
Submitted 7 October 2020
Accepted 17 June 2021
Published 18 August 2021

Corresponding author
Cristian B. Canales-Aguirre, cris-
tian.canales@ulagos.cl

Academic editor
Scott Edwards

Additional Information and
Declarations can be found on
page 12

DOI 10.7717/peerj.11737

Copyright
2021 Canales-Aguirre et al.

Distributed under
Creative Commons CC-BY 4.0

OPEN ACCESS

Phylogenetic relationships, origin and
historical biogeography of the genus
Sprattus (Clupeiformes: Clupeidae)
Cristian B. Canales-Aguirre1,2, Peter A. Ritchie3, Sebastián Hernández4,5, Victoria
Herrera-Yañez6, Sandra Ferrada Fuentes6, Fernanda X. Oyarzún1,7,8, Cristián E.
Hernández9,10, Ricardo Galleguillos6 and Gloria Arratia11

1Centro i∼mar, Universidad de Los Lagos, Puerto Montt, Chile
2Núcleo Milenio INVASAL, Concepción, Chile
3 School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
4Biomolecular Laboratory, Center for International Programs, Universidad Veritas, San José, Costa Rica
5 Sala de Colecciones Biológicas, Facultad de Ciencias del Mar, Universidad Católica del Norte, Coquimbo, Chile
6 Laboratorio de Genética y Acuicultura, Departamento de Oceanografía, Facultad de Ciencias
Naturales y Oceanográficas, Universidad de Concepción, Concepción, Chile

7Centro de Investigación en Biodiversidad y Ambientes Sustentables (CIBAS), Universidad Católica de la
Santísima Concepción, Concepción, Chile

8 Instituto Milenio en Socioecología Costera, Santiago, Chile
9 Laboratorio de Ecología Evolutiva y Filoinformática, Departamento de Zoología, Facultad de Ciencias
Naturales y Oceanográficas, Universidad de Concepción, Concepción, Chile

10Universidad Católica de Santa María, Arequipa, Perú
11Biodiversity Institute and Department of Ecology & Evolutionary Biology, University of Kansas, Lawrence,
United States of America

ABSTRACT
The genus Sprattus comprises five species ofmarine pelagic fishes distributedworldwide
in antitropical, temperate waters. Their distribution suggests an ancient origin during
a cold period of the earth’s history. In this study, we evaluated this hypothesis and
corroborated the non-monophyly of the genus Sprattus, using a phylogenetic approach
based on DNA sequences of five mitochondrial genome regions. Sprattus sprattus is
more closely related to members of the genus Clupea than to other Sprattus species. We
also investigated the historical biogeography of the genus, with the phylogenetic tree
showing two well-supported clades corresponding to the species distribution in each
hemisphere. Time-calibrated phylogenetic analyses showed that an ancient divergence
between Northern and Southern Hemispheres occurred at 55.8 MYBP, followed by a
diversification in the Oligocene epoch in the Northern Hemisphere clade (33.8 MYBP)
and a more recent diversification in the Southern Hemisphere clade (34.2 MYBP).
Historical biogeography analyses indicated that the most recent common ancestor
(MRCA) likely inhabited the Atlantic Ocean in the Southern Hemisphere. These results
suggest that the ancestral population of the MRCA diverged in two populations,
one was dispersed to the Northern Hemisphere and the other across the Southern
Hemisphere. Given that the Eocene was the warmest epoch since the Paleogene, the
ancestral populations would have crossed the tropics through deeper cooler waters, as
proposed by the isothermal submergence hypothesis. The non-monophyly confirmed
for the genus Sprattus indicates that its systematics should be re-evaluated.
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INTRODUCTION
Antitropical distribution patterns—when closely related taxa have geographic distributions
to the north and south of the tropics, but not within—are an active line of research in
evolutionary biogeography that can benefit greatly from using congeneric species in
phylogenetic context. Congeneric species share a common history from their ancestral
population, and several studies have shown that the combined analyses of biogeographic
history and time-calibrated phylogenies in congeneric species provide a greater insight into
the evolutionary processes involved (e.g., Lavoué et al., 2013). There are still important
ecological and commercial fish genera with antitropical distribution patterns that remain
to be studied, such as the genus Sprattus.

