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ABSTRACT
Background Many biomarkers have been proposed 
to be predictive of response to anti- programmed cell 
death protein- 1 (PD- 1)/anti- programmed death ligand- 1 
(PD- L1) checkpoint inhibitors (CPI). However, conflicting 
observations and lack of consensus call for an assessment 
of their clinical utility in a large data set. Using a combined 
data set of clinical trials and real- world data, we assessed 
the predictive and prognostic utility of biomarkers for 
clinical outcome of CPI in non- small cell lung cancer 
(NSCLC).
Methods Retrospective cohort study using 24,152 
patients selected from 71,850 patients with advanced 
NSCLC from electronic health records and 9 Roche 
atezolizumab trials. Patients were stratified into high and 
low biomarker groups. Correlation with treatment outcome 
in the different biomarker groups was investigated and 
compared between patients treated with CPI versus 
chemotherapy. Durable response was defined as having 
complete response/partial response without progression 
during the study period of 270 days.
Results Standard blood analytes (eg, albumin and 
lymphocyte) were just prognostic, having correlation 
with clinical outcome irrespective of treatment type. 
High expression of PD- L1 on tumors (≥50% tumor cell 
staining) were specifically associated with response 
to CPI (OR 0.20; 95% CI 0.13 to 0.30; p<0.001). The 
association was stronger in patients with non- squamous 
than squamous histology, with smoking history than non- 
smokers, and with prior chemotherapy than first- line CPI. 
Higher tumor mutational burden (TMB) (≥10.44 mut/Mb) 
was also specifically associated with durable response 
to CPI (OR=0.40; 95% CI 0.29 to 0.54; p<0.001). The 
combination of high TMB and PD- L1 expression was the 
strongest predictor of durable response to CPI (OR=0.04; 
95% CI 0.00 to 0.18; p<0.001). There was no significant 
association between PD- L1 or TMB levels with response 
to chemotherapy, suggesting a CPI- specific predictive 
effect.
Conclusions Standard blood analytes had just prognostic 
utility, whereas tumor PD- L1 and TMB specifically 
predicted response to CPI in NSCLC. The combined high 
TMB and PD- L1 expression was the strongest predictor of 
durable response. PD- L1 was also a stronger predictor in 
patients with non- squamous histology, smoking history or 
prior chemotherapy.

INTRODUCTION
The advent of cancer treatments directed 
at programmed cell death protein 1 (PD- 1) 
and its ligand (PD- L1) has dramatically 
improved clinical outcomes for many types of 
cancers including non- small cell lung cancer 
(NSCLC).1 2 Checkpoint inhibitors (CPI) 
targeting PD- 1 and PD- L1 have been demon-
strated to be effective in first and subsequent 
lines of therapy for NSCLC.2–5 However, the 
clinical responses to CPI vary considerably 
among patients. Selection criteria for patients 
who can potentially benefit the most from 
these therapies remain unclear.

Various standard blood analytes have also 
been reported or proposed to be predictive 
biomarkers of response to CPI in several 
cancer types, including NSCLC. They 
included monocytes,6 neutrophils,6 neutro-
phil to lymphocyte ratio,7 8 lung immune 
prognostic index,9 albumin,10 11lactate dehy-
drogenase and C- reactive protein.12

WHAT IS ALREADY KNOWN ON THIS TOPIC
 ⇒ Many biomarkers have been proposed to be pre-
dictive of response to checkpoint inhibitors (CPI). 
However, conflicting observations and lack of con-
sensus call for an assessment of their clinical utility 
in a large data set.

WHAT THIS STUDY ADDS
 ⇒ Among the subpopulations, programmed death li-
gand- 1 (PD- L1) was a stronger predictor in patients 
with non- squamous histology, smoking history or 
prior chemotherapy. PD- L1 and tumor mutational 
burden (TMB) combined is a very strong predictor.

HOW THIS STUDY MIGHT AFFECT RESEARCH, 
PRACTICE OR POLICY

 ⇒ Standard blood analytes are just prognostic bio-
markers, whereas tumor PD- L1 and TMB predicted 
durable response to CPI in real- world and clinical 
trial patients with non- small cell lung cancer.
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The expression of PD- L1 on tumors has been used as a 
biomarker in diverse cancer types including lung cancer.5 
Previous reports on the association between tumor PD- L1 
expression and clinical outcomes have been variable, 
with some trials demonstrating predictive value of PD- L1 
expression which was not observed in others.13 The 
association between biomarker expression and patient 
outcomes has been largely studied using data from clin-
ical trials with a stringent selection of patient populations. 
Even then, the estimated predictive value of PD- L1 expres-
sion has been inconsistent, with some trials reporting it to 
be strongly predictive of clinical outcomes whereas other 
trials indicating weak or non- existent association.14

Tumor mutational burden (TMB) which is the number 
of mutations per coding region of a cancer cell, has been 
demonstrated to correlate with clinical response and 
extended survival, suggesting that TMB could be a predic-
tive biomarker for CPI.15 However, the value of TMB as a 
predictive biomarker has been controversial.16 17

Therefore, the aim of this study was to assess the clin-
ical utility of these biomarkers for predicting response to 
CPI among adults with advanced- stage NSCLC. To assess 
the clinical utility with statistical confidence and their 
general use in both real- world and randomized control 
trial settings, we used data from electronic health records 
(EHR) databases and clinical trials of atezolizumab. To 
distinguish the predictive (specific to the treatment) 
versus prognostic (independent of the treatment)18 
nature of the biomarkers,19 we also compared the effect 
in patients treated with chemotherapy. In addition, we 
assessed the influence of smoking status and histology 
(non- squamous vs squamous) in this population.

