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The evolving role of
morphology in endometrial
cancer diagnostics: From
histopathology and molecular
testing towards integrative data
analysis by deep learning

Sarah Fremond1, Viktor Hendrik Koelzer2, Nanda Horeweg3

and Tjalling Bosse1*

1Department of Pathology, Leiden University Medical Center (LUMC), Leiden, Netherlands,
2Department of Pathology and Molecular Pathology, University Hospital and University of Zürich,
Zürich, Switzerland, 3Department of Radiotherapy, Leiden University Medical Center, Leiden,
Netherlands
Endometrial cancer (EC) diagnostics is evolving into a system in which

molecular aspects are increasingly important. The traditional histological

subtype-driven classification has shifted to a molecular-based classification

that stratifies EC into DNA polymerase epsilon mutated (POLEmut), mismatch

repair deficient (MMRd), and p53 abnormal (p53abn), and the remaining EC as

no specific molecular profile (NSMP). The molecular EC classification has been

implemented in the World Health Organization 2020 classification and the

2021 European treatment guidelines, as it serves as a better basis for patient

management. As a result, the integration of the molecular class with

histopathological variables has become a critical focus of recent EC

research. Pathologists have observed and described several morphological

characteristics in association with specific genomic alterations, but these

appear insufficient to accurately classify patients according to molecular

subgroups. This requires pathologists to rely on molecular ancillary tests in

routine workup. In this new era, it has become increasingly challenging to

assign clinically relevant weights to histological and molecular features on an

individual patient basis. Deep learning (DL) technology opens new options for

the integrative analysis of multi-modal image and molecular datasets with

clinical outcomes. Proof-of-concept studies in other cancers showed

promising accuracy in predicting molecular alterations from H&E-stained

tumor slide images. This suggests that some morphological characteristics

that are associated with molecular alterations could be identified in EC, too,

expanding the current understanding of the molecular-driven EC classification.

Here in this review, we report the morphological characteristics of the

molecular EC classification currently identified in the literature. Given

the new challenges in EC diagnostics, this review discusses, therefore, the

potential supportive role that DL could have, by providing an outlook on all
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relevant studies using DL on histopathology images in various cancer types

with a focus on EC. Finally, we touch upon how DL might shape the

management of future EC patients.
KEYWORDS

endometrial carcinoma, tumourmorphology, computer vision, deep learning,molecular
classification, phenotype, whole slide image, histopathology image
Introduction

The incorporation of the molecular endometrial cancer (EC)

classification in the fifth edition of the World Health Organization

(WHO) classification of female genital tumors and the 2021

European treatment guidelines (1, 2) has marked a new era in EC

diagnostics. This moved the field farther away from the classic

dualistic model proposed by Bockman in 1983 (3), who divided

endometrial carcinomas into type I and type II cancers. Type I EC is

endometrioid and estrogen driven and can be graded using the

International Federation of Gynaecology and Obstetrics (FIGO)

grading system (4). Type II EC includes a variety of non-

endometrioid histological subtypes, such as uterine serous

carcinoma, clear cell carcinoma, mixed carcinomas, un-/

dedifferentiated carcinomas, and uterine carcinosarcomas. The

new molecular EC classification that is now recommended by the

WHO (1, 2) completely changes the diagnostic perspective by

placing histological subtype secondary to molecular class. It

utilizes surrogate markers paralleling the four molecular classes

originally described by The Cancer Genome Atlas (TCGA) (5).

First, targeted sequencing (Sanger or panel next-generation

sequencing, NGS) of exons 9–14 of DNA polymerase epsilon

(POLE) can identify POLE-mutated (POLEmut) EC. Second,

mismatch repair-deficient (MMRd) EC is defined by loss of

expression of one of the mismatch repair proteins (MLH1, PMS2,

MSH6, and MSH2) by immunohistochemistry (IHC). Third, p53

IHC is performed to identify EC with abnormal p53 expression

patterns (p53abn) (6, 7). Finally, EC without a pathogenic POLE

variant, with retained MMR protein expression, and wild-type p53

IHC, is classified as “no specific molecular profile” (NSMP) EC.