The five extant species currently assigned to the genus Sprattus (Fig. 1; Clupeiformes,
Clupeidae, Clupeinae) are small marine pelagic fishes that inhabit coastal areas and are
well known for their schooling behavior (Whitehead, 1988; Fricke, Eschmeyer & Van der
Laan, 2021). They are important components of several food webs and some species are
commercially important (Frederiksen et al., 2006). These species occur in cooler waters and
have an antitropical distribution (Whitehead, 1988; Fig. 1). Sprattus sprattus (Linnaeus,
1758) is the most widely distributed species, and it is the only species in the genus found
in the Northern Hemisphere, mainly around the coasts of Europe (Whitehead, 1988;
Fricke, Eschmeyer & Van der Laan, 2021). Sprattus fuegensis (Jenyns, 1842) is found on
the South American coast, mainly in the Patagonian shelf from the Pacific and Atlantic
Oceans (Whitehead, 1988; Aranis et al., 2007; Canales-Aguirre et al., 2016; Fricke, Eschmeyer
& Van der Laan, 2021). The other three species are found in Oceania: S. novaehollandiae
(Valenciennes, 1847) in south-eastern Australia, and S. antipodum (Hector, 1872) and S.
muelleri (Klunzinger, 1879) on the coast of New Zealand (Whitehead, Smith & Robertson,
1985;Whitehead, 1988; Fricke, Eschmeyer & Van der Laan, 2021).

Phylogenetic analyses have shown that the genus Sprattus is sister to the genus Clupea
(Lavoué et al., 2007; Li & Ortí, 2007), and it has been suggested that they diversified between
2.66–6.75 MYBP (Jérôme et al., 2003; Cheng & Lu, 2006), which is consistent with the
Miocene record of Clupea. Moreover, the extant Clupea species are thought to have
radiated during the Pliocene (3.3–3.5 MYBP; Grant, 1986;Wilson, Teugels & Meyer, 2008),
which is when the genus Sprattus is thought to have diverged. More recent studies based on
large fossil-calibrated phylogenies suggested that the genus Sprattus is a paraphyletic group,
and S. sprattus is more closely related to Clupea spp. than to its relatives in the Southern
Hemisphere (Lavoué et al., 2013; Bloom & Lovejoy, 2014; Egan et al., 2018).

No study has examined the biogeographic origin of the genus Sprattus; though,
information of species with similar antitropical distribution pattern have been conducted.
For example, studies of extant populations of Sardinops species showed a recent
diversification event between 0.2–2 MYBP (Grant & Leslie, 1996; Bowen & Grant, 1997;
Grant & Bowen, 1998), whereas species included in the genus Engraulis diversified between
5–10 MYBP (Grant, Leslie & Bowen, 2005). When considering marine species that have
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Figure 1 Distributional map of extant Sprattus and closely related species used in this study. Red dashed line represents S prattus fuegensis;
brown is S. novaehollandiae; orange is S.muelleri; light blue is S. antipodum; and green is S. sprattus. Yellow solid line represents Clupea harengus;
purple is C. pallasii; gray is Ramnogaster melanostoma; and blue is Strangomera bentincki.

Full-size DOI: 10.7717/peerj.11737/fig-1

an antitropical distribution, the tropical zone appears to act as a barrier to long-distance
dispersal, restricting gene flow between the Northern and Southern Hemispheres (Grant,
Lecomte & Bowen, 2010). Experimental studies aiming to evaluate the thermal tolerance of
two temperate species of Clupeidae (e.g., Clupea harengus and Sardinops sagax) evidenced
their low tolerance for warm (tropical) waters (Martínez-Porchas, 2009; Peck et al., 2012).
These results reinforce the hypothesis that warm waters act as a dispersal barrier.

Considering the current antitropical distribution pattern of the genus Sprattus, we
hypothesize that the lower sea temperatures of the tropics during the cooler glacial periods
between the Miocene and Pliocene might have provided a window of opportunity for the
most recent common ancestor of Sprattus to disperse to the other hemisphere. In this
study we test the origin and the monophyly of the genus Sprattus using a phylogenetic
approach based on DNA sequences from five mitochondrial genome regions (mtDNA).
We also examine the historical biogeography of the group, and we used a molecular clock
to determine the pattern and timing of species diversification.