This analysis is the largest study of this nature, to our 
knowledge, with data of more than 70,000 patients with 
NSCLC used as the starting material for the analyses.

METHODS
Data sources and study design
Three separate sources of data were used for this study. 
Results from the individual data sources were consistent 
with each other and were combined to gain more statis-
tical power. The first data source consists of nine in- house 
historical atezolizumab advanced NSCLC clinical trials. 
They are the five phase II or III atezolizumab mono-
therapy studies,3 5 20–22 and four phase III atezolizumab 
combo- therapy studies.23–26 Patients were consented for 
treatment and data usage, and were treated in accordance 
with the Declaration of Helsinki. In- house clinical trial 
data were used in accordance to internal processes and 
guidelines. The trial data were analyzed with all patients 
treated, regardless of intention- to- treat status.

The second source of data was the US nationwide, 
de- identified, EHR- derived Flatiron Health (FH) data-
base.27 It is a longitudinal database comprizing patient- 
level structured (eg, laboratory values and prescribed 
medications) and unstructured data (eg, biomarker 
reports), curated via technology- enabled abstraction. 

During the study period, the de- identified data originated 
from approximately 280 US cancer clinics (~800 sites of 
care).

The third source of data was the integrated FH/
Foundation Medicine (FMI) Clinico- Genomic Database 
(CGDB).27 28 It consists of patients from the FH database 
who had genomic data derived from FMI comprehensive 
genomic profiling. CGDB provides de- identified patient- 
level data (from FH database) linked to FMI genomic data 
from the same patient.28 Since CGDB patients were part 
of the FH database, to avoid including duplicated patients 
from the two databases, we excluded the patients in FH 
database with FMI tests. Patient treatment data between 
January 2011 and February 2020 (data collection cut- off 
date) from the two databases were used for the analyses. 
Both databases consist of retrospective observational 
de- identified anonymized patient- level data; as such, this 
study was exempt from informed consent and Institu-
tional Review Board requirements. Contracts governing 
the access and proper use of data were signed and the 
rules were respected. Patients from these combined 
sources were then selected according to various criteria, 
such as data availability, as illustrated in the top part of 
figure 1A.

For the study design, for each biomarker, patients 
were stratified into high and low biomarker groups. For 
PD- L1, they were PD- L1 high versus PD- L1 negative. For 
biomarkers with continuous values, they were third tertile 
versus first tertile. For TMB, the first and third tertiles were 
equivalent to TMB of ≤4.35 and ≥10.44 mut/Mb, respec-
tively. The correlation of biomarker levels with treatment 
outcome was explored (‘Analysis’ part of figure 1A). 
The high and low biomarker groups were balanced on 
patients’ baseline characteristics that are known prog-
nostic factors that can confound the biomarker effect 
(age, sex, race, disease stage at initial diagnosis, smoking 
history, histology and Eastern Cooperative Oncology 
Group (ECOG) performance status (PS)) using multi-
variate propensity score- based algorithm29 30 (see ‘Statis-
tical analysis’ section for detail). All patient counts in 
the result plots are weighted counts. Two sets of analyses 
were performed: (1) response analysis based on durable 
response definition which delineates ‘responders’ and 
‘non- responders’; (2) progression analysis based on 
durable clinical benefit definition which delineates 
‘non- progressors’ and ‘progressors’ (figure 1AC). To 
distinguish CPI- specific predictive effect versus general 
prognostic effect of biomarkers, analysis of standard- of- 
care chemotherapy cohorts was also performed.

To focus on the association of the biomarker with 
specific drug response rather than with overall survival 
(OS), which depends on diverse prognostic factors, we 
removed patients who died early regardless of the treat-
ment received. It has been previously reported31 that the 
CPI and chemotherapy survival curves did not differen-
tiate well until after 18 weeks (also confirmed in our data 
set: figure 1B). We therefore restricted the analysis to 
patients who were alive beyond 18 weeks. We confirmed 
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that the inclusion of early deaths is a confounding effect 
in the sensitivity analysis (online supplemental figure 1).

Patient treatment and demographics
For the real- world data (RWD), patients with no record 
of CPI or other immunotherapy were assigned to the 
chemotherapy cohort if they were treated with cytotoxic 
monotherapy or combinations with other cytotoxics 
or targeted therapies. Patients in the CPI cohorts were 
treated with nivolumab, (~35%) pembrolizumab (~40%), 
atezolizumab (~20%) or durvalumab (~5%). Assignment 
to CPI cohort was regardless of other therapies before 
or after the CPI line. The analysis used the initial line 
of exposure to CPI or chemotherapy for the treatment 
of NSCLC. In CPI- treated patients, slightly greater than 
50% of the patients had their first CPI in the first line and 
~35% in the second line, and among the chemotherapy 
patients, ~95% had their first chemotherapy in the first 
line. All RWD patients included in our analysis were at an 
advanced stage when they started the treatment. There 
were 1114 stage I–III patients from the atezolizumab 
studies, which constitute <5% of the 24,152 patients 
selected for the study, figure 1A.