Studies on EC with more than one molecular alteration, commonly

referred to as “multiple-classifiers,” have served to identify the order

by which these tests should be performed (8). It has resulted in the

EC diagnostic algorithm endorsed by the WHO 2020 classification

that first assesses POLE status regardless of other markers, then

MMR, and finally p53 (9) (Figure 1).

The molecular classification resolves one of the main

issues of the histology-driven EC classification, which is the

high level of interobserver variability (10). Particularly high-

grade and non-endometrioid histological subtypes are only

moderately reproducible (11), which provides a poor basis for
02
patient management (12). The recent paradigm shift in EC

diagnostics follows preceding developments in surgical

pathology, in which a series of technological breakthroughs

such as immunohistochemistry and molecular testing have

continually improved diagnostic accuracy (13).

The molecular EC classification has also shown a

prognostic value across cohorts of different risk populations

and is predictive of response to treatment, specifically in

p53abn EC, which has a poor outcome and may benefit

from addition of adjuvant chemotherapy (14), and in

POLEmut EC, which has an excellent outcome regardless of

adjuvant treatment, whereas MMRd and NSMP EC have

intermediate prognoses (5, 14–20). This has been the

rationale for adapting the clinical risk stratification system

of EC patients (21) wherein it is encouraged to apply the

molecular classification in the management of EC, especially

high-risk EC (1, 2); ongoing and new trials such as PORTEC-

4a (22) and RAINBO (23) exploit the molecular classification

as a basis for targeted adjuvant therapy (Figure 1) (24).

Consequently, the gynecological oncology community has

started to utilize the molecular classification; however, the

current risk stratification system does not clearly indicate

which of the histological or molecular variables are most

clinically relevant, or leverage the combination of both.

New technological breakthroughs in pathology are now

driving progress in cancer diagnostics. Since the emergence of

convolutional neural networks in 2012 (25), deep learning

(DL) models have continuously demonstrated their high

accuracy for the classification of medical (26) and non-

medical image datasets (27). This was followed by the start

of a digital revolution in pathology, wherein state-of-the-art

DL models from the computer vision community were used

on digital histopathology slides. Hematoxylin and eosin

(H&E) staining procedure is the most common in cancer

diagnostics, and large, well-characterized retrospective

cohorts and clinical trial sets are available, enabling the

collection of large-scale histopathology imaging datasets to

train state-of-the-art DL models. A number of proof-of-

concept papers showed the potential of DL models to aid

the diagnosis and molecular classification of cancers (28–55)

or predicting patient prognosis (56–60), by recognizing
frontiersin.org

https://doi.org/10.3389/fonc.2022.928977
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Fremond et al. 10.3389/fonc.2022.928977
phenotypes on H&E-stained tumor slide images. Image-based

DL models have been frequently trained onto colorectal

cancer (29–37) and breast cancer (35, 38–44). However, in

EC, only two studies (53, 54) so far have been published using

DL for predicting one to various EC molecular alterations or

gene mutations from publicly available datasets. They have

obtained promising performance; however, the size of the

dataset and application to a few non-endometrioid

histological EC subtypes limit the generalizability of the

findings. Furthermore, in these studies, DL models have not

been trained to predict the newly established four-class

molecular classification in EC diagnostics. Opportunities for

future image-based DL models to impact EC diagnostics and

thus guide clinical management decisions include the

following: improve EC diagnostic classification by serving

as a pre-screening tool to prioritize molecular testing, refine

EC risk stratification by identifying morphological features

with prognostic relevance, and predict patient outcome or

even response to treatment.

