
Singh et al. Journal of Cloud Computing (2022) 11:53
https://doi.org/10.1186/s13677-022-00323-4

RESEARCH

Cloud based evaluation of databases
for stock market data
Baldeep Singh1,2*, Randall Martyr1,2, Thomas Medland2, Jamie Astin2, Gordon Hunter1 and
Jean‑Christophe Nebel1 

Abstract 

About fifty years ago, the world’s first fully automated system for trading securities was introduced by Instinet in the
US. Since then the world of trading has been revolutionised by the introduction of electronic markets and automatic
order execution. Nowadays, financial institutions exploit the associated flow of daily data using more and more
advanced analytics to gain valuable insight on the markets and inform their investment decisions. In particular, time
series of Open High Low Close prices and Volume data are of special interest as they allow identifying trading patterns
useful for forecasting both stock prices and volumes. Traditionally, relational databases have been used to store this
data; however, the ever-growing volume of this data, the adoption of the hybrid cloud model, and the availability
of novel non-relational databases which claim to be more scalable and fault tolerant raise the question whether
relational databases are still the most appropriate. In this study, we define a set of criteria to evaluate performance of
a variety of databases on a hybrid cloud environment. There, we conduct experiments using standard and custom
workloads. Results show that migration to a MongoDB database would be most beneficial in terms of cost, storage
space, and throughput. In addition, organisations wishing to take advantage of autoscaling and the maintenance
power of the cloud should opt for a cloud native solution.

Keywords:  Big data, Distributed storage, Cloud databases, Hybrid cloud, OHLC data

© The Author(s) 2022. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this
licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

Introduction
The first stock exchange was established in the 1600s
by the East India Company [72]. A stock exchange was
a building where existing and prospective investors met
to buy or sell shares. Open outcry was the main method
of communication on a trading floor. It involved shout-
ing and hand gestures to transfer information about the
orders. That model remained more or less unchanged for
centuries. With the introduction of internet connectiv-
ity and more powerful computers in the late 1980s and
early 1990s, the push towards automation overtook the
holdovers from open outcry. In the early 2000s a seismic
change in trading mechanics began, with the increased

use of electronic trading. By late 2019 about 80% of the
cash equity markets were all electronic [82].

Advances in computer technology has led to faster
order execution, less human error, and greater ability to
carry out research on the market. Trading, nowadays,
relies on constant and incredibly fast analysis of very
large amounts of data [77] which is often in time series
consisting of a date, a unique identifier (such as a stock
ticker), and values observed that day for an entity. One
such type is the OHLC data which records the Open,
High, Low, Close prices1 of an instrument in a given
period of time.

OHLC data are particularly important for the derivation
of patterns and trading signals from market data [64, 66].

Open Access

Journal of Cloud Computing:
Advances, Systems and Applications

*Correspondence: baldeep.singh@instinet.com

1 School of Computer Science and Mathematics, Kingston University,
London KT1 2EE, UK
Full list of author information is available at the end of the article

1  The open price is not always equal to the close price of the previous trading
day. Sometimes events such as company earnings reports or stock splits can
happen in after trading hours and can alter a stock’s price overnight.

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13677-022-00323-4&domain=pdf

Page 2 of 17Singh et al. Journal of Cloud Computing (2022) 11:53

Indeed, Fiess and MacDonald [30] consider that the con-
ventional wisdom behind recording these prices rather
than all intra-daily prices is their higher informational con-
tent. OHLC data can be used to define and forecast asset
price volatility [30, 63] and are often less costly to obtain
and work with than the high frequency tick data which
consists of bid and ask prices aggregated from multiple
exchanges [63]. In fact, [63] shows that volatility models
built on daily OHLC time series data may provide simi-
lar accuracy to those built on high frequency data. Con-
sequently, investors continue to make purchases and sells
according to accurate predictions of OHLC data [93].

A system for storage and retrieval for time series data—
a time series management system or a time series data-
base—is necessary to conduct such analyses [46].

As OHLC data are typically generated in the application
layer by a program (or a script) that processes measure-
ments of the upwards or downwards price movements of
stock [7], it is very important to store this data in a time
series database where it is easy and fast to store, query,
and perform operations, such as sum, mean and median,
on multiple records of data. Moreover, since financial time
series databases can very quickly grow very large — there
are several thousand stocks listed on the New York Stock
Exchange alone, it is critical to have an efficient database
solution able to perform the required large-scale analytics
processing. As traditional database solutions such as Rela-
tional Database Management Systems are typically sub-
optimal and generally ill-suited for time series data [78],
several new solutions have been proposed [46].

Even though these time series databases seem promis-
ing, they do not have a wider support like SQL (Struc-
tured Query Language) or NoSQL (Not Only SQL)
databases and are typically very hard to migrate to.

In this paper, we investigate and design a widely preva-
lent, scalable and distributed database system for stor-
ing financial stock market OHLC data achieving high
throughput in a cost-effective way. Such a system should
allow financial institutions to store large volumes of
incoming data on a distributed network while still being
able to obtain the query results with minimal latency. In
our experiments we use historical OHLC data to com-
pare the performance of different types of databases. The
main contributions of this study can be summarised as
follow:

1.	 An extensive literature review that includes both the-
ory- and experiment-based comparisons of relational
and non-relational databases.

2.	 A set of criteria to perform holistic evaluation of the
ability of a database system at storing and querying
OHLC financial data on a hybrid cloud deployment
architecture.

3.	 A comprehensive set of experiments using the “Huge
Stock Market Dataset” to assess performance of the
most popular relational and non-relational databases
according to the criteria previously defined.

The remainder of this article is organised as follows.
First, the ‘State-of-the-Art Review’ Section discusses the
development of database systems, their features, and their
performance in published case studies. Second, in the
‘Hybrid Cloud Architecture for Secure and Efficient Stor-
age and Processing of Financial Data’ Section where the
focus is on applications relying on OHLC price data, not
only is a set of important criteria introduced to help the
selection of the most suitable database, but also an archi-
tecture is proposed to conduct the experiments required
to test these criteria. Third, the ‘Experiments and Results’
Section starts with the presentation of the environment,
data, evaluation framework and scope; then it reports the
results of the experiments, which eventually leads us to
identify which type of database satisfies our application
of interest. Finally, the last Section concludes the paper
and suggests future research directions.

State‑of‑the‑art review
This section first reviews the development of both rela-
tional and non-relational databases and highlights their
respective strengths. Second, it analyses the outcomes
of experiments conducted on various case studies to
assess their individual performance. Finally, as the main
area of interest of this study is the usage of databases
to store and process large volumes of financial trading
data, usually on a hybrid cloud architecture, this review
explores then their storage costs and the characteristics
of their cloud implementation.

Definitions and theory‑based comparisons
In 1970, Edgar F. Codd proposed a new model of data
called relational database where all data are represented
in terms of tuples and attributes, formally described
using tables [21]. The platforms used to manage these
databases are known as Relational Database Management
Systems (RDBMS). Most of them employ SQL (Struc-
tured Query Language) as their query language [13].
Relational databases rely on the ACID (Atomic, Consist-
ent, Isolated, Durable) properties to operate efficiently
and correctly [34]. This guarantees data validity despite
errors, power failures and other mishaps [37].

Relational databases perform best with structured data,
but they have a limited or restricted ability to represent
complex semi-structured or unstructured data [55]. A
study has shown that it is difficult to store clinical visit
data in an RDBMS due to their semi-structured infor-
mation and dynamic changing properties [94]. Indeed,

Page 3 of 17Singh et al. Journal of Cloud Computing (2022) 11:53 	

usage of relational databases for such data leads to cre-
ating fields that are mostly empty resulting in inefficient
storage and poor performance. Moreover, another limi-
tation of relational databases is their inability to store
increasing volumes of real-time data [10]. As in the cases
of national votes and fingerprints data, the amount col-
lected increases drastically both in terms of volumes
(Terabytes of data) and velocity (rate of data generated,
in Gigabytes/day), which eventually requires a large num-
ber of tables to accommodate the growth in data. Actu-
ally, the usage of a relational database in such scenarios
becomes inappropriate because of its inability to scale
with the ever-growing real-time data [83].

Finally, relational databases cannot take advantage of
modern advancements in distributed computing as they
are not designed to function with data partitioning [95].

The non-relational databases were created as a means
to offer high performance (both in terms of speed and
size) and high availability at a price of losing the ACID
trait of relational databases and instead offering the
weaker BASE (Basic Availability, Soft state, Eventual con-
sistency) feature [12, 52]. These databases store semi-
structured and structured data in a non-complex data
model such as key-value pairs, which consists of two
parts, a string which represents the key and the actual
data which is referred to as value. These keys are then
used as indices, making the query process faster than the
RDBMS [50]. Non-relational databases started becom-
ing popular with the internet boom in the mid-1990s as
relational databases could not handle the flow of infor-
mation demanded by users [41]. Since then, numerous
companies and organisations have developed their own
non-relational databases [67, 87].2 Many studies have
shown that non-relational databases enable better per-
formance in terms of speed and flexibility [36, 38, 89].
Indeed, availability, real-time response, advanced data
analysis, and the ability to manage bigdata remain weak-
nesses which are displayed by relational databases [28].
Moreover, these shortcomings are overcome by the latest
NoSQL systems which have been designed to address the
challenges associated with dealing with large amounts
of data [76]. As a consequence, they have become the
option of choice for applications involving geographi-
cally distributed data, large amounts of data, or scalabil-
ity requirements [47, 56, 88]. This is particularly the case
for services relying on Internet of Things (IoT) technol-
ogy [89]. For example, in a recent case study where IoT
enabled sensors provide measurements to monitor man-
ufacturing defects in the automobile industry, usage of a

NoSQL database allowed real-time data processing and,
thus, the detection of faults at early stages of the manu-
facturing process [33].