In the atezolizumab trials, there were a mix of chemo- 
refractory and chemo- naïve patients. All CGDB data and 
seven of nine atezolizumab studies,22 24 included patients 
with epidermal growth factor receptor (EGFR) and 
anaplastic lymphoma kinase (ALK) mutations. To deter-
mine whether we can account for the impact of EGFR or 
ALK mutation on the relationship between PD- L1 and/
or TMB on one side and the response or progression on 

the other side, we analyzed the FH data set. EGFR or ALK 
mutation (prevalence of 6.7% and <1%) test results were 
available for 70% or 66% of the patients, respectively. The 
impact of the mutation status on the biomarker effect of 
CPI response was minimal, potentially due to the low 
mutation prevalence, (≤0.01 max difference in the ORs) 
and was therefore not pursued further.

Outcome measures
Tumor response data included Response Evaluation 
Criteria in Solid Tumours(RECIST) response assessments 
from atezolizumab trials and real- world response (rwR)32 
data from CGDB.28 Disease progression was defined using 
the following data extracted from the databases: real- 
world progression (rwP)33 abstracted by FH from patient 
records, death or change to a treatment line of a different 
drug category. The durable response definition dichoto-
mized patients into responders (defined as having rwR or 
RECIST complete or partial response (CR/PR) without 
progression during the entire study duration of 270 days) 
and non- responders (having progressive disease (PD) or 
stable disease (SD) in the trials or disease progression in 
RWD during the study). The duration of 270 days was to 
ensure prolonged response that would include multiple 
tumor scans and a duration for which balanced groups 
can be obtained. Patients who had a response and had no 
PD/SD/disease progression but lost to follow- up before 
the study ended were not included in the analysis.

The durable clinical benefit definition dichotomized 
the patients into non- progressors and progressors, similar 
for clinical benefit rate. Specifically, non- progressors 

Figure 1 Patient selection and treatment outcome group definitions. (A) Patient selection for the study cohorts. Blue numbers 
in parentheses denote numbers of patients combined from the three data sources (CGDB, the nine in- house atezolizumab 
studies and FH database) at each step of patient selection and analysis. The numbers at the end of patient selection step with 
‘baseline biomarker data’ show the numbers of patients with the most commonly available biomarker analyzed (white blood 
cell (WBC)). For the other biomarkers, the patient numbers are illustrated in each analysis figure. In each biomarker analysis, 
patients were stratified into high and low biomarker groups, and the correlation between biomarker levels and treatment 
outcome groups was studied. Patients with intermediate biomarker levels (eg, second tertile) were not analyzed. The biomarker 
high and low groups were balanced on baseline characteristics using propensity score- based SMRW method. Patients in the 
bottom ‘response’ analysis were also included in the ‘progression’ analysis since they had both response and progression 
outcome data. The ‘progression’ analysis included additional patients from the FH database because disease progression 
data is available. (B) Kaplan- Meier plot of overall survival of FH patients treated with CPI or chemotherapy with their first CPI 
or chemotherapy started during 2015 to February 2020 when the therapies were both used. Dotted vertical line indicates the 
cut- off used to exclude early deaths, when the two survival curves can be well differentiated. The two groups were balanced 
on their baseline characteristics using propensity score- based SMRW weights. (C) Treatment outcome group definitions. Each 
group is represented by a schematic patient journey. Same definition is used for CPI or chemotherapy, but CPI is used as an 
example for illustration. Patients were aligned on their first CPI treatment day (↓). Disease progression during the first 14 days 
following CPI initiation was excluded as recommended by Flatiron Health (grayed period). Example of disease progression 
(x) and/or tumor response events (⬤) are indicated on the journey. The analysis of response to CPI (blue box) used both tumor 
response and disease progression data. A durable response was defined as having a CR or PR within the study duration. The 
analysis of progression on CPI (yellow box) used only progression data. Progressors were defined as patients with a progression 
event during the study duration. Footnotes for figure 1A: *Patients who died within 18 weeks from treatment start were removed 
(see Methods and Discussion for rationale). £Under the durable outcome definition (figure 1C), durable response or clinical 
benefit requires the entire study duration (270 days in this study) to confirm the durability. ΨPatient characteristics are provided 
in table 1. #Number of patients with the most commonly available biomarker (WBC) from FH, CGDB and trials, respectively. 
§Analysis performed on patients using durable response definition in figure 1C. ¥Analysis performed on patients using durable 
clinical benefit definition in figure 1C. CGDB, Clinico- Genomic Database; CPI, checkpoint inhibitors; CR, complete response; 
FH, Flatiron Health; NSCLC, non- small cell lung cancer; PD, progressive disease; PR, partial response; SMRW, Standardized 
Mortality Ratio Weighting.
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had no PD (in trials) or disease progression (in RWD) 
throughout the study duration, and progressors had PD 
or disease progression. The main difference between the 
two definitions is that the durable clinical benefit defi-
nition considers durable SD as non- progressors, whereas 
the durable response definition requires durable CR or 
PR to be ‘responders’. The two treatment outcome defi-
nitions are illustrated in figure 1C.

Biomarker measurements
PD- L1 on tumor tissue was detected by immunohisto-
chemistry using anti- PD- L1 antibody clones 22C3, SP142, 
SP263 or 28–8. Sensitivity analysis using the different anti-
body clones showed similar patterns of association with 
response. They were combined to increase power. Samples 
were considered ‘negative’ if they had a percentage tumor 
cell with PD- L1 staining <1%, ‘low/mod’ if it was ≥1% and 
<50%, and ‘high’ it was ≥50%. The Roche trials used the 
SP142 PD- L1 assay (Ventana Medical Systems, Tucson, 
Arizona, USA). FH and CGDB patients used mainly 22C3, 
SP142 or SP263 assays (results extracted from the medical 
records in the databases). Tumor PD- L1 expression 
measured closest to and no more than 1- year prior to the 
index start date of treatment was used for the analyses. In 
case of multiple records from the same date, the records 
from the primary site and the most commonly used anti-
body were selected.