MATERIAL AND METHODS
Taxon sampling
Sprattus species have a least concern status for the IUCN Red List and are not listed under
CITES. We did not kill fishes for the purpose of this study; instead, tissue samples were
provided by researchers worldwide. Unfortunately, samples for Sprattus novaehollandiae
were impossible to obtain, therefore we used only three Sprattus species from the Southern
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Hemisphere. All tissue samples arrived fixed in ethanol 90%, and their general capture
locations were S. fuegensis (n= 7) from Chilean fjords in the Southeast Pacific Ocean,
S. sprattus (n= 5) from Norwegian fjords in the Northeast Atlantic Ocean, S. muelleri
(n= 4) from Auckland Harbour, and S. antipodum (n= 1) from Wellington Harbour
(New Zealand).

DNA extraction, PCR and DNA sequencing
Total genomic DNA was dissolved in a buffer containing proteinase K and SDS detergent,
and then extracted using a standard phenol-chloroform protocol (Sambrook et al., 1989).
DNA was precipitated in 70% ethanol and resuspended in 50 µL of TE buffer. DNA was
quantified using a NanoDrop ND-1000 spectrophotometer and diluted to a concentration
of 20 ng/µL.

Five mitochondrial fragments were amplified using genus-specific primers (762 bp
for Cytochrome b, CytB; 857 bp for Cytochrome Oxidase subunit I, COI; 827 bp for
NADH dehydrogenase subunit 2, ND2; and 348 bp for NADH dehydrogenase subunit
3, ND3) designed in this study, and one primer pair described previously (1107 bp for
Control Region, CR; Palumbi et al., 1991; Bernatchez, Guyomard & Bonhomme, 1992; see
Supporting Information Table S1). The genus-specific primers were designed from the
complete mitochondrial genomes sequences deposited in GenBank: Sprattus sprattus
(NC009593), S.muelleri (NC016669) and S. antipodum (NC016673). For CytB, COI, ND2,
and ND3 fragments, the PCRs were conducted in 30 µL volumes containing 1X PCR Buffer
(Invitrogen R©; Tris–HCl 200 mM, pH 8,4, KCl, 500 mM), 3 mM MgCl2, 0.2 mM of each
dNTP’s, 0.2 µM of each primer, 0.4 mg/mL of BSA, 1.5 units of Taq DNA polymerase
(Invitrogen R©), and 2 ng of genomic DNA. Thermal cycling was performed in an MJ
Research PTC-200 Thermal Cycler with the following parameters: 95 ◦C for 180 s, followed
by 35 cycles of 94 ◦C for 30 s, 55 ◦C for 30 s, 74 ◦C for 60 s, and a final extension at 74 ◦C for
300 s. For CR the PCRwas amplified using 2mMMgCl2 and the thermo cycling parameters:
94 ◦C for 300 s, followed by 35 cycles of 94 ◦C for 30 s, 54 ◦C for 60 s, 74 ◦C for 90 s, and a
final extension at 74 ◦C for 600 s. PCR products were purified with ExoSAP-IT R© following
manufacturer’s guidelines and sequenced in both directions using an ABI 3730xl Genetic
Analyzer (Massey University Genome Sequencing Service). Sequences were deposited in
GenBank database under the accession numbers MW075156- MW075219. Additional
sequences to genus Sprattus were included in the ingroup for further analyses: (i) Clupea
harengus (KC193777) and Clupea pallasii (AP009134), including two herring subspecies
fromC. pallasii (C. p.marisalbi andC. p. suworowi), given their close relatedness to the genus
Sprattus; (ii) Ethmidium maculatum (AP011602), Ramnogaster melanostoma (GQ890211-
GQ890214, KU288994–KU288995), and Strangomera bentincki (MW075156-MW075219),
given their close relatedness with the Sprattus-Clupea clade; (iii) Potamalosa richmondia
(AP011594) and Hyperlophus vittatus (AP011593), because they are more distantly related
genera to the Sprattus-Clupea clade; and (iv) Sprattus sprattus (AP009234), Sprattus muelleri
(AP011607), and Sprattus antipodum (AP011608) to increase the number of sequences of
our target genus. As outgroups, we includedGilchristella aestuaria (AP011606) and Ehirava
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fluviatilis (AP011588), two species of the subfamily Ehiravinae used for rooting and time
calibration purposes.

Initial alignment was performed in Geneious R© 6.0.5 (Kearse et al., 2012), and the final
alignment was adjusted by eye. Phylogenetic analyses were conducted separately on each
gene (to compare each gene tree) and concatenated fragments (becausemitochondrial DNA
constitutes a single heritable unit). Divergence time and historical biogeography analyses
were conducted using a concatenated alignment of the five mitochondrial fragments. Our
concatenated data matrix included 13 sequences (one taxa each) and 3,228 characters.