Unlike relational databases that can only scale verti-
cally by adding more resources to the current server,
non-relational databases also support and embrace hori-
zontal scaling. This is achieved by adding more machines
to the network and then dividing the workload or in this
case distributing the data among them [83].

Despite this, the latest Database Engine rankings [23]
(based on top searches on various search engines, Stack
Overflow, Google trends, job offers or number of men-
tions in social networks) reveals that relational databases
remain prevalent: there are only three non-relational
databases in the top ten and none of them are in the top
four! This is probably because relational systems have
been used extensively for many decades and are trusted
for maintaining accurate transactional records, legacy
data sources [71, 99], and many other use cases within
organisations of all sizes [48]. In addition, non-relational
databases lack a standard query language [57, 60]: there
are more than 200 implementations, each providing its
own language and interface [20] that developers and
users must learn. Finally, a major challenge of non-rela-
tional databases is their weak security mechanisms [6].
Indeed, they were initially designed without security
being considered as an essential feature [81]. Thus, there
have been growing concerns related to data privacy in
NoSQL systems which results from compromises made
for better performance and scalability [32]. Whereas
relational databases have inbuilt authentication instead
of relying of a middleware application for authentication
or authorization of the data source, by design, non-rela-
tional databases offer limited security and place more
emphasis on data handling [51]. Indeed, the feature of
distributed data, termed as ‘sharding’ [9], which is con-
sidered the key of their success, is associated with a con-
cern on how the confidentiality and privacy of data is
maintained across systems [73].

Experiment‑based comparisons
Many experiments have been conducted to compare
characteristics of non-relational and relational data-
bases including their scalability, performance, flexibil-
ity, power of querying, and security [3, 17, 58, 68, 69, 70,
86]. Experiments conducted a decade ago proved quite
inconclusive as performance varied significantly accord-
ing to the type of operation performed and the type of
data used [58, 86]. Focusing on processing a modest
amount of structured data, it was shown that MongoDB
– a popular non-relational database – performed at least
as well as MySQL with exceptions of aggregate functions
(such as medians, modes and sums) [69]. A more recent

2  Note that as non-relational databases cannot use SQL as their query lan-
guage, they are often referred to as NoSQL; in this manuscript, both terms are
used interchangeably.

Page 4 of 17Singh et al. Journal of Cloud Computing (2022) 11:53

study analysing performance of non-relational databases
for spatial and aggregate functions suggests that the per-
formance of MongoDB has since improved [3]. Focus-
ing on applications handling large volumes of data (i.e.,
terabytes), it was concluded that non-relational databases
were preferable because they offer flexible architectures
which can accommodate a large variety of data storage
needs [68, 70]. Similar results were obtained in a per-
formance comparison of various types of non-relational
databases against MySQL [35]. Focused on the storage of
unstructured data of hospital patients during COVID-19,
various forms (Key-value stores, Graph based, Column-
oriented, Document) of non-relational databases were
evaluated based on their data model, CAP (Consistency,
Availability, and Partitioning) theorem [31], suitability for
being distributed across multiple servers and other fac-
tors [27]. The authors eventually designed an algorithm
able to suggest the most suitable database type accord-
ing to the hospital’s needs. Also targeting a COVID-19
dataset, a recent study investigated data retrieval from
an unstructured large volume dataset, the COVID-19
Genome Sequence dataset [17]. It concluded that non-
relational databases outperform SQL databases in aspect
of data load time. Moreover, it indicated that non-rela-
tional queries were easier to formulate than SQL ones.
This has been further supported by another study of a
dataset of COVID-19 patients, where the NoSQL Mon-
goDB database showed superior performance over other
databases, demonstrating that it is more appropriate for
processing large amounts of data [8].

In terms of privacy and security, not only do most
non-relational databases not provide encryption mecha-
nisms to protect user-related sensitive data, but also by
default the inter-node communication is not encrypted
for data in transit [79]. A recent review of advancements
for these databases to improve the security reported
their use of Kerberos (a computer-network authenti-
cation protocol [65]) to authenticate clients and data
nodes. It also proposed solutions to deal with remain-
ing shortcomings such as usage of an Identity Provider
to authenticate and communicate where the user needs
to login using a Single Sign-on method [91]. In addition,
researchers have designed a Security-as-a-Service model
for NoSQL databases (SEC-NoSQL) which supports
execution of query over encrypted data with guaranteed
level of system performance [75].

Data storage costs and cloud implementation
Another important aspect when comparing different
types of databases is the costs of running the database;
this is particularly significant for large organisations which
deal with large volumes of data on a daily basis. Focusing
on financial trading data, four different databases were

used for comparison in [53]. While MongoDB proved
the fastest to read and write end-of-day OHLC (Open,
High, Low, Close) data — the SQL solutions were 1.5 × to
3 × slower — in terms of costs MongoDB was definitely
the most expensive due to its commercial licensing costs.

To reduce costs, more and more databases run on
cloud platforms as they offer low-cost servers and high-
bandwidth networks delivering better reliability, dura-
bility, scalability and accessibility of data [2, 15]. As
mentioned before, as scalability is a particular strength
of non-relational databases, their presence on Cloud
allows their growth in a matter of just a few clicks [1].
Not only do the main cloud providers support and man-
age a variety of relational databases (such as the popular
Oracle, MySQL, and PostgreSQL), but they have also
been developing their own proprietary non-relational
databases to address their own needs, e.g., BigTable by
Google or DynamoDB by AWS (Amazon Web Services)
[25]. Indeed, for example, in 2006, Google needed a solu-
tion for its ever-growing collection of semi-structured
data that was distributed across multiple data centres
worldwide. As the relational model they had been using
was unable to accommodate such a large pool of data effi-
ciently enough, they created BigTable, a document-based
database. Nowadays, it handles most of their infrastruc-
ture [18]. Advancements in non-relational architecture
motivated Yahoo to develop criteria to quantitatively
evaluate non-relational database systems. Its Cloud Serv-
ing Benchmark is the most widely used and well-known
benchmarking framework for evaluating NoSQL data-
bases with varying workloads [16, 22, 96].

In [26], the author has surveyed non-relational data-
bases on Cloud and recorded their features in terms of
the storage type (Column, Key-value, Document or
Graph), the license type (Commercial or Open source)
and the programming language used to develop them.
He reported that, out of the 15 cloud databases surveyed,
MongoDB, Cassandra and HBase were the most used.

The research paper by Fang at el. [29] show how finan-
cial markets have evolved in the last decade and have
become more complex and interconnected than ever
before. One cannot get a comprehensive view of a port-
folio with one source of data. In the financial markets the
volume of the data grows exponentially: with the growing
capabilities of computers, many companies have used a
fast-increasing amount of historical data to feed predic-
tive models, forecasts, and trading impacts. Advances in
big storage and processing frameworks combined with
the cloud capabilities have helped financial services firms
to unlock the value of data, improve their volumes and,
commissions, and reduce the cost-of-trades [39]. More-
over, a recent survey has shown the value of ‘alternative
data’, i.e., data originating from non-financial sources

Page 5 of 17Singh et al. Journal of Cloud Computing (2022) 11:53 	

such as social media, GPS, or sensor data, for predicting
stock prices and discovering new price movement indica-
tors [40]. Consequently, capital firms need to store and
stream, in various formats, enormous amount of data,
and effectively link the data together to get an actiona-
ble insight. Big data processing frameworks, which offer
parallel and distributed algorithms running on clusters
of servers such as MapReduce [24], Hadoop [90], Spark
[98], have fulfilled their requirements at least in terms of
carrying out their batch processing tasks [80]. With the
increase in computing power and decrease in data stor-
age costs, collecting and processing large amounts of data
has become an increasingly viable and exercised routine
in the financial industry. Still, it is important for such
organizations to select their database carefully so that it
can, not only store and process big data, but also handle
their growth in the long term.

As previous studies have shown, no database system
provides best performance in all scenarios. On one hand,
relational databases deliver accuracy and redundancy
by following the ACID properties. On the other hand,
non-relational databases support large and distributed
datasets with frequently changing schemas providing
better performance and flexibility [73], which makes
them particularly attractive for industries requiring high-
performance analytics capabilities and distributed large
data scalability [49]. Currently, efforts are being made
to merge the two database systems to offer the best of
both worlds [45, 92], where, for example, a hybrid model
would provide the flexibility that is prevented by the
rigid relational database framework [54]. Most recently, a
hybrid database was implemented where simple requests
(read, insert) were served by MongoDB, while complex
operations, such as joins with filtering the requests, were
forwarded to PostgreSQL [43]. These hybrid models inte-
grate SQL and NoSQL databases in one system to elimi-
nate the limitations of individual systems. Even though
they have produced promising results, their adoption has
hardly started. Indeed, not only do they make mainte-
nance more complex as two different databases must be
handled, but also their associated costs are added. More-
over, a hybrid interface must be written to bridge the two
databases together. Finally, there is no readily available
solution that an organisation can install and run like any
other database system.