TMB was quantified by FMI using FoundationOne 
panel next- generation sequencing,34 and defined as 
the number of non- driver somatic coding mutations 
detected per megabase of a tumor genome extrapolated 
from targeted sequenced genome. TMB data from the 
most recent specimens collected before start of treat-
ment was used. Research Use Only calculations based on 
FMI’s research algorithm at the time of collection were 
analyzed.28 35

Measurements from standard blood analytes were 
extracted from the three data sources. Data from the 
most recent measurement no more than 1 year before 
the start of treatment was used. In case of multiple values 
from the same date, the median was used.

Statistical analysis
The statistical analysis approach we used comprised of 
two steps. In the first step, patient groups with high and 
low biomarkers were balanced on their baseline charac-
teristics using the multivariate propensity score- based 
cohort balancing SMRW (Standardized Mortality Ratio 
Weighting) algorithm to minimize potential confounders 
between these comparison groups.30 36 The second step 
used univariate analysis but made use of the weights 
coming from the cohort balancing for each patient. Base-
line characteristics included age, sex, race, disease stage 
at the initial diagnosis, smoking history, histology and 
ECOG PS. These are available demographics and covari-
ates that can potentially impact the outcome (having 
durable response or not). The descriptive statistics of 
the baseline characteristics are in table 1 (for the 24,152 

patients with relevant outcome data) and online supple-
mental table 1 (for the initial 71,850 patients) and online 
supplemental table 2 (for the 8121 patients analyzed for 
tumor PD- L1).

There were differences in patient characteristics 
between different data sources, especially between 
atezolizumab trials and RWD (FH and CGDB). Since 
patients from the different data sources were present in 
both the high and low biomarker groups, the differences 
between these two analysis groups were readily balanced 
with methods like SMRW. All the results from the associ-
ation and survival analyses presented in the main body 
of the paper used balanced cohorts (by applying SMRW 
weights). It was noted that there were typically no major 
differences in results between balanced and unbalanced 
cohorts. An example for unbalanced cohort has been 
provided in online supplemental figure 2.

Association of biomarkers with the treatment outcomes 
was explored using Fisher’s exact test. Null hypothesis was 
complete independence between the groups. Sensitivity 
analysis using multivariate logistic regression adjusted 
by the same set of baseline covariates used in propensity 
score- based balancing mentioned above produced very 
similar results (ORs were mostly ≤ ±0.03 compared with 
Fisher’s exact test using propensity score balanced data). 
In the mosaic plot for visualizing the association (vcd R 
package37), colors reflect Pearson’s χ2 residuals and indi-
cate extent of deviation from expected frequency under 
complete independence. Forest plot for summarizing 
the ORs from the Fisher’s exact tests was performed 
using forestplot R package.30 38 Statistical significance of 
difference between ORs was estimated using z- test when 
independence assumption was true (using the asymptotic 
normal distribution for log odds). Otherwise, bootstrap-
ping was used to estimate the mean and variance of the 
log OR differences, which were used to calculate the p 
value. Overlapping and unique patients in each of the 
data set were sampled separately and then recombined 
accordingly to capture the dependence between the two 
data sets. Survival analysis used univariate Cox propor-
tional hazards model with individual biomarkers inves-
tigated in separate models. The models were corrected 
for any potential imbalance in baseline characteristics 
between the low and high biomarker groups using the 
weights from the propensity score- based SMRW outputs. 
The survival curves were performed using Kaplan- Meier 
method.39 40 All analyses were conducted using R software 
V.3.6 or 4.0.

RESULTS
Patient selection
A total of 71,850 patients with advanced NSCLC were 
pooled from the FH, CGDB and nine atezolizumab trials. 
Characteristics of these patients are provided in online 
supplemental table 1. The selection of patients from the 
data sources is depicted in figure 1A. Characteristics of 
the 24,152 patients selected for biomarker analysis are 

https://dx.doi.org/10.1136/jitc-2022-006464
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provided in table 1. The exclusive nature of the thera-
pies was chosen to facilitate better comparison and 
delineation of biomarker associations with outcomes to 
CPI versus chemotherapy. Characteristics of patients for 
whom tumor PD- L1 data were available and who were 
treated with mono- CPI or chemotherapy are provided in 
online supplemental table 2.

Standard blood analytes are only prognostic
Using the large patient cohorts from the FH database, 
we first examined standard blood analytes, many of 
which have been suggested to be predictive biomarkers 
of response to CPI in several cancer types. We tested 
the association of categorical levels (first tertile vs third 
tertile) of the blood analytes with disease progression 

Table 1 Characteristics of the patients selected for biomarker analysis from the three data sources (the 24,152 patients ‘with 
relevant outcome data’ in figure 1A)

Atezo*
(N=3294)

CGDB†
(N=2111)

FH‡
(N=18,747)

Age§

  Mean (SD) 63.2 (9.27) 67.4 (9.93) 68.1 (9.23)

  Median (min, max) 64.0 (25.0, 90.0) 68.0 (27.0, 85.0) 69.0 (25.0, 85.0)

Sex

  Female 1204 (36.6%) 1095 (51.9%) 8866 (47.3%)

  Male 2090 (63.4%) 1016 (48.1%) 9880 (52.7%)