In the light of the redefinition of EC on the basis of

molecular features, we here provide a concise summary of the

histopathological features associated with the four molecular

classes (Table 1). These morpho-molecular correlates may serve

to explore the feasibility of histology-directed molecular testing,

particularly in low-income countries, and deepen our

understanding of the underlying biological processes. We also

present possible avenues by which image-based DL may be able

to support these objectives, by discussing the landmark studies
Frontiers in Oncology 03
that have used DL onto histopathology slide images in EC and

other cancers, which illustrates how these novel DL applications

may impact the field of EC diagnostics in the future (Figure 2).
Morpho-molecular correlates of the
current EC classification

POLE-mutated endometrial cancers

Pathogenic mutations in the exonuclease domain of DNA

polymerase epsilon (POLE) in EC, POLEmut EC, were first

described by Church et al. (61) and quickly thereafter by the

TCGA (5). Mutations in POLE result in a defective proofreading

domain during DNA leading-strand replication, yielding a very

high mutation burden and increased neoantigen load. In these

original publications, only a limited number of non-endometrioid

ECwere tested, and these did not carryPOLEmutations.This led to

the assumption that POLE mutations could only occur in

endometrioid-type EC. However, subsequent larger studies

challenged this idea by showing that POLE mutations can be

identified in non-endometrioid carcinomas, including uterine

carcinosarcomas, serous carcinomas, clear cell carcinomas,

and un-/dedifferentiated carcinomas, albeit in low frequencies

(14, 62–65). A search for a POLEmut EC-specific phenotypic trait

resulted in the identification of specific morphological features

(Figure 3): first, approximately two-thirds of POLEmut EC show at

least 50% solid growth (also referred to as FIGO grade 3) (66, 67),
FIGURE 1

The diagnostic algorithm of the molecular classification of endometrial cancer, associated prognosis, diagnostic test, and potential adjuvant
treatment regime. EC, endometrial cancer; NGS, panel next-generation sequencing; POLEmut, polymerase epsilon mutated; MMRd, mismatch
repair deficient; NSMP, no specific molecular profile; p53abn, p53 abnormal; DDR, DNA damage response; PD-L1, programmed death ligand.
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and the glandular component, if present, usually consists of glands

with smooth luminal borders without hobnailing (66); second,

hyperchromatic (multi-nucleated) tumor giant cells scattered

throughout the solid sheets of tumor cells have been described as

a recurring feature (66, 68); third, a dense peri-tumoral and intra-

epithelial infiltrate of lymphocytes is frequently noted, likely the

phenotypic response of its high mutational load (66, 67, 69–71);

finally, a more recent addition to these features is the presence of

(often numerous) tertiary lymphoid structures (TLS) within the

myometrial wall of POLEmut EC (72–74).
Frontiers in Oncology 04
To date, there is no single immunohistochemical stain that

can serve to identify POLEmut EC, and only few studies have

studied specific markers (75). Among the IHC stains commonly

used in diagnostics, abnormal staining for MMR proteins is

present in about 20% of POLEmut EC (72). Mutant-type

abnormal p53 staining can be identified in 12%–30% of

POLEmut EC (5, 7, 8), but no specific morphological substrate

has been detected in this subset of cases (8). Among the

POLEmut EC with secondary p53 abnormality, subclonal/

regional mutant-type overexpression of p53 is a relatively
TABLE 1 Summary of the histopathological and immunohistochemical features correlated with the molecular endometrial cancer (EC)
classification, dividing EC into POLE-mutated (POLEmut) EC, mismatch repair deficient (MMRd) EC, p53 abnormal (p53abn) EC, and non-specific
molecular profile (NSMP) EC.