Considering all the limitations of database systems
when dealing with big time-series data and the require-
ment to use a system that can scale on-demand, in the
next section we will be proposing a set of criteria to con-
sider when selecting a database. We will then use a cus-
tom benchmarking tool for recording the results of our
experiments and rating each database against the criteria
to propose the best performing database.

Hybrid cloud architecture for secure and efficient
storage and processing of financial data
The state-of-the-art review shows that even though rela-
tional databases have been the standard storage systems
over the last four decades, recent advancements in alter-
native database technologies have put into question the
status quo. As the exponential increase in data volume,
velocity and variety challenges what relational databases
can handle, industries have been turning to NoSQL for
data storage and management.

Many large organisations including those from the finan-
cial industry have elected a hybrid cloud strategy [29], i.e., a
combination of a public cloud with on-premises (on-prem)
data centres. The scale, power, and flexibility of the hybrid
cloud provides financial companies with significant bene-
fits, particularly the ability to extend existing infrastructure
without incurring large capital costs while retaining latency
prone applications and sensitive data/code on-premises as
appropriate or mandatory by regulations. Moreover, these
international organisations take advantage of cloud data-
bases to replicate and distribute data immediately to mul-
tiple geographic regions thus offering real-time data access
worldwide. Users no longer have to deploy middleware to
deliver database requests anywhere in the world, as clearly
depicted in the following architectural diagram (Fig. 1). As
shown in the figure, the data produced from the financial
institutions in the region is consumed by the applications
running in the nearest data centre and is stored on the on-
prem data store, from where it is transferred to the cloud
and processed for model training and inference. The results
are then stored on to a cloud database and replicated over
the cloud among various geographical regions, making it
easy and fast to query for the users, possibly located thou-
sands of miles apart from the original source of the data.

With over 200 solutions available, choosing the right
database for a given use-case is particularly difficult. In
this article we suggest a set of criteria to ensure adequate
storing and querying of OHLC financial data. This selec-
tion is guided by the requirement to query multiple
records from the database in a high throughput scenario
where speed is critical. In addition, such performance
should be achieved with minimal data storage and main-
tenance costs to the organisation. These criteria are listed
below.

1.	 Database scalability. Top level databases are distin-
guished by their ability to grow the capacity of the
database on demand. In traditional databases, expan-
sion is achieved by replacing the existing storage or
server with a bigger server. As seen in the previous
section, even the biggest affordable servers might
not be able to meet storage requirements of data vol-
ume increasing exponentially [10, 83], which leads to

Page 6 of 17Singh et al. Journal of Cloud Computing (2022) 11:53

either restriction of rapid data expansion or a single
point of failure. On the other hand, databases that
support partitioning of data across servers, which is
often referred to as horizontal scaling or scaling out,
allow increasing storage requirements at minimal
cost.

2.	 Data model and throughput. As revealed in the lit-
erature review the primary difference between the
SQL and NoSQL databases is that the latter promote
flexible design by not using relational data models
[50]. Such flexibility allows the design of much sim-
pler and cheaper alternatives which can deliver high
efficiency and throughput (transactions per second).
Moreover, unlike relational databases which rely on
table schema, NoSQL’s flexible nature makes it also
a lot easier to add new fields and attributes to the
data. On the other hand, relational databases are use-
ful when the relationships between different entities
need to be explicitly expressed.

3.	 Elasticity, i.e., the degree to which a system can adapt
to workload changes by provisioning and deprovi-
sioning resources. The elasticity of a system deter-

mines how responsive it is to current demand, affect-
ing directly performance and costs. Cloud managed
databases are more elastic compared to the user-
managed systems as indicated in our review [1], since
these systems can auto-scale both in terms of com-
pute (number of CPUs/cores) and storage. In princi-
ple non-relational databases benefit from this by scal-
ing horizontally, this then allow faster retrieval of data
as the load is distributed among the new servers.

4.	 Maintenance of databases. A secure and effi-
cient database system must keep up with the latest
changes, bug fixes and security patches. With cloud
managed databases the maintenance is completely
outsourced as the cloud providers automatically
update instances to ensure that the underlying hard-
ware, operating system, and database engine are reli-
able, performant, secure and up to date [15]. Opera-
tional costs can be greatly reduced for organisations
using cloud managed databases as they are easier to
provision, update, and scale along with being more
reliable (with almost no downtime) and secure.

Fig. 1  Hybrid cloud deployment architecture

Page 7 of 17Singh et al. Journal of Cloud Computing (2022) 11:53 	

5.	 Storage efficiency and costs. Efficient storage permits
limiting the amount of space required to store data,
which reduces storage costs. Moreover, by accom-
modating rapid data growth, it can ensure sustained
performance regardless of the size of the database
[26]. As cloud databases use next generation I/O
(Input–output) optimized storage drives, they can
provide faster access to the data for only a negligible
amount of extra costs.

There are relationships and overlap (see Venn diagram
in Fig. 2) between these individual criteria which often
sees an improvement in one coming at the expense of

another. For instance, scalability, elasticity, and mainte-
nance directly affect the database running costs and so
does the database storage efficiency.

In the next section we carry out experiments to eval-
uate the performance of various database systems in
terms of the above-mentioned criteria. Given the struc-
tured nature of the OHLC data, the flexibility of the data
model is less important in this analysis. Figure 3 shows
a block diagram of how our custom benchmarking tool
[14] operates to carry out the experiments with databases
running on the cloud. The dataset is first downloaded and
stored on to a cloud data store from where it can be easily
accessed by the Linux server running our benchmarking
tool. This data is then loaded on to the databases run-
ning on either a user managed server or as a service man-
aged by the cloud provider. Our conclusion will be based
on how well these databases perform when run against
various data workloads. Finally, we will propose the best
performing database as an optimal choice to store the
ever-growing OHLC financial data.

Experiments and results
After specifying the cloud environment and the data-
bases selected for the experiments, this section presents
the dataset and the evaluation framework that have
been used. Then, it reports and analyses the results for
all the considered benchmarking workloads. Finally, a
discussion leads to the identification of the type of data-
base that is the most suitable to store and query OHLC
financial data.

Fig. 2  Criteria chosen to evaluate database performance and their
overlaps

Fig. 3  Architecture used to conduct our experiments

Page 8 of 17Singh et al. Journal of Cloud Computing (2022) 11:53

Cloud environment and databases
The experiments we present in this paper have all been
executed on the cloud as it offers flexibility to run data-
base workloads both traditionally (on a virtual server) or
as a service (managed by the cloud provider). More spe-
cifically, the cloud delivers large storage, high through-
put, and low latency capabilities. In addition, it offers
scalability when the load increases. As per the recent
Gartner (world’s leading research and advisory company)
report [11], the top three leaders in cloud computing in
order of their popularity are Amazon, Microsoft, and
Google, where the leader, Amazon Web Services (AWS),
holds about 40% of the market share providing some of
the best services to choose from. In particular, it offers
a wide range of database services including relational,
non-relational, hybrid and time series databases. AWS
is therefore the choice of cloud provider for the experi-
ments performed in this study.

AWS offer their users a choice between running a
self-managed instance of database on a virtual compute
server (EC2 – Elastic Compute Cloud) and their Data-
base as a Service, Amazon Relational Database Systems
(RDS) which supports six database engines –MySQL,
PostgreSQL, MariaDB, Oracle, Microsoft SQL Server and
Amazon’s own cloud-native RDBMS, Aurora. Both Ama-
zon EC2 and Amazon RDS offer different advantages.
Amazon RDS is easier to set up, manage, and maintain
than running a database on Amazon EC2. This lets the
user to focus on other important tasks, rather than the
day-to-day administration of the database. Although
running databases on an Amazon EC2 is uncommon
because of the lengthy process of setting up and main-
taining the infrastructure, it provides a secure, resiz-
able compute capacity in the cloud giving the user more
control, and flexibility over the resources. Both Amazon
EC2 and Amazon RDS have an associated storage vol-
ume called Elastic Block Store (EBS). EBS offers a high-
performance block-storage which is easy-to-use, highly
available, durable, and scalable. A recent study by Inter-
national Data Corporation (IDC), a premier global pro-
vider of market intelligence, advisory services, and events
for the technology markets [44] found that the customers
using RDS had 39 percent lower database operation costs
and 264 percent return on investment over three years.
When it comes to the non-relational AWS managed
databases, diverse data models are supported including
key-value (e.g., DynamoDB), document (DocumentDB),
in-memory (ElastiCache), graph (Neptune) and time
series (Timestream).

For this experiment, the most popular and widely sup-
ported databases in each of the categories were selected.
Note that commercial databases, such as Oracle and
Microsoft SQL Server, were not considered due to licensing

constraints. For the relational databases, the opensource
MySQL and PostgreSQL were chosen. Data workloads
were first run with databases running on EC2s and the
results were recorded into a CSV (Comma separated val-
ues) file. RDS MySQL and RDS PostgreSQL databases
were then used for running the workloads followed by the
NewSQL/Hybrid database by AWS – Aurora MySQL and
Aurora PostgreSQL. All these databases use the same ver-
sion of MySQL (version 5.7) and PostgreSQL (version 13.3)
respectively. The same pattern was followed for non-rela-
tional databases, by running the data workloads first with
MongoDB running on an EC2, followed by DocumentDB
(AWS managed Document Database that supports Mon-
goDB workloads) [97], and finally DynamoDB (serverless
AWS managed NoSQL database) [19].