  Unknown 0 (0%) 0 (0%) 1 (0.0%)

Race

  African American 65 (2.0%) 146 (6.9%) 1713 (9.1%)

  Asian 583 (17.7%) 66 (3.1%) 383 (2.0%)

  Caucasian 2525 (76.7%) 1477 (70.0%) 13,762 (73.4%)

  Other 20 (0.6%) 299 (14.2%) 1507 (8.0%)

  Unknown 101 (3.1%) 123 (5.8%) 1382 (7.4%)

ECOG PS¶

  0 1300 (39.5%) 577 (27.3%) 4219 (22.5%)

  1 1983 (60.2%) 1037 (49.1%) 6865 (36.6%)

  2 8 (0.2%) 267 (12.6%) 2329 (12.4%)

  3 1 (0.0%) 60 (2.8%) 483 (2.6%)

  4 0 (0%) 2 (0.1%) 28 (0.1%)

  Missing 2 (0.1%) 168 (8.0%) 4823 (25.7%)

Disease stage**

  Stage 0 0 (0%) 0 (0%) 2 (0.0%)

  Stage I 247 (7.5%) 190 (9.0%) 1598 (8.5%)

  Stage II 251 (7.6%) 148 (7.0%) 1027 (5.5%)

  Stage III 616 (18.7%) 525 (24.9%) 4808 (25.6%)

  Stage IV 2125 (64.5%) 1201 (56.9%) 10,732 (57.2%)

  Unknown 55 (1.7%) 47 (2.2%) 580 (3.1%)

Smoking history

  Previous/current 2763 (83.9%) 1775 (84.1%) 16 672 (88.9%)

  Never 531 (16.1%) 333 (15.8%) 1902 (10.1%)

  Unknown 0 (0%) 3 (0.1%) 173 (0.9%)

Histology

  Non- squamous 2404 (73.0%) 1560 (73.9%) 12,633 (67.4%)

  Squamous 848 (25.7%) 484 (22.9%) 5258 (28.0%)

  Unknown 42 (1.3%) 67 (3.2%) 856 (4.6%)

*Atezo—atezolizumab NSCLC trials.
†CGDB—Clinico- Genomic Database by Flatiron Health- Foundation Medicine.
‡FH—Flatiron Health electronic health record database.
§Age—age at treatment start.
¶ECOG PS—baseline Eastern Cooperative Oncology Group performance status before treatment start.
**Disease stage—group stage at initial diagnosis for the RWD sources (FH and CGDB), and at study start for the atezolizumab trials.
NSCLC, non- small cell lung cancer ; RWD, real- world data.

https://dx.doi.org/10.1136/jitc-2022-006464


7So WV, et al. J Immunother Cancer 2023;11:e006464. doi:10.1136/jitc-2022-006464

Open access

(using the durable clinical benefit definition described 
in figure 1C). Categorical data were used to reduce noise 
or differences between data sets due to subtle differences 
between outcome measurements in clinical studies versus 
RWD or between different studies. Serum albumin levels 
were correlated with disease progression to both CPI 
(OR 0.80, 95% CI 0.70 to 0.92; adjusted p=0.01) and 
chemotherapy outcomes (OR 0.58, 95% CI 0.51 to 0.65; 
adjusted p<0.001; figure 2). This confirmed its prognostic 
value since higher albumin levels correlated with better 
outcome irrespective of the nature of treatment and 
was not specific for the CPI response. Other evaluated 
blood analytes did not differentiate association with CPI 
outcomes from those with chemotherapy (figure 2).

Predictive effect of tumor PD-L1 and TMB
We then examined tumor PD- L1 and TMB levels using 
CGDB and atezolizumab trial data. The OR was 0.20 (95% 

CI 0.13 to 0.30; p<0.001) which denotes that patients with 
high tumor expression of PD- L1 (≥50% tumor cells with 
positive staining) had approximately one- fifth (20%) the 
odds of being non- responders to CPI therapies compared 
with patients with no PD- L1 tumor expression. The area 
under the receiver operating characteristic (ROC) curve 
was 0.65 (95% CI 0.61 to 0.69). Conversely, tumor PD- L1 
had only a weak correlation with response to chemo-
therapy (OR 0.69, 95% CI 0.49 to 0.97; p=0.03; figure 3A; 
ROC AUC=0.56, 95% CI 0.52 to 0.60). Similarly, patients 
who had a high TMB (third tertile, ≥10.44 mut/Mb) 
had less than half the odds (OR 0.40, 95% CI 0.29 to 
0.54; p<0.001; ROC AUC=0.62, 95% CI 0.59 to 0.65) of 
not responding to CPI therapy compared with patients 
who had low TMB (first tertile). However, TMB had no 
correlation with response to chemotherapy (OR 0.95, 
p=0.9; figure 3B; ROC AUC=0.52, 95% CI 0.46 to 0.58). 