POLEmut EC MMRd EC p53abn EC NSMP EC

Prototypical histopathological features

Glands with smooth luminal borders ++ + − +++

Glands with hobnailing (ragged luminal surface) − + +++ −

Solid growth (at least 50%) +++ ++ + +

Squamous differentiation (including morulae) + + − +++

Nuclear atypia ++ + +++ +

Tumor giant cells +++ − + −

Peri-tumoral and intra-epithelial infiltrate of lymphocytes +++ ++ − −

Tertiary lymphoid structures (TLS) +++ ++ + +

Microcystic elongated and fragmented (MELF) − + − ++

Lymphovascular space invasion (LVSI) + ++ + +

Immunohistochemical features

Abnormal MMR staining + +++ − −

Abnormal p53 staining + + +++ −
fro
FIGURE 2

The evolving role of morphology in endometrial cancer diagnostics. EC, endometrial cancer; POLEmut, polymerase epsilon mutated; MMRd,
mismatch repair deficient; NSMP, no specific molecular profile; p53abn, p53 abnormal.
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common finding (7). Sequencing of the exonuclease domain of

POLE thus remains required to accurately identify POLEmut EC,

since morphology and adjunct studies alone are insufficient.
Mismatch repair-deficient
endometrial cancers

Damage in the DNAmismatch repair (MMR) pathway leaves

unrepaired post-DNA replication errors. Thus, the phenotype of

MMR-deficient EC (MMRd EC) much like POLEmut EC is most

likely shaped by the biological consequences of a high mutational

load, leading to a similar morphological representation (Figure 4).

In fact, several studies have described the abundance of stromal

and intra-epithelial lymphocytes and, more recently, the presence

of TLS in MMRd EC (69, 70, 72, 73, 76), yet in a somewhat lower

abundance than in POLEmut EC (69, 72). Furthermore,

endometrioid-type EC is the dominant histological subtype of

MMRd EC (5, 15, 17–19, 77, 78). Endometrioid EC with solid

growth (FIGO grade 3) is relatively more frequent in MMRd EC

than in NSMP EC but less frequent than in POLEmut EC (5, 14,

15, 18). However, a variety of other non-endometrioid histological

subtypes have also been reported within the MMRd EC subclass.
Frontiers in Oncology 05
For example, one recent study identified MMR deficiency in

uterine carcinosarcomas and interestingly noted that their

epithelial components often had an endometrioid morphology

(79). A small proportion of MMRd EC has also been observed

with a serous or clear cell morphology (14, 18). This serous-like

phenotype was found not to be associated with acquired TP53

mutations in these MMRd tumors (8). Instead, there is some

indication that MMRd EC with serous-like morphology is more

often seen in MMRd EC with underlying germline mutations

(Lynch syndrome associated); however this, observation needs to

be validated (62, 80, 81). Interestingly, about two-thirds of the

un-/dedifferentiated EC have been shown to be MMR deficient

(82). Finally, for yet unknown reasons, multiple reports described

an association between the presence of lymphovascular space

invasion (LVSI) and MMR deficiency in EC (15, 77). Hence,

morphology alone is insufficient to accurately detect and classify

MMRd EC.

Af t e r exc lud ing pa thogen i c POLE muta t i ons ,

immunohistochemical staining of the four MMR proteins is

therefore used to identify MMRd EC. Approximately one

quarter of all EC show loss of expression of one of the MMR

proteins. The most common combination (about 70%) in

MMRd EC is loss of MLH1 and PMS2 expression, which is
FIGURE 3

A selection of prototypical morphological features found in POLE-mutated endometrial cancer (POLEmut EC): (A) at least 50% solid growth;
(B) hyperchromatic tumor giant cells; (C) a dense peri-tumoral and intra-epithelial infiltrate of lymphocytes; and (D) tertiary lymphoid structures (TLS).
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usually caused by promotor hypermethylation of the MLH1

gene. The remaining cases show loss of protein expression in

other combinations, namely, single loss of MSH6, single loss of

PMS2, or MSH2/MSH6 loss, of which about 10% is Lynch

syndrome associated (80). p53 abnormal staining can be seen

in 10% of MMRd EC (72), of which approximatively three

quarters show p53 subclonal mutant-type overexpression (7).
p53 abnormal endometrial cancers

The prototypical p53 abnormal endometrial cancers

(p53abn EC) has a classic serous histology with a (micro-)

papillary or (pseudo-) glandular architecture. The papillae or

glands are lined by a single layer of tumor cells with strong

cytonuclear atypia resulting in a ragged luminal surface

(Figure 5). Furthermore, a brisk mitotic activity is consistently

found (14, 18, 78, 83–85). The p53abn EC molecular subgroup,

however, has a broader histological spectrum, as it also includes

uterine carcinosarcomas (78), clear cell carcinomas (14, 18), and

FIGO grade 3 endometrioid carcinomas (5, 14, 18, 84, 85).