For all our experiments, the server-based databases were
run using the r5.2xlarge (db.r5.2xlarge for AWS managed)
instance type which includes 8 vCPUs and a 64 GBytes
RAM (Random Access Memory) running on an Amazon
Linux 2 AMI (Amazon Machine Image). Although these
are modestly sized instances, especially when it comes
to the memory requirements, it is sufficient to conduct
this study’s experiments. Each database was allocated its
minimum required SSD (Solid State Drive) storage, i.e.,
8GBytes for user-managed databases running on EC2s,
10GBytes for Aurora and DocumentDB, and 20GBytes
for RDS instances. On the other hand, as DynamoDB is a
serverless database, it has the ability to scale up or down
its required resources based on the demand. Therefore,
there is no fixed compute or storage for DynamoDB.

In addition to the above resources a virtual com-
pute server or an EC2 is used to run the benchmark-
ing tools. The EC2 instance type is a t3.2xlarge instance
with 100GBytes SSD volume to store the datasets.
The scripts are run on an Amazon Linux 2 AMI with
Java SDK8 (Software Development Kit) and Python3.6
installed on top.

Data
There are a number of online sources (including Google
Finance, Yahoo Finance) that provide OHLC data. The
data set used in this study has been sourced from Kag-
gle, an online community of data scientists which pro-
vides financial data at no cost. Kaggle is a popular data
provider that has been used in many of the research pro-
jects [4, 42, 84]. Specifically, this study uses the “Huge
Stock Market Dataset” [62], which provides millions
of historical data points across a broad range of instru-
ments. This study will be using the historical daily price
and volume data for securities on the NYSE (New York
Stock Exchange) and NASDAQ (National Association of
Securities Dealers Automated Quotations). The dataset
contains the OHLCV (OHLC along with the total traded

Page 9 of 17Singh et al. Journal of Cloud Computing (2022) 11:53 	

volume) values for up to 7,195 stocks and 1,344 ETFs
(Exchange-Traded Funds) for each day between 1968 and
2018 (according to their availability on the market), i.e.,
a total of 12,648 trading days. For each security there is
a single file named after its ticker symbol which contains
one record per day starting from the day the security was
first listed on the exchange until either its last day on the
exchange or the end of 2018. Each record contains six
values: the date, open price, high price, low price, close
price, and the volume. Table 1 shows a sample of records
for ‘Apple’ in the year 1984 when it was first listed on
NASDAQ. Prices are represented by numbers with five
decimal places. The data is in its raw format without any
transformations besides adjustments to the prices for
dividends and stock splits to provide a more accurate
measure of the real value of the stock [4].

Evaluation framework and scope
Performance comparison was achieved by loading the
“Huge Stock Market Dataset” to the selected databases,
performing queries, and running various workloads. This
was informed by the workloads defined in the Yahoo!
Cloud Serving Benchmark (YCSB) [22], the most popu-
lar benchmarking framework for NoSQL databases. The
YCSB tool could not be used as it does not have sup-
port for traditional relational databases. Therefore, to
ensure benchmarking consistency, we designed our own
custom scripts [14] to interact with all databases. Our
custom benchmarking tool was developed using well-
documented libraries in Python and, similar to YCSB, it
comprises of two components: a data generator where
the data is loaded on to the database (load operation),
and a workload generator which runs predefined work-
loads (run operation) based on parameters such as per-
centage of inserts, reads, updates or deletes, as well as
the number of operations and the number of records.
To ensure a fair comparison all databases were evaluated
by running the same set of queries with the predefined
workloads, also maintaining the query execution order.

Due to the application requirement of dealing with real
time data, an appropriate database needs to be able to
load the selected dataset with at least 250 k inserts/sec.
For such a high throughput it should allow batch inserts

and reads, and usage of multiple threads or concurrent
connections. This is particularly important to take advan-
tage of the parallel processing power of the system on
which the analysis is running. Moreover, as OHLC data is
time series data, their analysis requires performing rapid
operations such as aggregations, filtering, and joins on
the date and time fields.

This experiment has been conducted using a small
dataset involving two exchanges. In real-world appli-
cations, analysis is run on much larger data sets which
is multiple-folds the size of the experiment. Thus, an
appropriate system must be able to scale out to support
huge datasets (multiple terabytes or even petabytes) and
very high request rates. Fortunately, most of the cloud
native databases (including RDS, Aurora, DocumentDB,
DynamoDB) were architected to scale-out by distributing
load across multiple servers [5].

Although in a production workload, high availability
of the data and disaster recovery provisions are essen-
tial, these aspects are not considered in this study since
they are delivered by cloud databases that store database
snapshots and support multiple replicas over multiple
regions [59]. Instead, the focus of this study is to meas-
ure latency and throughput in terms of reads, writes and
updates over time as the data grows, database scalability
and elasticity (i.e., the ability to adapt to changing work-
load by provisioning and deprovisioning resources), stor-
age space usage, and associated costs [61].

Experimental results
This section presents the results obtained after running
the predefined workloads with each of the selected data-
base systems. For running the experiments, the dataset
was divided into two equal parts — ‘load’ and ‘insert’.
Whereas the ‘load’ data were solely used to load the data
in the database before running the workloads, the ‘insert’
data were exploited to perform insert operations when
running the workloads. For these experiments a total of
five workloads were defined with varying proportions of
‘insert’, ‘read’ and ‘update’ operations as shown in Table 2.
Note that the values of the first 4 workloads were chosen
to emulate the default workloads defined in YCSB [22].
Moreover, an additional balanced load was included.

The initial load operation was performed with 100,000
data records on each of the database systems. During the
process, throughput (operations/second) and maximum,
minimum, and average latencies over fixed time intervals
were recorded. Analysis of the associated graph, Fig. 4,
shows that MongoDB outperforms all other systems in
terms of required loading time. It was able to load the whole
subset of data in 48 s, whereas the runner-up MySQL took
more than twice the time, i.e., 112 s. We note similar per-
formance of MySQL running on either user managed EC2

Table 1  Sample input data for apple (AAPL)

Date Open High Low Close Volume

1984–09-07 0.42388 0.42902 0.41874 0.42388 23,220,030

1984–09-10 0.42388 0.42516 0.41366 0.42134 18,022,532

1984–09-11 0.42516 0.43668 0.42516 0.42902 42,498,199

1984–09-12 0.42902 0.43157 0.41618 0.41618 37,125,801

Page 10 of 17Singh et al. Journal of Cloud Computing (2022) 11:53

or AWS managed RDS instance, whilst Aurora MySQL
requires 29% more time. This may be explained by the
fact that Aurora offers high availability by storing multiple
copies of the data in different availability zones. While the
PostgreSQL database on EC2 only requires 12% more time
than its MySQL equivalent, its RDS and Aurora versions
deliver much poorer performance. Eventually, the AWS
proprietary DynamoDB database proves to be the slowest
system, taking around five times longer than MongoDB.
This behaviour will easily be explained by the following
analysis of the size of the created tables.

Table 3 presents the size of the tables created for each of
these database systems. As expected, there is good correla-
tion between table size and data loading time: MongoDB’s
is the most compact, while DynamoDB requires more
than 24 times more space. Indeed, DynamoDB stores most
of the data in form of a character string.

Table 4 shows the average values of maximum,
minimum and average latencies (and standard devia-
tions) in milliseconds for all databases in a two-second

interval. The average and the minimum latency values
are in line with the graph displayed in Fig. 4: while Mon-
goDB requires less than 1 ms to perform one ‘insert’,
DynamoDB takes about 6 ms. The maximum latency
values (also visible on Figs. 5 and 6) vary widely from
database to database. Such variations may be associated
to various phenomena, including the locking strategy
employed by MongoDB databases, the latency observed
while waiting for data to be replicated to redundant
instances for high availability of RDS databases, and the
presence of abnormal traffic load. Despite high maximum
latency values, standard deviations are quite low indicat-
ing that those maxima should be seen as outliers.

Following the presentation of load performance, which
has shown the dominance of MongoDB, the focus moves
on the evaluation of the various systems under the pre-
defined workloads. One should note that for us, the most

Table 2  Benchmarking workloads

Workload Insert (%) Read (%) Update (%)

a 0 95 5

b 0 50 50

c 50 50 0

d 50 0 50

e 33.3 33.3 33.3

Fig. 4  Performance of databases with ‘load’ operation

Table 3  Database table size

Database Size (MBytes)

mongodb 4.93

mysql 6.52

rds-mysql 6.52

aurora-mysql 6.52

postgres 8.35

rds-postgres 8.35

aurora-postgres 8.35

documentdb 25.67

dynamodb 120.00

Page 11 of 17Singh et al. Journal of Cloud Computing (2022) 11:53 	

important ones are workload-a (read-intensive) and
workload-c (read & write intensive), as in our use case
the dataset is rarely updated. Figures 5 and 6 show the
performance of the databases in terms of their through-
put for workload-a and workload-c respectively.