Figure 2 Prognostic effect of standard blood analytes. Forest plot of association of standard blood analytes with CPI 
progression in Flatiron Health patients. OR <1 indicates association of high biomarker levels (third tertile) with greater odds 
for no disease progression, compared with low biomarker expression (first tertile). OR >1 indicates the opposite and OR of 
1 indicates no impact of the biomarker on clinical outcome. The groups of patients with high and low biomarker levels were 
balanced on their baseline characteristics using Standardized Mortality Ratio Weighting algorithm. P values were multiple 
testing corrected by the Holm method.51CEA, carcinoembryonic antigen; CPI, checkpoint inhibitors; CRP, C- reactive protein; 
LDH, lactate dehydrogenase; LIPI, Lung Immune Prognostic Index; PWBC, white blood cell.
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Figure 3 Predictive effect of PD- L1 and TMB for responses to CPI or chemotherapy in CGDB and atezolizumab trial patients. 
(A) Distribution of CPI (left plot) and chemotherapy (right plot) durable responders and non- responders among the PD- L1- high 
and PD- L1- negative patients. (B) Distribution of CPI (left plot) and chemotherapy (right plot) durable responders and non- 
responders among the TMB high and low patients. (C) Forest plot of association of baseline tumor PD- L1 and TMB, and blood 
albumin with response to CPI versus chemotherapy. The differences in each pair of CPI and chemo ORs were statistically 
significant (z- test). (D) Forest plot of association of baseline tumor PD- L1 and TMB, and blood albumin with overall survival. 
For A–D, the groups of patients with high and low biomarker levels were balanced on their baseline characteristics using 
Standardized Mortality Ratio Weighting algorithm, which outputs weights for each patient. For both A and B, the numbers in 
each of the cells of the mosaic plot indicate the weighted patient counts and percentages in the corresponding biomarker 
group. The areas indicate the proportion of the weighted patient counts in each of the four groups. Χ2 p value (under the color 
legend scale bar) indicates overall statistical significance of any association between PD- L1 or TMB levels and CPI response. 
Color indicates individual statistical significance associated with each cell. Blue indicates significantly higher patient numbers 
and red indicates significantly lower numbers than if the distribution was random. Color intensity indicates the extent of 
significance from expected (light and dark color correspond to confidence levels of 90% and 99%, respectively). The OR is from 
Fisher’s exact test of the weighted patient counts. For C and D, OR (C) or HR (D) <1 indicates association of high biomarker 
levels with greater odds for clinical response (C) or overall survival (D), compared with low biomarker level. OR/HR >1 indicates 
the opposite and ratio of 1 indicates no impact of the biomarker on clinical outcome. ALB, albumin; CGDB, Clinico- Genomic 
Database; CPI, checkpoint inhibitors; PD- L1, programmed death ligand- 1; TC, tumor cells; TMB, tumor mutational burden.
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All the reported results used high and low biomarker 
level cohorts which were balanced using patients’ base-
line characteristics. The analysis results from using 
unbalanced cohorts showed the same pattern (online 
supplemental figure 2).

The predictive nature of tumor PD- L1 and TMB is 
summarized and compared side- by- side with the prog-
nostic nature of blood albumin in figure 3C. Comparing 
PD- L1 and TMB, tumor PD- L1 expression was signifi-
cantly better as an independent predictive biomarker for 
response to CPI than TMB (OR 0.20 vs OR 0.40). This 
was still the case even when the PD- L1 high group was 
compared with the combined PD- L1 negative and low/
mod groups (OR 0.35, 95% CI 0.26 to 0.46; p<0.001; 
online supplemental figure 3).

We have also examined the OS of these patient groups 
and their association with biomarkers. Patients with 
early deaths were included for the OS analysis. Normal 
or higher blood albumin level strongly correlated with 
increased OS with both CPI and chemotherapy compared 
with low albumin level (HR 0.55 in both cases; p<0.001). 
It is established that normal or higher albumin levels 
correlate with good prognosis. High tumor PD- L1 expres-
sion also correlated with increased OS with CPI therapy 
compared with low expression (HR 0.65, 95% CI 0.54 to 
0.78; p<0.001), but no statistically significant association 
was observed with chemotherapy (figure 3D). Similar 
correlation between high TMB and increased OS was also 
observed with CPI therapy (HR 0.70, 95% CI 0.62 to 0.80; 
p<0.001). Interestingly, there was an inverse correlation 
between OS and TMB in patients receiving chemotherapy 
(HR 1.33, 95% CI 1.14 to 1.55; p<0.001). Our finding is 
consistent with some of the previous reports41 42 although 
others have shown no significant differences.43 44

Combined, PD-L1 and TMB had stronger predictive effect
The combination of high tumor PD- L1 expression 
and high TMB had a higher predictive power than the 
two biomarkers assessed independently. Taken inde-
pendently, the OR for tumor PD- L1 expression and TMB 
in patients who had both data were 0.19 and 0.37 whereas 
the combined high PD- L1 and TMB had an OR of 0.04 
(95% CI 0 to 0.18; p<0.001; figure 4A). This means that 
the odds of having no durable response to CPI therapy was 
4% of those with combined negative PD- L1 and low TMB. 
The increased predictive potential of the combination 
of PD- L1 and TMB was statistically significant compared 
with PD- L1 alone (p=0.01; figure 4A). Figure 4B pres-
ents the percentage of durable responders and non- 
responders in the different combinations of low versus 
high levels of PD- L1 and TMB. The dual- high (‘hihi’) 
compared with dual- low (‘lolo’) groups had a strong 
difference in per cent CPI response (OR=0.04). Patients 
with high expression of one biomarker and low expres-
sion of the other had an intermediate response to CPI. 
There was a significantly large difference in CPI response 
between the dual- high and the TMB- only high patients 
(‘hihi’ vs ‘lohi’; OR 0.19, 95% CI 0.07 to 0.46; p<0.001). 

In contrast, the difference between dual- high and PD- L1- 
only high patients was more moderate and not statistically 
significant (‘hihi’ vs ‘hilo’; OR 0.50, 95% CI 0.19 to 1.26; 
p=0.13). This is consistent with the observation above that 
PD- L1 was a better independent predictive biomarker for 
response to CPI than TMB.