Phylogenetic analyses and divergence time
Before conducting the phylogenetic analyses, we performed Xia’s test implemented in
DAMBE v5 (Xia et al., 2003; Xia, 2013) to evaluate whether the DNA sequences we used
showed evidence of saturation by substitution (i.e., back mutations), which would need
to be corrected using a model of sequence evolution during the phylogenetic analyses.
We estimated and compared a substitution saturation index with a critical substitution
saturation index (Xia et al., 2003; Xia, 2013) to test that the data set is informative for
performing phylogenetic analyses. The results of Xia’s test suggest that there is a low level
of saturation in our data set, where the critical index of substitution saturation values was
significantly higher than the observed index of substitution saturation values (Supporting
Information Table S2).

We ran a Bayesian Markov Chain Monte Carlo (BMCMC) phylogenetic analysis that
included a general likelihood-based mixture model of gene-sequence evolution and a
Reversible-Jump Markov Chain Monte Carlo procedure (Pagel & Meade, 2004; Pagel &
Meade, 2006; Pagel & Meade, 2008; Gascuel, 2005). This phylogenetic reconstruction was
implemented in BayesPhylogenies v1.1 software (Pagel & Meade, 2004). This approach
enables possible models and parameters to be explored, converging towards the model
that best fits the data in the sample of posterior trees (Pagel & Meade, 2008). We ran
five independent chains using 106 generations, sampling every 10,000th tree sample, and
burning the first 25% of the trees. Finally, we obtained the phylogenetic consensus tree
using 750 tree samples.

Approximate divergence times among Sprattus species were estimated using a Bayesian
approach implemented in the BEAST v2 software (Heled & Drummond, 2008; Drummond
et al., 2012; Bouckaert et al., 2014). To obtain divergence times, we used the Log-Normal
Relaxed Clock Model (LNCM; Drummond et al., 2006; Drummond & Suchard, 2010). We
ran this model five times using the most complex sequence evolution model, GTR+I+G,
with 10,000,000 generations sampling each 10,000 generations. The outputs of each run
were combined in LogCombiner software to increase the Effective Sample Size (ESS) to be
at least >200. The ESS of a parameter sampled from an MCMC is the number of effectively
independent draws from the posterior distribution of the Markov Chain.

To obtain the posterior distribution of the estimated divergence time, the age of a fossil,
†Lecceclupea ehiravaensis, dated during the late Campanian in the Late Cretaceous epoch
at about 74 MYBP was used. (Taverne, 2011 interpreted this age as part of the Campanian-
Maastrichtian; however, 74MYBP is currently considered within the Campanian according
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to the ICS International Chronostratigraphic Chart, 2021; http://www.stratigraphy.org.)
This age was used as a calibration point to constrain the age in the Gilchristella aestuaria
and Ehirava fluviatilis node. †Lecceclupea ehiravaensis has been shown to be a crown
member of the clade (Ehirava, Gilchristella; see Taverne, 2011). Prior age distribution of
this clade follows a lognormal distribution using the age boundaries of the geological
stage from which the fossil was excavated (i.e., 95% credibility interval). An offset of 74
MYBP was applied to the model. Subsequently, we used the Log-Normal Relaxed Clock
Model and previous set parameters to run 10 independent Markov Chain Monte Carlo
(MCMC) simulations with a chain length of 107 generations. Sampling was conducted
every 10,000 generations and we used as prior distributions the following parameters:
the base frequency, proportion invariant sites, and proportions of each transition and
transversion, all of those to increase the effective sample size. The individual runs were
combined using LogCombiner burning 250 trees per each sample. Finally, a maximum
clade credibility tree was created in TreeAnnotator, which enable a summary tree to be
visualized in FigTree v1.4 (https://github.com/rambaut/figtree/releases).