For the read intensive workload-a, the AWS managed
MySQL databases perform best completing the 100,000
operations in about half a minute. This may be explained
by the throughput optimized storage that these instances
use. The SQL instances running on EC2s require up to 45%
more time. While AWS managed PostgreSQL instances,
i.e., aurora- and rds-postgres, are less efficient, the NoSQL
databases are those which perform worse. In particular,
DynamoDB needs a total of 218 s to finish the task. Such

slow processing is likely to be the outcome of the data par-
titioning used for storing a database on multiple nodes.

However, experiments with workload-c reveal a
similar picture with the exception of MongoDB which
performs best. Also, as workload-c consists of a set of
randomly arranged read and write operations, most sys-
tems deliver a throughput with large variations. In the
case of MongoDB, the ‘reads’ have much higher latency
than the ‘inserts’. Note that similar results were obtained
for the remaining three workloads that include a higher
proportion of update operations. Their associated
graphs can be seen in the appendix of this manuscript.

In terms of cost comparison, Table 5 provides estimates
of what it would cost to load the data and run workload-
a on each database assuming the database is shut down

after the operations finish. As seen in the table, these
databases have different minimum storage requirements:
while RDS databases require a minimum of 20GBytes to
be pre-provisioned on creation, Aurora and DocumentDB
instances need a minimum of 10GBytes, and for the data-
bases running on an EC2, the root volume size should not
be less than 8GBytes. Along with a minimum storage these
instances also have a minimum billing time, it is 60 s for
the EC2s and 600 s for RDS, Aurora and DocumentDB.
The costs are calculated using the following formula

c

3600
+

s ∗ g

30 ∗ 24 ∗ 3600
∗ t

Table 4  Latency statistics

Database Max
Latency
(ms)

Min
Latency
(ms)

Avg
Latency
(ms)

Std
Deviation
(ms)

mongodb 2.83 0.82 0.85 0.28

mysql 9.36 1.62 2.13 0.74

rds-mysql 9.33 1.10 2.15 0.71

aurora-mysql 7.48 2.14 2.80 0.63

postgres 8.32 2.13 2.40 0.86

rds-postgres 9.14 3.53 3.81 0.95

aurora-postgres 7.74 3.04 3.32 0.31

documentdb 7.44 2.56 2.88 0.32

dynamodb 17.63 5.36 6.01 2.74

Fig. 5  Performance of databases with Workload-a (Read-intensive tasks)

Page 12 of 17Singh et al. Journal of Cloud Computing (2022) 11:53

where,
c is the compute cost in USD-per-hour (United States

Dollar-per-hour)
s is the allocated or the used storage size in GBytes
g is the storage costs in USD per GByte-month (here it

is assumed that a month has 30 days)
t is maximum of either the minimum billing time or the

time it took to finish the execution of the load operation
and workload-a, in seconds.

Table 5 reveals that, as AWS is solely responsible for
the maintenance, including upgrades without downtime
and operational tasks like automated backups, failover,
high availability and durability of all RDS instances
including the MySQL, and PostgreSQL and the Docu-
mentDB, their costs are up to 10 times those of the user

managed instances. Still, in the long-term AWS man-
aged databases would be a good choice if outsourcing
the maintenance work was seen beneficial by reduc-
ing operational costs even at additional running costs.
Moreover, since Aurora instances offer additional func-
tionality such as storage auto-scaling and high avail-
ability, their costs are even higher. Finally, DynamoDB
with provisioned capacity of 1000 read units and 1000
write units would cost about $0.134, which is cheaper
than any other AWS managed databases used in our
experiments.

Finally, we review the possible solutions using the
set of criteria previously defined. Our experiments
show that, in terms of Database scalability, a cus-
tomer-managed instance of a database running on an

Fig. 6  Performance of databases with Workload-c (Read & Write Intensive tasks)

Table 5  Running costs (as on 1st December 2021)

Database Database Type Compute costs
(USD-per-hour)

Storage
(GBytes)

Storage costs (USD
per GByte-month)

Billing Time
(secs)

Total Costs (USD)

mongodb Customer managed 0.592 8 0.116 128 0.021

mysql Customer managed 0.592 8 0.116 157 0.026

rds-mysql AWS managed 1.12 20 0.133 600 0.187

aurora-mysql AWS managed 1.36 10 0.10 600 0.227

postgres Customer managed 0.592 8 0.116 170 0.028

rds-postgres AWS managed 1.176 20 0.133 600 0.197

aurora-postgres AWS managed 1.36 10 0.10 600 0.227

documentdb AWS managed 1.30 10 0.116 600 0.217

dynamodb AWS managed serverless 0.78 0.12 0.03 524 0.113

Page 13 of 17Singh et al. Journal of Cloud Computing (2022) 11:53 	

EC2 is not self-capable of scaling up or down based
on the demand. An organisation requiring such capa-
bilities would have to opt for an AWS managed data-
base. Regarding Data throughput, with the exception
of read-intensive tasks, MongoDB outperforms all the
other database systems we investigated. Alternatively,
when considering read-intensive workloads, SQL data-
bases, in particular MySQL, seem to be the solution
of choice as they consistently deliver good through-
put in all evaluated scenarios. On the topic of Elastic-
ity, self-managed database instances require a manual
intervention to add or remove new nodes based on
the demand, whereas an AWS managed instance can
deliver such services without such intervention. One of
the useful features of using Cloud technologies is that
it offers autoscaling of resources which can be trig-
gered based on the utilisation metrics of resources.
This needs to be manually configured for the customer-
managed instances whereas it is automatically provided
with AWS managed databases. With respect to Main-
tenance, operational tasks, such as updates, security
patches, and encryption, are automatically performed
by AWS for all the managed databases, whereas these
tasks need to be carried out manually for customer
managed instances. In addition to requiring in-house
expertise and resources, the latter are often associated
with delays and downtimes. Lastly, in terms of Storage
efficiency, MongoDB is the most economical followed
by the SQL databases. However, it is important to spec-
ify that in addition to the data volume, the maintenance
type and throughput directly affect the database run-
ning costs. Although DynamoDB, the AWS managed
serverless database, performed worst in our experi-
ments, AWS claims that some substantial performance
improvements (up to 10 × faster) might be observed
by introducing a caching layer (DAX – DynamoDB
Accelerator [85]) in front of the DynamoDB table. We
were not able to test this, but one should keep in mind
that would come with additional costs and would only
impact the ‘read’ operations.

Regarding our specific case study which involves storing
and querying an essentially linearly growing (as histori-
cal data is never discarded and variations of the number
of stocks are limited) volume of OHLC financial data, our
experiments suggest that MongoDB is the best choice.
Firstly, in all tested configurations with the exception of
Workload-a, it delivers best performance. Secondly, it
is also the cheapest, which is particularly important as
data records permanently increase in number. Indeed,
MongoDB has ability to efficiently compress data, which
directly reduces the costs of running and maintaining

them. Thirdly, being a NoSQL database MongoDB can
be scaled horizontally by adding more servers to the net-
work, which makes it more elastic compared to the SQL
databases. Naturally, this would come at the expense
of spending extra time and resources on maintenance.
DocumentDB would be an interesting choice for an
organisation wishing to outsource these operational tasks.
Although MySQL offers better ‘read’ performance, it still
lags behind MongoDB for all other types of workloads.
Moreover, low latency and high throughput are not the
only requirements here. As specified earlier: scalability,
elasticity, storage, and costs all contribute to our decision.
Since MySQL is a relational database, it cannot scale hori-
zontally. Moreover, it occupies more storage space and is
costlier than MongoDB. Therefore, a relational database
like MySQL would not be an optimal choice especially
when we are talking about Peta-byte range of data [74].

Conclusion
As more and more financial organisations run their pro-
duction load in hybrid cloud environments and many
alternatives to the standard relational databases are
available, the selection of the most appropriate data-
base has become more challenging. To address this, this
study evaluated performance of popular relational and
non-relational databases for storing and querying finan-
cial Open High Low Close data. This was performed by
conducting experiments whose outcomes were analysed
according to a set of application-relevant criteria, i.e.,
scaling power, throughput and latency, elasticity, mainte-
nance, storage space used and their associated costs.

Those experiments revealed that the non-relational
databases are fully capable of replacing the relational
databases traditionally used for storing OHLC data. In
particular, MongoDB offers best performance in terms of
query execution time for most of the considered work-
loads while consuming only a fraction of storage space
used by relational databases. Moreover, unlike relational
databases, it is also very responsive to both the ever-
growing data flow and highly variable workloads. Finally,
we suggest that, in the context of a hybrid cloud environ-
ment, organisations would benefit from the additional
capabilities offered by cloud-native databases since they
offer valuable services such as automated maintenance,
automatic backups and replication including cross-
regional replication and creating read-replicas of the
database, which delivers higher availability. In further
work, it would be interesting to evaluate the responsive
power of these cloud-native databases in terms of scal-
ability, when data outgrows the storage capacity, and also
elasticity by varying the load on the database.