Intriguingly, some studies described that p53abn EC can also

present with low-grade endometrioid morphology (15, 70, 84).
Frontiers in Oncology 06
Whether this observation is true, or that these cases rather

represent misclassified pseudo-glandular serous endometrial

carcinomas, remains to be determined. The low abundance of

tumor-infiltrating lymphocytes and lack of TLS are other

histological features that differentiate p53abn EC from MMRd

EC and POLEmut EC (69, 70, 72).

p53abn ECs, per definition, are MMR proficient and POLE

wild type and displays one of the well-described mutant-like

immunohistochemical p53 staining patterns (9). This includes

abnormal p53 nuclear overexpression in 65%, abnormal null-

mutant pattern in 13%, or cytoplasmic p53 overexpression (6, 7).

In addition, strong and diffuse positive membranous Her2Neu

staining (3+), found in 20%–25% of p53abn EC, may be p53abn

subclass specific (7, 86).
No specific molecular profile
endometrial cancers

The group of EC that does not carry a pathogenic POLE

mutation is MMR proficient and shows wild-type expression of

p53 is currently referred to as “no specific molecular profile”

(NSMP) EC. The majority shows a predominant glandular
FIGURE 4

A selection of prototypical morphological features found in mismatch repair deficient endometrial cancer (MMRd EC): (A) solid growth;
(B) glandular architecture; (C) a dense to moderate peri-tumoral and intra-epithelial infiltrate of lymphocytes; and (D) tertiary lymphoid structures (TLS).
frontiersin.org

https://doi.org/10.3389/fonc.2022.928977
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Fremond et al. 10.3389/fonc.2022.928977
proliferation in which the glands have smooth luminal borders

and the nuclei have mild to moderate atypia (FIGO grades 1 and

2) (5, 15, 17, 18, 78). A subset of these low-grade NSMP EC

present (morular) squamous differentiation to a varying degree,

a distinct morphological feature that has been linked to

underlying CTNNB1 mutations (87–90). In addition to these

prototypical features (Figure 6), approximately 20% of the low-

grade NSMP EC present with a specific type of invasion, referred

to as “microcystic elongated and fragmented” (MELF) type of

invasion (91–93), which is rarely seen outside NSMP EC. A

lower abundance of TILS and TLS in the NSMP EC group than

in MMRd EC and POLEmut EC has also been reported (69, 70,

72). Finally, non-endometrioid or high-grade NSMP ECs are

uncommon but have been described (14, 17–19, 78).

Emerging data suggest that NSMP EC may be further

stratified into two groups with a distinct prognosis based on

hormone receptor expression status (94). Although the

majority of NSMP EC shows high expression of estrogen

receptors (ER alpha) and progesterone receptors (PR A/B), a

notable subset of approximately 10% of the NSMP EC show

complete lack of ER and PR expression. Interestingly, this

subgroup is enriched with non-endometrioid morphology,

particularly clear cell morphology. It is also conceivable that
Frontiers in Oncology 07
the recently described mesonephric-like endometrial

carcinomas and the gastric-type endometrial carcinomas fall

in this group of hormone-receptor-negative NSMP EC (78).
The current role of
morphology within the molecular
EC classification

All these outlined human-identified morpho-molecular

correlates are presently insufficient to accurately predict

molecular class on H&E features only, and no exclusive

phenotypic trait has been identified for any of the

molecular c lasses . The observed his topathological

heterogeneity within defined molecular classes clearly

challenges the role of morphology in the context of the

molecular EC classification. Morphological information may

still refine prognosis within a specific molecular context such

as histological subtype and grade in NSMP EC (95) or dense

immune infiltrate or presence of TLS in MMRd EC (69, 70).