PD-L1 predictive effect influenced by prior therapy, histology 
and smoking history
We aimed to further investigate key factors that influenced 
the predictive effect of the biomarkers. We used the large 
FH cohorts that enabled greater statistical confidence 
in the detection of predictive effects in subpopulations. 
Prior to the analysis, we first confirmed the predictive 
effect of tumor PD- L1 and TMB on disease progres-
sion to CPI (figure 5A). We used patients who had both 
response and progression data and could be studied for 
either response or progression (CGDB and trial patients) 
using the two outcome definitions. Interestingly, PD- L1 
had a stronger correlation to response to CPI (CR or PR; 
OR 0.20) than to progression (OR 0.37). This difference 
is statistically significant (p=0.009). TMB, however, was 
a comparable predictor of tumor response as it was for 
progression. This was because more SD non- progressors 
were PD- L1 negative than PD- L1 high (61% vs 39%). 
These PD- L1 negative SD patients were not considered 
responders, leading to fewer PD- L1- negative responders, 
resulting in a stronger correlation with response to CPI. 
However, fewer SD non- progressors were TMB low than 
TMB high (45% vs 55%).

We then combined patients from all three sources for the 
subpopulation progression analysis. We found that tumor 
PD- L1 expression had a stronger inverse correlation with 
disease progression in patients with prior chemotherapy 
than those with first- line CPI (figure 5B; OR 0.34 vs 0.57; 
p=0.003). Moreover, the predictive effect was stronger in 
patients with non- squamous than squamous disease (OR 
0.37 vs 0.58; p=0.012). This difference in predictive effect 
associated with histology was not strongly confounded by 
smoking history as the analysis of smokers alone reflected 
a similar stronger correlation of PD- L1 expression with 
non- squamous disease. In addition, the predictive effect 
was significantly stronger in patients with a previous or 
current history of smoking than non- smokers (OR 0.39 vs 
0.70; p=0.019).

We further analyzed the TMB predictive effect in these 
subpopulations in the CGDB and atezolizumab trials. We 
used the clinical benefit outcome definition (progression 
analysis) because the predictive strength was comparable 
to that using durable response definition (figure 5A) and 
there were more patients. Overall, the outcome was similar 
to our findings with PD- L1 for prior therapy and histology 
subpopulations, but potentially due to smaller sample size, 
it had weaker statistical significance (figure 5C). Accord-
ingly, TMB levels had a stronger inverse correlation with 
disease progression in patients with prior chemotherapy 
than those with first- line CPI (OR 0.36 vs 0.62; p=0.03), 
but did not differentially correlate with progression in 

https://dx.doi.org/10.1136/jitc-2022-006464
https://dx.doi.org/10.1136/jitc-2022-006464
https://dx.doi.org/10.1136/jitc-2022-006464
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patients with non- squamous than squamous disease (OR 
0.38 vs 0.48; p>0.05). Interestingly, high TMB levels had 
a much stronger predictive effect for no CPI progression 
(or CPI response) in non- smokers than smokers (OR 0.19 
vs 0.50; p=0.002).

DISCUSSION
Notwithstanding the limitations of the present study, such 
as the retrospective nature and the heterogeneity of the 

patient populations inherent to RWD analysis, there are 
some important associations revealed by our analyses. The 
utility of tumor PD- L1 expression and TMB is confirmed 
as predictive biomarkers for response specific to CPI, 
combining real- world settings with clinical trials. Our data 
however show that standard blood analytes that have been 
described previously as predictive biomarkers of response 
to CPI were in fact prognostic (independent of treatment 
type or not specific to CPI). We found that including early 