Page 14 of 17Singh et al. Journal of Cloud Computing (2022) 11:53

Appendix
Fig. 7

Fig. 8

Fig. 7  Performance of databases with Workload-b (equal number of reads and updates)

Fig. 8  Performance of databases with Workload-d (equal number of inserts and updates)

Page 15 of 17Singh et al. Journal of Cloud Computing (2022) 11:53 	

Fig. 9

Abbreviations
AAPL: Apple; ACID: Atomic, Consistent, Isolated, Durable; AMI: Amazon
Machine Image; AWS: Amazon Web Services; BASE: Basic Availability, Soft
state, Eventual consistency; CAP: Consistency, Availability, and Partitioning;
CPU: Central Processing Unit; CSV: Comma Separated Values; DAX: DynamoDB
Accelerator; EBS: Elastic Block Store; EC2: Elastic Compute Cloud; ETF:
Exchange Traded Fund; GBytes: Gigabytes; IDC: International Data Corporation;
IoT: Internet of Things; I/O: Input–Output; KTP: Knowledge Transfer Partner‑
ship; Mbytes: Megabytes; NASDAQ: National Association of Securities Dealers
Automated Quotations; NoSQL: Not Only Structured Query Language; NYSE:
New York Stock Exchange; OHLC: Open, High, Low, Close; OHLCV: Open, High,
Low, Close, Volume; RAM: Random Access Memory; RDBMS: Relational Data‑
base Management System; RDS: Relational Database Systems; SDK: Software
Development Kit; SQL: Structure Query Language; SSD: Solid State Drive; USD:
United States Dollar; YCSB: Yahoo! Cloud Serving Benchmark.

Authors’ contributions
BS wrote the review of database systems, performed the implementation,
conducted the experiments, and led the production of the original draft. RM
wrote the financial market aspects of the paper and contributed to the discus‑
sion of the results. TM and JA provided all the resources required to undertake
the study and contributed to the refinement of the methodology. GH contrib‑
uted to the analysis of experimental results and the discussion of the results.
JCN proposed the idea and the general methodology, and contributed to the
analysis of experimental results. All authors reviewed and edited the original
draft and all authors read and approved the final manuscript.

Funding
This manuscript is a work of a Knowledge Transfer Partnership (KTP) between
the Kingston University, London and Instinet Global Services Limited, London.
The KTP project is jointly funded by Instinet and Innovate UK which is a part of
the UK Research and Innovation (UKRI) agency providing money and support
to organisations to make new products and services.

Availability of data and materials
The dataset supporting the conclusions of this article is available in the
Kaggle datasets repository, [https://​www.​kaggle.​com/​boris​marja​novic/​
price-​volume-​data-​for-​all-​us-​stocks-​etfs].

Declarations

Competing interests
The authors of this manuscript have no conflict of interest.

Author details
1 School of Computer Science and Mathematics, Kingston University, Lon‑
don KT1 2EE, UK. 2 Instinet Global Services Limited, 1 Angel Lane, London EC4R
3AB, UK.

Received: 25 February 2022 Accepted: 26 August 2022

References
	1.	 Abdelhafiz BM, Elhadef M (2021) January. Sharding Database for Fault

Tolerance and Scalability of Data. In 2021 2nd International Conference
on Computation, Automation and Knowledge Management (ICCAKM)
(pp. 17–24). IEEE.

	2.	 Abourezq M, Idrissi A (2016) Database-as-a-service for big data: An
overview. International Journal of Advanced Computer Science and
Applications (IJACSA), 7(1).

	3.	 Agarwal S, Rajan KS (2017) Analyzing the performance of NoSQL vs. SQL
databases for Spatial and Aggregate queries. In Free and Open Source
Software for Geospatial (FOSS4G) Conference Proceedings (Vol. 17, No.
1, p. 4).

Fig. 9  Performance of databases with Workload-e (equal number of read, inserts and updates)

https://www.kaggle.com/borismarjanovic/price-volume-data-for-all-us-stocks-etfs
https://www.kaggle.com/borismarjanovic/price-volume-data-for-all-us-stocks-etfs

Page 16 of 17Singh et al. Journal of Cloud Computing (2022) 11:53

	4.	 Agarwal T, Quelle H, Ryan C (2020) Stock Trend Evolution. University of
Arizona.

	5.	 Ahmad AAS, Andras P (2019) Scalability analysis comparisons of cloud-
based software services. Journal of Cloud Computing 8(1):1–17

	6.	 Ahmad K, Alam MS, Udzir NI (2019) Security of NoSQL database against
intruders. Recent Patents on Engineering 13(1):5–12

	7.	 Compose, An IBM Company. Alba, L., November 2016. Building OHLC
Data in PostgreSQL. Available from https://​www.​compo​se.​com/​artic​les/​
build​ing-​ohlc-​data-​in-​postg​resql/. Accessed 26 Oct 2021.

	8.	 Antas J, Rocha Silva R, Bernardino J (2022) Assessment of SQL and NoSQL
Systems to Store and Mine COVID-19 Data. Computers 11(2):29

	9.	 Bagui S, Nguyen LT (2015) Database sharding: to provide fault tolerance
and scalability of big data on the cloud. International Journal of Cloud
Applications and Computing (IJCAC) 5(2):36–52

	10.	 BalaMurali A, Sravanthi PS, Rupa B (2020) January. Smart and Secure Vot‑
ing Machine using Biometrics. In 2020 Fourth International Conference
on Inventive Systems and Control (ICISC) (pp. 127–132). IEEE.

	11.	 Gartner Bala R, Gill B (2021) Magic Quadrant for Cloud Infrastructure and
Platform Services. Available from https://​www.​gartn​er.​com/​doc/​repri​nts?​
id=1-​271OE​4VR&​ct=​21080​2&​st=​sb. Accessed 26 Oct 2021.

	12.	 Balusamy B, Kadry S, Gandomi AH (2021) NoSQL Database. Big Data:
Concepts, Technology, and Architecture, Wiley, pp. 53–81.

	13.	 Beaulieu A (2009) Mary E Treseler (ed.). Learning SQL (2nd ed.).
Sebastopol, O’Reilly. ISBN 978–0–596–52083–0.

	14.	 GitHub Singh B (2021) Cloud based evaluation of databases. Available
from https://​github.​com/​handa​balde​ep/​cloud-​based-​evalu​ation-​of-​
datab​ases. Accessed 26 Oct 2021.

	15.	 Bhatti HJ, Rad BB (2017) Databases in cloud computing. Int J Inf Technol
Comput Sci 9(4):9–17

	16.	 Cao Z, Dong S, Vemuri S, Du DH (2020) Characterizing, modeling, and
benchmarking rocksdb key-value workloads at facebook. In 18th {USENIX}
Conference on File and Storage Technologies ({FAST} 20) (pp. 209–223).

	17.	 Chakraborty S, Paul S, Hasan KA (2021) January. Performance Compari‑
son for Data Retrieval from NoSQL and SQL Databases: A Case Study for
COVID-19 Genome Sequence Dataset. In 2021 2nd International Confer‑
ence on Robotics, Electrical and Signal Processing Techniques (ICREST)
(pp. 324–328). IEEE.

	18.	 Chauhan VP (2019) Google Big Table: A Change to Data Analytics. Interna‑
tional Journal of Information Security and Software Engineering 5(1):5–9

	19.	 Chawathe SS (2019) September. Cost-Based Query-Rewriting for
DynamoDB: Work in Progress. In 2019 IEEE 18th International Symposium
on Network Computing and Applications (NCA) (pp. 1–3). IEEE.

	20.	 Chen JK, Lee WZ (2019) An Introduction of NoSQL Databases based on
their categories and application industries. Algorithms 12(5):106

	21.	 Codd EF (1970) A Relational Model of Data for Large Shared Data Banks.
Commun ACM 13(6):377–387

	22.	 Cooper BF, Silberstein A, Tam E, Ramakrishnan R, Sears R (2010) Bench‑
marking cloud serving systems with YCSB. In Proceedings of the 1st ACM
symposium on Cloud computing (pp. 143–154).

	23.	 DB-Engines. DB-Engines Ranking 2021. Available from https://​db-​engin​
es.​com/​en/​ranki​ng. Accessed 8 Oct 2021.

	24.	 Dean J, Ghemawat S (2008) MapReduce: simplified data processing on
large clusters. Commun ACM 51(1):107–113

	25.	 DeCandia G, Hastorun D, Jampani M, Kakulapati G, Lakshman A, Pilchin
A, Sivasubramanian S, Vosshall P, Vogels W (2007) Dynamo: Amazon’s
highly available key-value store. ACM SIGOPS operating systems review
41(6):205–220

	26.	 Deka GC (2013) A survey of cloud database systems. It Professional
16(2):50–57

	27.	 ElDahshan KA, AlHabshy AA, Abutaleb GE (2020) Data in the time of
COVID-19: a general methodology to select and secure a NoSQL DBMS
for medical data. PeerJ Computer Science 6:e297

	28.	 Erraji A, Maizate A, Ouzzif M (2021) Toward a Smart Approach of Migra‑
tion from Relational System DataBase to NoSQL System: Transformation
Rules of Structure. In The Proceedings of the International Conference on
Smart City Applications (pp. 783–794). Springer, Cham.

	29.	 Fang B, Zhang P (2016) Big data in finance. In Big data concepts, theories,
and applications (pp. 391–412). Springer, Cham.