Historical biogeography
We inferred the historical distribution of the genus Sprattus and its close relatives using
their current distribution (i.e., longitude and latitude as continuous traits). This approach
was chosen over the multistate discrete data for the following reasons: (i) discrete data
could bias the ancestral state of a descendant species distributed in the same geographical
region; (ii) continuous data permit identifying dispersal trends; and (iii) classical discrete
multistate estimation does not consider the spherical nature of the earth (O’Donovan,
Meade & Venditti, 2018; Gardner, Surya & Organ, 2019; Avaria-Llautureo et al., 2021). For
these, we used the current geolocation to infer the ancestral distribution for each node of
the phylogenetic tree. To reconstruct the distribution, we used the GeoModel (O’Donovan,
Meade & Venditti, 2018) and implemented BayesTraits v3.0 (Pagel & Meade, 2004). The
Geo Model estimates the posterior distribution of their geo-position across phylogenetic
nodes. We used tree samples obtained in BMCMC phylogenetic analyses and a trait matrix.
We ran 106 generations sampled every 10,000 generations to obtain a parameters sample.
Posteriorly, a 25% burned-in was used to avoid including parameters sampled before the
convergence of the Markov Chain, and a final sample of 750 parameters was obtained. The
ancestral distribution of each node was plotted on a paleogeographical perspective using
mapast v0.1 R package (Varela & Rothkugel, 2018). We combine paleomaps from 10, 30,
50, 90, 110 MYBP using SETON2012 as a global plate motion model (Seton et al., 2012).

RESULTS
Phylogenetic tree reconstructions using the concatenated fragments (Fig. 2) and each
mitochondrial fragment independently showed a similar pattern (Fig. S1). Each extant
Sprattus species forms a monophyletic group. The Sprattus species were distributed in the
phylogenetic tree in two main clades that matched their antitropical distribution, each in
one hemisphere. The NorthernHemisphere clade included Sprattus sprattus and the species
Clupea harengus and C. pallasii (including their subspecies); the Southern Hemisphere
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Figure 2 Bayesian consensus tree concatenating of mitochondrial genes from 750more likely trees. Branch lengths are proportional to the num-
ber of substitutions per nucleotide position. Numbers at nodes are posterior probabilities from Bayesian analyses. Grey rectangles indicate current
hemisphere distribution. Red branches for S. prattus fuegensis, orange for S.muelleri, light blue for S. antipodum, and green for S. sprattus.

Full-size DOI: 10.7717/peerj.11737/fig-2

clade included Sprattus fuegensis, S. antipodum, S. muelleri, Ramnogaster melanostoma,
and Strangomera bentincki. However, overall, the genus Sprattus is polyphyletic, because S.
sprattus is closely related to Clupea and S. fuegensis, whereas S. antipodum and S. muelleri
are closely related to Ramnogaster and Strangomera.

The time-calibrated phylogenetic analyses showed a divergence between Northern and
Southern Hemispheres that was dated at 55.8 MYBP (early Eocene; Fig. 3A). There was
also another diversification event among the Northern Hemisphere clade at 33.8 MYBP
(boundary between Eocene and Oligocene), splitting Sprattus sprattus from Clupea species.
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Current species of Clupea diverged about 8.5 million years ago (late Miocene). For the
Southern Hemisphere clade, species diverged at 33.2 MYBP (early Oligocene). Among the
species of the Southern Hemisphere clade, Strangomera bentincki split from other Sprattus
species around 22.6 MYBP (early Miocene), Sprattus fuegensis split at 13.3 MYBP (middle
Miocene) from their New Zealand relatives, and the most common recent ancestor of S.
antipodum and S. muelleri diverged around 5.6 MYBP (boundary between Miocene and
Pliocene). Ancestral distributions (Figs. 3B–3G) show that the MRCA of the Northern and
Southern clades likely inhabited the Southern Hemisphere in the Atlantic Ocean (Fig. 3D).

DISCUSSION
Non-monophyletic genus Sprattus
We confirmed that the genus Sprattus is a polyphyletic group with an antitropical
distribution, challenging the taxonomic status of the Sprattus species. Considering the
two geographic clades in opposing hemispheres, the Northern clade closely relates S.
sprattus with the genus Clupea, and the Southern clade closely relates the rest of Sprattus
members with Strangomera bentincki and Ramnogaster melanostoma. The relationship
among species from the Southern clade has not been described before. This taxonomic
incongruence in the genus Sprattus has also been identified in studies that use large
phylogenies in Clupeiformes and have focused in the identification of the biogeographic
or diadromy origin, body size, dispersal pattern, or trophic niche evolution of the group
(Lavoué et al., 2013; Bloom & Lovejoy, 2014; Egan et al., 2018; Bloom, Burns & Schriever,
2018; Avaria-Llautureo et al., 2021). Although some of these studies are based on DNA of
different types (i.e., mt or nDNA) or taxa (i.e., Sprattus members and its close relatives),
they support the polyphyly of the genus Sprattus. Therefore, our results provide further
support for Sprattus being polyphyletic and add S. fuegensis and Strangomera bentincki as
pieces of the puzzle to understand the evolution in the Southern clade.

