel-
bine, paclitaxel, and investigated their stability performance by using 100 ns MD-based
MM-PBSA simulations for three top-ranked proposed receptors (AURKA, CDK1, TOP2A),
also observing their stable performance. Thus, the proposed molecular biomarkers and
repurposing candidate drugs presented in this study have merit for diagnosis and therapies
of CC disease.
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