	30.	 Fiess NM, MacDonald R (2002) Towards the fundamentals of technical
analysis: analysing the information content of High. Low and Close prices
Economic Modelling 19(3):353–374

	31.	 Gilbert S, Lynch N (2012) Perspectives on the CAP Theorem. Computer
45(2):30–36

	32.	 Goel K, Ter Hofstede AH (2021) Privacy-Breaching Patterns in NoSQL
Databases. IEEE Access 9:35229–35239

	33.	 Gokul M, Balamurali M (2021) A Process Of Developing An Internet
Of Things Based Model For Manufacture Monitoring In Automobile
Industry. Turkish Journal of Computer and Mathematics Education
12(12):4541–4553

	34.	 Gray J (1981) The transaction concept: Virtues and limitations. In VLDB
(Vol. 81, pp. 144–154).

	35.	 Gupta A, Tyagi S, Panwar N, Sachdeva S, Saxena U (2017) NoSQL data‑
bases: Critical analysis and comparison. In 2017 International Conference
on Computing and Communication Technologies for Smart Nation
(IC3TSN) (pp. 293–299). IEEE.

	36.	 Gupta S, Narsimha G (2017) Efficient query analysis and performance
evaluation of the NoSQL data store for bigdata. In Proceedings of the First
International Conference on Computational Intelligence and Informatics
(pp. 549–558). Springer, Singapore.

	37.	 Haerder T, Reuter A (1983) Principles of transaction-oriented database
recovery. ACM computing surveys (CSUR) 15(4):287–317

	38.	 Hamouda S, Zainol Z (2017) Document-oriented data schema for rela‑
tional database migration to NoSQL. In 2017 International conference on
big data innovations and applications (innovate-data) (pp. 43–50). IEEE.

	39.	 Hansen KB (2020) The virtue of simplicity: On machine learning models in
algorithmic trading. Big Data Soc 7(1):2053951720926558

	40.	 Hansen KB, Borch C (2022) Alternative data and sentiment analysis: Pros‑
pecting non-standard data in machine learning-driven finance. Big Data
Soc 9(1):20539517211070700

	41.	 Haugen K (2012) A Brief History of NoSQL. All About the Code. Available
from: http://​blog.​knuth​augen.​no/​2010/​03/a-​brief-​histo​ry-​of-​nosql.​html.
Accessed 8 Oct 2021.

	42.	 Heaukulani C, van der Wilk M (2019) Scalable Bayesian dynamic covari‑
ance modeling with variational Wishart and inverse Wishart processes.
arXiv preprint arXiv:​1906.​09360.

	43.	 Herrera-Ramírez JA, Treviño-Villalobos M, Víquez-Acuña L (2021) Hybrid
storage engine for geospatial data using NoSQL and SQL paradigms.
Revista Tecnología en Marcha, pp. 40–54.

	44.	 IDC White Paper. Olofson C, Marden M (2020) Amazon Relational
Database Service Delivers Enhanced Database Performance at Lower
Total Cost. Available from https://​pages.​awscl​oud.​com/​rs/​112-​TZM-​766/​
images/​IDC_​Amazon_​RDS_​Deliv​ers_​Enhan​ced_​Datab​ase_​Perfo​rmance_​
at_​Lower%​20Tot​al_​Cost.​pdf. Accessed 26 Oct 2021.

	45.	 James BE, Asagba PO (2017) Hybrid database system for big data storage
and management. International Journal of Computer Science, Engineer‑
ing and Applications (IJCSEA) Vol, 7.

	46.	 Jensen SK, Pedersen TB, Thomsen C (2017) Time series management
systems: A survey. IEEE Trans Knowl Data Eng 29(11):2581–2600

	47.	 Kang YS, Park IH, Rhee J, Lee YH (2015) MongoDB-based repository
design for IoT-generated RFID/sensor big data. IEEE Sens J 16(2):485–497

	48.	 Kaur K, Sachdeva M (2017) Performance evaluation of NewSQL
databases. In 2017 International Conference on Inventive Systems and
Control (ICISC) (pp. 1–5). IEEE.

	49.	 Kausar MA, Nasar M (2021) SQL versus NoSQL databases to assess
their appropriateness for big data application. Recent Advances in
Computer Science and Communications (Formerly: Recent Patents on
Computer Science), 14(4), pp.1098–1108.

	50.	 Kepner J, Gadepally V, Hutchison D, Jananthan H, Mattson T, Samsi S,
Reuther A (2016) Associative array model of SQL, NoSQL, and NewSQL
Databases. In 2016 IEEE High Performance Extreme Computing Confer‑
ence (HPEC) (pp. 1–9). IEEE.

	51.	 Khan S, Liu X, Ali SA, Alam M (2019) Storage solutions for big data
systems: A qualitative study and comparison. arXiv preprint arXiv:​1904.​
11498.

	52.	 Khasawneh TN, AL-Sahlee MH, Safia AA (2020) SQL, NewSQL, and
NOSQL databases: a comparative survey. In 2020 11th International
Conference on Information and Communication Systems (ICICS) (pp.
013–021). IEEE.

	53.	 Towards Data Science. Komarov, O., 2020. How to store financial data:
a SQL vs No-SQL comparison. Available from https://​towar​dsdat​ascie​
nce.​com/​how-​to-​store-​finan​cial-​data-a-​sql-​vs-​no-​sql-​compa​rison-​
bbd0d​71bfc​26. Accessed 26 Oct 2021.

https://www.compose.com/articles/building-ohlc-data-in-postgresql/
https://www.compose.com/articles/building-ohlc-data-in-postgresql/
https://www.gartner.com/doc/reprints?id=1-271OE4VR&ct=210802&st=sb
https://www.gartner.com/doc/reprints?id=1-271OE4VR&ct=210802&st=sb
https://github.com/handabaldeep/cloud-based-evaluation-of-databases
https://github.com/handabaldeep/cloud-based-evaluation-of-databases
https://db-engines.com/en/ranking
https://db-engines.com/en/ranking
http://blog.knuthaugen.no/2010/03/a-brief-history-of-nosql.html
http://arxiv.org/abs/1906.09360
https://pages.awscloud.com/rs/112-TZM-766/images/IDC_Amazon_RDS_Delivers_Enhanced_Database_Performance_at_Lower%20Total_Cost.pdf
https://pages.awscloud.com/rs/112-TZM-766/images/IDC_Amazon_RDS_Delivers_Enhanced_Database_Performance_at_Lower%20Total_Cost.pdf
https://pages.awscloud.com/rs/112-TZM-766/images/IDC_Amazon_RDS_Delivers_Enhanced_Database_Performance_at_Lower%20Total_Cost.pdf
http://arxiv.org/abs/1904.11498
http://arxiv.org/abs/1904.11498
https://towardsdatascience.com/how-to-store-financial-data-a-sql-vs-no-sql-comparison-bbd0d71bfc26
https://towardsdatascience.com/how-to-store-financial-data-a-sql-vs-no-sql-comparison-bbd0d71bfc26
https://towardsdatascience.com/how-to-store-financial-data-a-sql-vs-no-sql-comparison-bbd0d71bfc26

Page 17 of 17Singh et al. Journal of Cloud Computing (2022) 11:53 	

	54.	 Kotenko I, Krasov A, Ushakov I, Izrailov K (2021) An Approach for Stego-
Insider Detection Based on a Hybrid NoSQL Database. J Sens Actuator
Netw 10(2):25

	55.	 Kunda D, Phiri H (2017) A comparative study of nosql and relational
database. Zambia ICT Journal 1(1):1–4

	56.	 Leavitt N (2010) Will NoSQL databases live up to their promise? Com‑
puter 43(2):12–14

	57.	 Lee KKY, Tang WC, Choi KS (2013) Alternatives to relational database:
comparison of NoSQL and XML approaches for clinical data storage.
Comput Methods Programs Biomed 110(1):99–109

	58.	 Li Y, Manoharan S (2013) A performance comparison of SQL and
NoSQL databases. In 2013 IEEE Pacific Rim Conference on Communica‑
tions, Computers and Signal Processing (PACRIM) (pp. 15–19). IEEE.

	59.	 Li F (2019) Cloud-native database systems at Alibaba: Oppor‑
tunities and challenges. Proceedings of the VLDB Endowment
12(12):2263–2272

	60.	 Makris A, Tserpes K, Andronikou V, Anagnostopoulos D (2016) A classifica‑
tion of NoSQL data stores based on key design characteristics. Procedia
Computer Science 97:94–103

	61.	 Marcus R, Semenova S, Papaemmanouil O (2017) A learning-based
service for cost and performance management of cloud databases. In
2017 IEEE 33rd International Conference on Data Engineering (ICDE) (pp.
1361–1362). IEEE.

	62.	 Kaggle Marjanovic B (2017) Huge stock market dataset. Available from
https://​www.​kaggle.​com/​boris​marja​novic/​price-​volume-​data-​for-​all-​us-​
stocks-​etfs. Accessed 26 Oct 2021.

	63.	 Molnár P (2012) Properties of range-based volatility estimators. Int Rev
Financ Anal 23:20–29

	64.	 Murphy JJ (1999) Technical analysis of the financial markets: A compre‑
hensive guide to trading methods and applications. Penguin.

	65.	 Neuman BC, Ts’o T (1994) Kerberos: An authentication service for com‑
puter networks. IEEE Commun Mag 32(9):33–38

	66.	 Nison S (2001) Japanese candlestick charting techniques: a contempo‑
rary guide to the ancient investment techniques of the Far East. Penguin

	67.	 TrustRedius. List of top NoSQL Databases, 2021. Available from https://​
www.​trust​radius.​com/​nosql-​datab​ases?__​cf_​chl_​captc​ha_​tk__=​dy_​
ptLGa​j8T0.​MEgpZ​jMAIa_​v7Mif​zjnRW​kg6.​1HNBo-​16402​54084-0-​gaNyc​
GzNBuU#​produ​cts. Accessed 8 Oct 2021.