Taxonomic classification and phylogenetic relationships among the genera Sprattus,
Ramnogaster, Strangomera, and Clupea are unclear if they are only based on morphological
andmeristic traits. All these taxa resemble theClupea type and were first classified as species
of Clupea (Whitehead, Smith & Robertson, 1985;Whitehead, 1988). The genus Sprattus was
erected by Girgensohn (1846) based on S. haleciformis, which was later synonymized with
S. sprattus (Whitehead, 1988), defining the absence of a pterotic bullae as the key diagnostic
feature (Mathews, 1884;Whitehead, 1964;Whitehead, 1988;Whitehead, Smith & Robertson,
1985). However, fewer pelvic rays and an anteriorly placed pelvic fin (Whitehead, 1988) have
also been used to differentiate Sprattus from Clupea. The two genera also differentiate in
key reproductive traits, whereas Sprattus produces pelagic eggs, Clupea produces demersal
eggs that attach to the seabed or vegetation (Haegele & Schweigert, 1985;Whitehead, 1988).
Finally, the genera Sprattus and Ramnogaster share the absence of pterotic bullae, but differ
in fin-ray numbers, whereas Sprattus differs from Strangomera on having more gill rakers
(Whitehead, 1988).

Incomplete sorting lineage, introgression, or convergence of morphological traits could
be plausible explanations for the current Sprattus taxonomic classification and our gene
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tree. The first two can be ruled out, because none of the species of this study shared or had
similar haplotypes. Introgression may also be ruled out, because the fishes have different
reproductive strategies: pelagic or demersal eggs (Haegele & Schweigert, 1985; Whitehead,
1988), so there is little opportunity for cross-fertilization. However, introgression could
be true if divergence in reproductive ecology occurred at an initial stage older than 33.8
MYBP between S. sprattus and Clupea species. Introgression and ancient hybridization
events could be identified by comparing mtDNA and nDNA (Saitoh et al., 2011), however,
this has not been detected in clupeid phylogenies (Bloom & Lovejoy, 2014). We cannot
discard the convergence of morphological traits explanation given that there are traits that
look similar and others that support the separation of Sprattus and Clupea (Mathews, 1884;
Whitehead, 1964;Whitehead, 1988; Whitehead, Smith & Robertson, 1985).

For Sprattus species from the Southern Hemisphere, we found that S. fuegensis from
South America is the sister to New Zealand’s sympatric S. antipodum and S. muelleri.
Nonetheless, we need to keep in mind that we could not include S. novaehollandiae, hence
further studies should include this species. For New Zealand sprats, it only has been
suggested that these species might have different ecological requirements considering their
sympatry (Whitehead, Smith & Robertson, 1985). We suggest that further investigations be
done to disentangle the mechanisms that promoted sympatric speciation for S. antipodum
and S. muelleri.

Divergence time and historical biogeography
The results based on a fossil calibration showed that the two antitropical clades diverged
in the Eocene (55.8 MYBP; older than we hypothesized), with a likely origin in the
Atlantic Ocean in the Southern Hemisphere. The species within the Northern Hemisphere
clade diverged at 33.8 and in the Southern Hemisphere at 33.4 MYBP, during the early
Oligocene. Cheng & Lu (2006) and Jérôme et al. (2003) estimated that the divergence event
of the two genera occurred between 6.75–2.66 MYBP (late Neogene-early Quaternary).
This estimation disagrees with the older divergence time found in our study, which could
be explained by the calibrating method used by the authors. Different calibrating methods
typically yield different results, and each method has its own particular challenges. In
previous studies the authors used a standard nucleotide substitution rate for fish, which
is a method that depends on the timescale over which those rates are measured (Hipsley
& Müller, 2014) and could generate an overestimation of divergence times (Phillips, 2009;
Ho et al., 2011; Hipsley & Müller, 2014). Fossil calibrations do not produce this problem,
although the uncertainty in age and phylogenetic position present a different challenge
(Hipsley & Müller, 2014). To address this and avoid the overestimation of the divergence
time, we ran our analysis based on the fossilized birth-death process calibration method
and a Bayesian framework, which included the uncertainty of dating species divergences
and yield with more accurate node age estimates (Heath, Huelsenbeck & Stadler, 2014;
Bouckaert et al., 2014; Gavryushkina et al., 2017).