Yet, at the same time, some morphological features may

arguably no longer carry prognostic value in some
FIGURE 5

A selection of prototypical morphological features found in p53 abnormal endometrial cancer (p53abn EC): (A) (micro-)papillary glandular
architecture; (B) glands with ragged luminal surface; (C) brisk mitotic activity; and (D) strong nuclear atypia.
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molecular subgroups. For instance, evidence showed that a

broad range of histological subtypes and grades can be found

in POLEmut EC and p53abn EC while carrying distinct

genomic alterations and having excellent and poor

prognosis, respectively (5, 14, 15, 17–20). Likewise, the

prognostic relevance of other morphological features is

under investigation such as the presence of LVSI within

POLEmut EC and MMRd EC (15, 66, 77) and the

lymphocyte density in NSMP EC and p53abn EC (69, 70, 72).

Implementation of the molecular EC classification is a step

forward, but it is questionable whether histological features

have become completely obsolete. Morphological features may

still contain pertinent information beyond the molecular

classification such as additional prognostic indicators. It is,

however, becoming increasingly complex for pathologists to

distinguish relevant morphological subtleties in EC

diagnostics. In this context, DL models may be capable of

learning relevant morphological features in association with

molecular alterations on digitized H&E-stained EC tumor

slides. DL-based research may show that further refining of

the EC classification is possible by accurately combining

histological and molecular data (Figure 2).
Frontiers in Oncology 08
Deep learning can recognize
phenotypes of mutations on H&E
tumor slides

Landmark studies have recently provided the proof of

principle for the prediction of genetic mutations from H&E

whole slide images by DL in several types of cancer (28–52, 54,

55), albeit more frequently in colorectal cancer (29–37) and

breast cancer (35, 38–44). For example, the feasibility of

predicting TP53 mutation status has been explored across

breast, colorectal, lung, stomach, pan-gastrointestinal, bladder,

and liver cancer (36, 48, 51, 52, 55). In breast cancer, prediction

of hormone receptor status (38, 39, 42) and homologous

recombination deficiency (35, 40) has also been investigated. A

common task for DL has also been the prediction of

microsatellite instability, particularly in colorectal cancer (29,

31–36) and gastrointestinal cancer (40, 45, 46). Across all these

studies, encouraging performance was measured with the area

under the receiver operating characteristic (ROC) curve (AUC)

on some external test sets above 0.80 (29, 29, 32, 34, 36–39, 45,

48). Although sensitivity and specificity may be, at this date,

insufficient for end-to-end clinical implementations, this is a
FIGURE 6

A selection of prototypical morphological features found in non-specific molecular profile endometrial cancer (NSMP EC): (A) glands with
smooth luminal borders; (B) squamous differentiation; (C) microcystic elongated and fragmented (MELF) type of invasion; and (D) mild nuclear
atypia.
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proof of concept that genotype–phenotype correlations

can be identified using DL on H&E-stained tumor slides.

Sirinukunwattana et al. (37) tackled a more complex task: a

DL model predicted the four-class consensus molecular subtypes

(CMS) of colorectal cancer, obtaining a 0.84 AUC on the TCGA

external test set (N=431 slides from 430 patients). Among these

DL-based studies, one research angle that has got some

particular interests is explaining the DL predictions, frequently

referred to as a “black box” and deriving human-interpretable

features (31, 36, 37, 44). For instance, this can be done by

extracting subregions of the input slide image that were assigned

strong weights by the DL model to molecularly classify a given

case. The visual assessment of these regions of interest can be

used to reveal relevant morpho-molecular correlates, although

this may not always provide human-interpretable visual

information. Another approach can be to correlate the DL

predictions with clinicopathological data.