	68.	 Oussous A, Benjelloun FZ, Lahcen AA, Belfkih S (2017) NoSQL databases
for big data. International Journal of Big Data Intelligence 4(3):171–185

	69.	 Parker Z, Poe S, Vrbsky SV (2013) Comparing NoSQL MongoDB to an SQL
DB, Proceedings of the 51st ACM Southeast Conference, Article No.: 5, pp
1–6.

	70.	 Patel T, Eltaieb T (2015) Relational database vs NoSQL. Journal of Multidis‑
ciplinary Engineering Science and Technology (JMEST) 2(4):691–695

	71.	 Pepito G. RDBMS to NoSQL Migration: Challenges and Strategies.
Information Technology and Management. Carnegie Mellon University
– Australia.

	72.	 Petram L (2014) The world’s first stock exchange. Columbia University
Press

	73.	 Sahatqija K, Ajdari J, Zenuni X, Raufi B, Ismaili F (2018) Comparison
between relational and NOSQL databases. In 2018 41st international
convention on information and communication technology, electronics
and microelectronics (MIPRO) (pp. 0216–0221). IEEE.

	74.	 Salama R (2011) A regression testing framework for financial time-series
databases: an effective combination of fitnesse, scala, and kdb/q. In
Proceedings of the ACM international conference companion on Object
Oriented programming systems languages and applications companion
(pp. 149–154).

	75.	 Samaraweera GD, Chang JM (2021) SEC-NoSQL: Towards Implement‑
ing High Performance Security-as-a-Service for NoSQL Databases. arXiv
preprint arXiv:​2107.​01640.

	76.	 Sarasa-Cabezuelo A (2021) New Trends in Databases to NonSQL Data‑
bases. In Encyclopedia of Information Science and Technology, Fifth
Edition (pp. 791–799). IGI Global.

	77.	 Schmidt AB (2011) Financial markets and trading: an introduction to
market microstructure and trading strategies (Vol. 637). Wiley.

	78.	 Shafer I, Sambasivan RR, Rowe A, Ganger GR (2013) Specialized storage
for big numeric time series. In 5th {USENIX} Workshop on Hot Topics in
Storage and File Systems (HotStorage 13).

	79.	 Shahriar H, Haddad HM (2017) Security vulnerabilities of nosql and sql
databases for mooc applications. International Journal of Digital Society
(IJDS) 8(1):1244–1250

	80.	 Shi X, Zhang P, Khan SU (2017) Quantitative data analysis in finance. In
Handbook of Big Data Technologies (pp. 719–753). Springer, Cham.

	81.	 Shkoukani M, Altamimi AM (2020) Graph Database Security: Blockchain
Solution and Open Challenges. International Journal of Simulation-
-Systems, Science & Technology, 21(1).

	82.	 SIFMA Insights. Electronic Trading Market Structure Primer, 2019. Avail‑
able from https://​www.​sifma.​org/​wp-​conte​nt/​uploa​ds/​2019/​10/​SIFMA-​
Insig​hts-​Elect​ronic-​Tradi​ng-​Market-​Struc​ture-​Primer.​pdf

	83.	 Singh A (2016) NoSQL: A New Horizon in Big Data, International Journal
of Scientific Research in Science, Engineering and Technology, vol. 2, no.
2.

	84.	 Sismanoglu G, Onde MA, Kocer F, Sahingoz OK (2019) Deep learn‑
ing based forecasting in stock market with big data analytics. In 2019
Scientific Meeting on Electrical-Electronics & Biomedical Engineering and
Computer Science (EBBT) (pp. 1–4). IEEE.

	85.	 Sohail AM, Khattak KS, Iqbal A, Khan ZH, Ahmad A (2019) Cloud-based
detection of road bottlenecks using OBD-II telematics. In 2019 22nd
International Multitopic Conference (INMIC) (pp. 1–7). IEEE.

	86.	 Stonebraker M (2010) SQL databases v. NoSQL databases Communica‑
tions of the ACM 53(4):10–11

	87.	 Strauch C, Sites ULS, Kriha W (2011) NoSQL databases. Lecture Notes,
Stuttgart Media University 20:24

	88.	 Syafrudin M, Alfian G, Fitriyani NL, Rhee J (2018) Performance analysis
of IoT-based sensor, big data processing, and machine learning model
for real-time monitoring system in automotive manufacturing. Sensors
18(9):2946

	89.	 Vanelli B, da Silva MP, Manerichi G, Pinto ASR, Dantas MAR, Ferrandin M,
Boava A (2017) Internet of things data storage infrastructure in the cloud
using NoSQL databases. IEEE Lat Am Trans 15(4):737–743

	90.	 Vavilapalli VK, Murthy AC, Douglas C, Agarwal S, Konar M, Evans R, Graves
T, Lowe J, Shah H, Seth S, Saha B (2013) Apache Hadoop YARN: Yet
Another Resource Negotiator. In Proceedings of the 4th annual Sympo‑
sium on Cloud Computing (pp. 1–16).

	91.	 Vonitsanos G, Dritsas E, Kanavos A, Mylonas P, Sioutas S (2020) Security
and Privacy Solutions associated with NoSQL Data Stores. In 2020 15th
International Workshop on Semantic and Social Media Adaptation and
Personalization (SMAP) (pp. 1–5). IEEE.

	92.	 Vyawahare HR, Karde PP, Thakare VM (2018) A hybrid database approach
using graph and relational database. In 2018 International Conference on
Research in Intelligent and Computing in Engineering (RICE) (pp. 1–4).
IEEE.

	93.	 Wang H, Huang W, Wang S (2021) Forecasting open-high-low-close data
contained in candlestick chart. arXiv preprint arXiv:​2104.​00581.

	94.	 Wu H, Ambavane A, Mukherjee S, Mao S (2017) A coherent healthcare
system with RDBMS, NoSQL and GIS databases. In Proceedings of the
32nd International Conference on Computers and Their Applications,
CATA 2017 (pp. 313–318).

	95.	 Yang C, Huang Q, Li Z, Liu K, Hu F (2017) Big Data and cloud computing:
innovation opportunities and challenges. International Journal of Digital
Earth 10(1):13–53

	96.	 Yang J, Yue Y, Rashmi KV (2020) A large scale analysis of hundreds of in-
memory cache clusters at Twitter. In 14th {USENIX} Symposium on Oper‑
ating Systems Design and Implementation ({OSDI} 20) (pp. 191–208).

	97.	 Yussupov V, Soldani J, Breitenbücher U, Brogi A, Leymann F (2021) From
Serverful to Serverless: A Spectrum of Patterns for Hosting Application
Components. In CLOSER (pp. 268–279).

	98.	 Zaharia M, Chowdhury M, Franklin MJ, Shenker S, Stoica I (2010) Spark:
Cluster computing with working sets. HotCloud 10(10–10):95

	99.	 Zhu F, Liu J, Wang S, Xu J, Xu L, Ren J, Ye D, Wei J, Huang T (2016) Hug the
Elephant: Migrating a Legacy Data Analytics Application to Hadoop Eco‑
system. In 2016 IEEE International Conference on Software Maintenance
and Evolution (ICSME) (pp. 177–187). IEEE.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub‑
lished maps and institutional affiliations.

https://www.kaggle.com/borismarjanovic/price-volume-data-for-all-us-stocks-etfs
https://www.kaggle.com/borismarjanovic/price-volume-data-for-all-us-stocks-etfs
https://www.trustradius.com/nosql-databases?__cf_chl_captcha_tk__=dy_ptLGaj8T0.MEgpZjMAIa_v7MifzjnRWkg6.1HNBo-1640254084-0-gaNycGzNBuU#products
https://www.trustradius.com/nosql-databases?__cf_chl_captcha_tk__=dy_ptLGaj8T0.MEgpZjMAIa_v7MifzjnRWkg6.1HNBo-1640254084-0-gaNycGzNBuU#products
https://www.trustradius.com/nosql-databases?__cf_chl_captcha_tk__=dy_ptLGaj8T0.MEgpZjMAIa_v7MifzjnRWkg6.1HNBo-1640254084-0-gaNycGzNBuU#products
https://www.trustradius.com/nosql-databases?__cf_chl_captcha_tk__=dy_ptLGaj8T0.MEgpZjMAIa_v7MifzjnRWkg6.1HNBo-1640254084-0-gaNycGzNBuU#products
http://arxiv.org/abs/2107.01640
https://www.sifma.org/wp-content/uploads/2019/10/SIFMA-Insights-Electronic-Trading-Market-Structure-Primer.pdf
https://www.sifma.org/wp-content/uploads/2019/10/SIFMA-Insights-Electronic-Trading-Market-Structure-Primer.pdf
http://arxiv.org/abs/2104.00581

	Cloud based evaluation of databases for stock market data
	Abstract
	Introduction
	State-of-the-art review
	Definitions and theory-based comparisons
	Experiment-based comparisons
	Data storage costs and cloud implementation

	Hybrid cloud architecture for secure and efficient storage and processing of financial data
	Experiments and results
	Cloud environment and databases
	Data
	Evaluation framework and scope
	Experimental results

	Conclusion
	References