The Eocene was the warmest geological epoch of the last 65 million years (Zachos et al.,
2001), where sea surface temperatures in the Atlantic tropical areas may have been up to
38 ◦C (Cramwinckel et al., 2018). The ancestor of Clupeoidei originated and diversified in
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the tropical Indo-West Pacific region during the Lower Cretaceous (119 MYBP, Lavoué
et al., 2013), and it would have been adapted to warm, marine temperatures (i.e., >25 ◦C;
Lavoué et al., 2013; Bloom & Lovejoy, 2014). Considering this, our analyses show that the
Clupeidae lineage spread to the Southern Hemisphere earlier than the clades that included
Sprattus, Clupea and close relatives. Similarly, the species of Potamalosa, Hyperlophus and
Ethmidium also inhabit temperate waters in the Southern Hemisphere, suggesting that
this old south-distributed group of fishes was able to cross the tropics but not to adapt
to the warmer environment. Nonetheless, extant members of the genera Sprattus and
Clupea are now distributed antitropically in much colder temperate waters (Whitehead,
Smith & Robertson, 1985; Lavoué et al., 2013), and although they mainly inhabit marine
environments (Bloom & Lovejoy, 2014), they can also inhabit areas with highly variable
environments, such as fjords (e.g., Glover et al., 2011; Canales-Aguirre et al., 2016; Canales-
Aguirre et al., 2018).

Antitropical distribution patterns are traditionally explained by dispersal and vicariance
mechanisms (Stepien & Rosenblatt, 1996; Grant & Bowen, 1998; Burridge, 2002; Le Port,
Pawley & Lavery, 2013). Dispersalists have proposed several hypotheses to explain dispersal
across the tropics: island integration (Rotondo et al., 1981), dispersal at shallow depths
during glaciations (Lindberg, 1991), and isothermal submergence (Hubbs, 1952). Island
integration refers to the formation of endemic biotas through the movement of individuals
using islands or seamounts (Rotondo et al., 1981). In our case, we can discard this
explanation, because clupeids are typically marine and inhabit productive coastal areas
(Whitehead, 1988). Dispersal at shallow depths during glaciations is a well-recognized
dispersal mechanism for several pelagic fishes during the Pleistocene (Burridge & White,
2000;Burridge, 2002;Grant, Leslie & Bowen, 2005). The isothermal submergence hypothesis
refers to the possibility that marine organisms adapted to cool or temperate areas are able
to disperse across the tropical region through deeper, colder tropical waters (Hubbs, 1952).
Taking into account that the MRCA of these two clades diversified in the warm Eocene,
and then each clade diversified between the late Eocene and early Oligocene epochs the
isothermal submergence hypothesis seems to be the most plausible explanation. This later
because the temperatures begin to decrease until initiation of Antarctic glaciation (Zachos
et al., 2001) and some clupeoids, such as herrings, may dive as much as 200 m (Blaxter,
Denton & Gray, 1981). Vicariant mechanisms such as plate tectonic, relictual distribution,
and equatorial isolation by climatic change or biological interactions have been advocated
by others studies (Stepien & Rosenblatt, 1996; Saitoh et al., 2011). However, mechanisms
associated with plate tectonics are not supported by our results, because the divergence
time among nominal species of Sprattus and Clupea would have occurred during the
Eocene, and the present continental configuration closely resembles the configuration of
the continents during that time. Studies, such as those by Grant & Bowen (1998) and
Grant, Leslie & Bowen (2005) on marine pelagic fishes have supported a dispersalist
mechanism to explain the antitropical distribution and exclude vicariant explanations
as well.

Dispersion from their ancestral habitat involved adaptation to colder waters, while
simultaneously expanding their tolerance to fluctuations in salinity, allowing them to also
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colonize low saline habitats. The warmer equatorial waters have remained as a key barrier
to dispersal between hemispheres, which has only been crossed when windows of colder
environments appeared across the tropics or, more plausibly, by using deeper, colder
tropical waters as proposed by the isothermal submergence hypothesis.
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