Similar DL performance and interpretability still need to be

shown in large cohorts of EC. To date, only Wang et al. (53) and

Hong et al. (54) have trained supervised binary classification

models from H&E-stained EC tumor slides and labels publicly

available from the TCGA and Clinical Proteomic Tumour

Analysis Consortium (CPTAC) datasets. Wang et al. (53)

limited the predictions to high microsatellite instability (MSI)

on the TCGA (N=516 of which 128 MSI patients) and obtained

an AUC of 0.73 on 25% hold-out internal test set. Hong et al.

(54) predicted various mutations and each of the four TCGA-

derived molecular EC classes separately. To this end, they

reached an AUC of 0.66 for POLE mutation (N=7 POLE-

mutated patients), 0.76 for MSI (N=25 MSI patients), 0.87 for

copy-number high (N=20 copy-number high patients), and 0.65

for copy-number low (N=43 copy-number low patients) on the

CPTAC external test set. Additionally, they obtained an AUC of

0.77 for the prediction of the TP53 mutational status (N=30

TP53-mutated patients). Although both studies represent first

proofs of concept of predicting genetic mutations from H&E

slide images that can be expanded to EC, the test sets remained

relatively small and did not reflect the heterogeneity of

histological subtypes and FIGO grades known to be present in

each molecular class. Specifically, with a few non-endometroid

samples included in the TCGA (5) and CPTAC (96), the

applicability to large cohorts of non-endometrioid EC remains

unknown. In addition, the authors limited the scope of mutation

prediction to binary classification tasks. Thus, to date, leveraging

DL to predict the four-class molecular EC classification and

deriving human-interpretable morpho-molecular correlates,

have yet to be explored. Finally, the DL models used in both

studies first divided the slide images into tiles, which is a

standard computational method in the field, and then

classified each tile individually with labels assigned at the

slide-level. The tile-level classification may introduce training

noise because morphological information in a given tile does not

always correlate with the given true slide-level label. Hong et al.
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(54) have also acknowledged this architectural limitation,

reporting that non-tumor tiles were often given inconclusive

prediction scores. The discrepancy between tile and slide-level

classification labels remains a well-known challenge in the field,

which has started transitioning to more state-of-the-art DL

architectures promising better performance (97–100).
Integrating deep learning into the
current molecular EC classification

The gynecopathological community has started exploring

how morphology-based information could be used to aid the

molecular EC classification for an optimized risk-stratification

strategy. Assistance to accurately weigh both histopathological

and molecular variables would be welcome, as the number of

relevant variables is steadily increasing (101). The innate

strength of DL technology for the analysis of multi-modal

datasets including both image and molecular information

suggests that DL could aid in the refinement of the current

morpho-molecular classification of EC.

EC-specific DL tasks could range from predicting one

specific molecular alteration to predicting the complete four-

class molecular classification from standard H&E images or

from a combination of H&E images and special stains. To

achieve this, the input data for DL models are digitized whole

slide histopathology images of EC with the associated EC

molecular classes. Importantly, such models achieve an

incrementally increasing performance with the size and quality

of the available datasets, ground-truth annotations, and

advances in DL technology. Furthermore, such models can be

purposely designed to generalize to previously unseen datasets

and can be run in a cloud environment, potentially enabling

broad access to AI-guided classification in future pathology.

This remarkable technological paradigm chance could support

an increase in the fidelity of EC patient diagnosis, prognostic, and

predictive classification impacting the whole diagnostic process and

treatment decision-making. Theoretically, if a DL model predicts

the four-class molecular EC classification at near perfect high

specificity and sensitivity, then one could envision that DNA

sequencing and immunohistochemistry would only be required

for confirmatory testing, if at all. If such aDLmodel is also shown to

be generalizable to external cohorts, EC patients could be

molecularly classified using only digitized H&E-stained tumor

slides. In this scenario, this automated tool would be clinically

relevant by (i) providing a cost-effective alternative to expensive

molecular testing without the need of additional tissue and

(ii) speeding the diagnosis process up and advancing treatment

initiation, which, in a real-world practice, can be delayed by weeks

with next-generation sequencing. Until a clinical-grade accuracy of

such model has been achieved, alternative and less complex DL

tasks can be taken forward to support EC patient management. In
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fact, a binary predictive model trained toward one single specific

molecular alteration may yield a higher sensitivity and specificity

than a four-class model and could subsequently serve as a pre-

screening tool. In the field of EC, pre-identifying p53abn EC in a

population of low-risk ECmay potentially be used to identify those

few patients with a poor prognosis for confirmatory testing (15).