Figure 4 Combined effect of tumor PD- L1 and TMB for responses to CPI. (A) Forest plot showing OR and 95% CI for 
individual and combined biomarker effects in patients with both PD- L1 and TMB data. The top two rows are patients with high 
versus low level of individual biomarkers. ORs <1 indicate association of high biomarker levels with greater odds for clinical 
response, compared with low biomarker levels. The combined PD- L1 and TMB patients (dual- high compared with dual- low) in 
the bottom row showed a much stronger predictive effect than each individual biomarker in the top two rows (OR 0.04 vs OR 
0.2 and 0.4, respectively). The difference in the ORs is statistically significant (bootstrap p=0.01). All high and low biomarker 
patient groups in each analysis were balanced on their baseline characteristics using Standardized Mortality Ratio Weighting 
algorithm. (B) Bar chart shows the per cent of CPI durable responder/non- responder groups in each of the four combined high 
and low expression groups: first indicates PD- L1- TC (‘lo’=PD- L1 negative; ‘hi’=PD- L1 high) and second TMB (‘lo’=first tertile; 
‘hi’=third tertile). Error bars indicate 95% confidence that the true proportion are within the intervals. ORs indicate the odds of 
being non- responding in patients who had both biomarkers high versus those with only one of the biomarkers high or both low. 
CPI, checkpoint inhibitors; PD- L1, programmed death ligand- 1; TC, tumor cells; TMB, tumor mutational burden.
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Figure 5 Factors influencing predictive effect of PD- L1 and TMB on progression following CPI therapy. (A) Confirmation of 
predictive effect of PD- L1 and TMB on disease progression outcome. Treatment outcome was defined using two different 
definitions: having response (CR and PR) versus having non- progression (equivalent to CR, PR and SD), as illustrated in 
figure 1C. Patients who had both response and progression data (in CGDB and clinical trials) were used for these comparisons. 
The forest plot shows the ORs of patient groups with high versus low biomarker levels, their odds of having either response 
or progression. Only PD- L1 levels showed a significant difference in the two ORs for the two outcome definitions (p=0.009). 
(B) Forest plot showing ORs comparing CPI progression in high PD- L1 versus negative PD- L1 in different subpopulations. 
Patients from all three data sources were used. The differences in each pairs of ORs were statistically significant (z- test ≤0.05). 
(C) Forest plot showing ORs comparing CPI progression in third tertile versus first tertile of TMB in different subpopulations. 
Patients from CGDB and atezolizumab trials who had TMB data were used. The prior therapy and analysis of smoking history 
showed significant difference in the two ORs (z- test p<0.05). For all the plots, higher ORs on the >1 side indicate stronger 
biomarker predictive effect on CPI progression. In each pair of analyses, the high and low biomarker level groups were balanced 
by their baseline characteristics using the Standardized Mortality Ratio Weighting algorithm. CGDB, Clinico- Genomic Database; 
CPI, checkpoint inhibitors; CR, complete response; PD- L1, programmed death ligand- 1; PR, partial response; SD, stable 
disease; TMB, tumor mutational burden.
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deaths (online supplemental figure 1) only strengthened 
the association of serum albumin with both CPI and 
chemotherapy outcomes, without affecting the associa-
tion of PD- L1 or TMB with treatment outcomes. This is 
reflected by the lower ORs for albumin and no obvious 
change of ORs for PD- L1 and TMB (online supplemental 
figure 1 vs figure 3C). This increased association was also 
observed in other blood analytes (data not shown) and 
reflects the association of these blood analytes with OS 
(eg, low baseline albumin predicted the early deaths). 
This also suggests that PD- L1 and TMB are specific for 
response to CPI and not as much for OS. Removal of the 
early deaths from the analysis allowed us to focus more 
on the biomarkers’ effect on response to CPI, and better 
differentiate between CPI- specific predictive biomarkers 
versus general prognostic biomarkers.

Our results add to the body of evidence and demon-
strate the clinical utility of TMB15 45 46 as a biomarker. 
While TMB was equally effective as a biomarker for 
predicting both disease progression and response to 
CPI, high tumor PD- L1 expression emerged as a stronger 
correlate of clinical response (CR or PR) than disease 
progression. Additionally, tumor PD- L1, in our anal-
ysis, had a better correlation to response in compar-
ison to TMB. This might be because high PD- L1 is not 
just a direct escape mechanism of the tumor through 
PD- 1 engagement, but also indirectly reflect the more 
inflamed tumor microenvironment as PD- L1 is upreg-
ulated by inflammatory cytokines such as interferon-γ 
and tumor necrosis factor-α and is more amenable to 
successful cancer immunotherapy. On the other hand, 
although high TMB typically reflects higher immuno-
genicity of the tumor by potentially producing de novo 
epitopes, it also reflects a greater likelihood of escape 
by aggressive and antigen- loss variants. While tumor 
PD- L1 and TMB are independent biomarkers,2 47 our 
results show that pairing both improves the predictability 
of response to CPI therapy. Our results are in keeping 
with a previous study demonstrating the complemen-
tarity of the two biomarkers.15 Indeed, the percentage of 
patients responding to CPI who had high tumor PD- L1 
or TMB alone was approximately half of the percentage 
of patients whose tumors were high for both biomarkers 
(figure 4B). Our results also revealed that the predictive 
power of PD- L1 was the greatest in patients who had non- 
squamous histology, history of smoking and prior chemo-
therapy. It could be speculated that this might be due to 
the histology- specific mutational landscape associated 
with these different groups. Our own data revealed that 
KRAS mutations are much more prevalent in patients 
with NSCLC of non- squamous histology and those with 
smoking history (OR=4.19, 95% CI 3.58 to 4.92, p<0.001; 
OR=3.47, 95% CI 2.95 to 4.10, p<0.001, respectively), 
which is in keeping with previous reports.48 Intriguingly, 
high TMB is associated with better response to CPI in 
non- smokers as compared with smokers. One might spec-
ulate that this reflects that tumors in non- smokers harbor 
neoepitopes with higher immunogenicity or that they 

have better antigen presenting machinery, potentially 
due to a less suppressed tumor microenvironment.

Finally, there is the need for approaches to make CPI 
more effective in patients with low tumor PD- L1 and/
or TMB. Recent reports have demonstrated that many 
chemotherapy agents used to treat lung cancer can 
upregulate PD- L1 on tumor cells.49 50 The use of chemo- 
immunotherapy and CPI- immunotherapy sequentially or 
in combination may provide the best outcome for patients 
with NSCLC. Analyzing these questions in RWD and clin-
ical study data in this patient group on treatment with 
CPI- chemo combination therapy can test this hypothesis.

In conclusion, despite heterogeneity of patient popula-
tion and PD- L1 assays, high PD- L1 and TMB were found to 
correlate with durable response, with greater correlation 
in non- squamous patients and those with prior chemo-
therapy or smoking history. PD- L1 and TMB in combina-
tion had much stronger correlation with tumor response 
than either biomarker considered independently. PD- L1 
was also better at predicting tumor responses compared 
with disease progression, whereas TMB showed no distinc-
tion. Cumulatively, this report reinforced the clinical 
utility of tumor PD- L1 and TMB, for predicting response 
to CPI in patients with NSCLC.
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