Similarly, it may be possible to identify the aggressive subset of

NSMP EC that lack hormone receptor expression (94).

Furthermore, preselecting cases that would further require POLE

testing given MMR-IHC and p53-IHC would be particularly

supportive and cost saving in high-risk ECs, as treatment de-

escalation of POLEmut EC with good prognosis is currently

being explored (5, 14–17, 19, 65, 70).

An avenue by which DL has currently probably the biggest

role is as a research tool combined with gynecopathological

expertise. Several studies showed (36, 37, 44) that after training

an EC-specific DL model, image-based information associated

with EC molecular alterations could be visually extracted and

reviewed by gynecopathologists. From there on, the morpho-

molecular correlates that are outlined in this review may be

confirmed, but the DL model may also reveal morpho-molecular

features that have so far not struck the attention of human

observers. Increasing knowledge about the morphology of the

molecular classes will help to understand the biological processes

and dynamics of tumor–host interaction in the tumor

microenvironment. The prognostic value of the identified

morpho-molecular features can be subsequently explored,

which may open new doors to prognostic refinement in EC.

With increasing availability of digitalization aids such as

cloud computing and resources, DL-driven diagnostic tools

could be made available worldwide as an additional

inexpensive, if not free, resource without the need of local

hardware or knowledge (102). Particularly, users without

access to scanners would only need to generate slide images

using microscope cameras or even existing mobile phones for

diagnostic classification in a central expert center. However,

high-quality slide images may remain a limitation to the

applicability in low-income countries and country-specific

regulations on patient data transfer.
Discussion

In the past four decades, the classification of EC has evolved

from a histology-based to a molecular system. The recent

integration into guidelines indicates the increasing prognostic

value of the four-class molecular classification over morphology

in EC (1, 2), yet the integrated management with former

histopathological variables is still a challenge in the diagnostic

routine (9). As a result, questions have been raised about the

relevance of these histopathological features and the role of

morphology beyond the molecular EC classification. Now, given

the four molecular EC classes, a number of studies have
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described some distinct morphological characteristics, but they

remain insufficient to achieve accurate classification (66–70, 72,

73, 76, 83), and the pathologist’s eyes are not sufficiently trained

to spotlight them. In fact, this review stresses the difficulty in

weighing image-based information in relation to the current

four molecular EC classes. First, each molecular subclass shows

heterogeneity for histological subtype, FIGO grade, and

associated microscopic features. Second, many microscopic

features appear to be non-exclusive, for instance the presence

of high levels of immune cells between POLEmut EC and MMRd

EC (69, 70). Lastly, some morphological traits are detectable at

different magnifications and growth patterns, and nuclear atypia

within p53abn EC is one example.

In the quickly progressing research domain of computer

science, DL has demonstrated a well-known capability to work

with high-dimensional and multi-modal datasets, up to learn

phenotype–genotype correlates from highly complex and extra-

large digitized tumor slides (29–52, 54, 55). Hence, future DL-

based breakthroughs have legitimate potential to resolve the

current dilemma between molecular and histopathological

variables or even support EC patient management for pre-

screening and decision-making on treatment, ultimately

impacting EC diagnostics and patient care as a whole. As for

today, an urgent assignment given to DL technology in

combination with gynecopathological expertise is bringing to

the surface the clinical relevance of each morphological feature

associated with the four molecular EC subclasses, while

improving morphological and biological understanding of the

genomic EC alterations. Combining the strengths of molecular-,

clinical-, and DL-based information may refine the EC

classification to reach optimal prognostication and prediction

for our future EC patients.
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