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Abstract 

About fifty years ago, the world’s first fully automated system for trading securities was introduced by Instinet in the 
US. Since then the world of trading has been revolutionised by the introduction of electronic markets and automatic 
order execution. Nowadays, financial institutions exploit the associated flow of daily data using more and more 
advanced analytics to gain valuable insight on the markets and inform their investment decisions. In particular, time 
series of Open High Low Close prices and Volume data are of special interest as they allow identifying trading patterns 
useful for forecasting both stock prices and volumes. Traditionally, relational databases have been used to store this 
data; however, the ever-growing volume of this data, the adoption of the hybrid cloud model, and the availability 
of novel non-relational databases which claim to be more scalable and fault tolerant raise the question whether 
relational databases are still the most appropriate. In this study, we define a set of criteria to evaluate performance of 
a variety of databases on a hybrid cloud environment. There, we conduct experiments using standard and custom 
workloads. Results show that migration to a MongoDB database would be most beneficial in terms of cost, storage 
space, and throughput. In addition, organisations wishing to take advantage of autoscaling and the maintenance 
power of the cloud should opt for a cloud native solution.
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Introduction
The first stock exchange was established in the 1600s 
by the East India Company [72]. A stock exchange was 
a building where existing and prospective investors met 
to buy or sell shares. Open outcry was the main method 
of communication on a trading floor. It involved shout-
ing and hand gestures to transfer information about the 
orders. That model remained more or less unchanged for 
centuries. With the introduction of internet connectiv-
ity and more powerful computers in the late 1980s and 
early 1990s, the push towards automation overtook the 
holdovers from open outcry. In the early 2000s a seismic 
change in trading mechanics began, with the increased 

use of electronic trading. By late 2019 about 80% of the 
cash equity markets were all electronic [82].

Advances in computer technology has led to faster 
order execution, less human error, and greater ability to 
carry out research on the market. Trading, nowadays, 
relies on constant and incredibly fast analysis of very 
large amounts of data [77] which is often in time series 
consisting of a date, a unique identifier (such as a stock 
ticker), and values observed that day for an entity. One 
such type is the OHLC data which records the Open, 
High, Low, Close prices1 of an instrument in a given 
period of time.

OHLC data are particularly important for the derivation 
of patterns and trading signals from market data [64, 66]. 
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1  The open price is not always equal to the close price of the previous trading 
day. Sometimes events such as company earnings reports or stock splits can 
happen in after trading hours and can alter a stock’s price overnight.
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Indeed, Fiess and MacDonald [30] consider that the con-
ventional wisdom behind recording these prices rather 
than all intra-daily prices is their higher informational con-
tent. OHLC data can be used to define and forecast asset 
price volatility [30, 63] and are often less costly to obtain 
and work with than the high frequency tick data which 
consists of bid and ask prices aggregated from multiple 
exchanges [63]. In fact, [63] shows that volatility models 
built on daily OHLC time series data may provide simi-
lar accuracy to those built on high frequency data. Con-
sequently, investors continue to make purchases and sells 
according to accurate predictions of OHLC data [93].

A system for storage and retrieval for time series data—
a time series management system or a time series data-
base—is necessary to conduct such analyses [46].

As OHLC data are typically generated in the application 
layer by a program (or a script) that processes measure-
ments of the upwards or downwards price movements of 
stock [7], it is very important to store this data in a time 
series database where it is easy and fast to store, query, 
and perform operations, such as sum, mean and median, 
on multiple records of data. Moreover, since financial time 
series databases can very quickly grow very large — there 
are several thousand stocks listed on the New York Stock 
Exchange alone, it is critical to have an efficient database 
solution able to perform the required large-scale analytics 
processing. As traditional database solutions such as Rela-
tional Database Management Systems are typically sub-
optimal and generally ill-suited for time series data [78], 
several new solutions have been proposed [46].

Even though these time series databases seem promis-
ing, they do not have a wider support like SQL (Struc-
tured Query Language) or NoSQL (Not Only SQL) 
databases and are typically very hard to migrate to.

In this paper, we investigate and design a widely preva-
lent, scalable and distributed database system for stor-
ing financial stock market OHLC data achieving high 
throughput in a cost-effective way. Such a system should 
allow financial institutions to store large volumes of 
incoming data on a distributed network while still being 
able to obtain the query results with minimal latency. In 
our experiments we use historical OHLC data to com-
pare the performance of different types of databases. The 
main contributions of this study can be summarised as 
follow:

1.	 An extensive literature review that includes both the-
ory- and experiment-based comparisons of relational 
and non-relational databases.

2.	 A set of criteria to perform holistic evaluation of the 
ability of a database system at storing and querying 
OHLC financial data on a hybrid cloud deployment 
architecture.

3.	 A comprehensive set of experiments using the “Huge 
Stock Market Dataset” to assess performance of the 
most popular relational and non-relational databases 
according to the criteria previously defined.

The remainder of this article is organised as follows. 
First, the ‘State-of-the-Art Review’ Section discusses the 
development of database systems, their features, and their 
performance in published case studies. Second, in the 
‘Hybrid Cloud Architecture for Secure and Efficient Stor-
age and Processing of Financial Data’ Section where the 
focus is on applications relying on OHLC price data, not 
only is a set of important criteria introduced to help the 
selection of the most suitable database, but also an archi-
tecture is proposed to conduct the experiments required 
to test these criteria. Third, the ‘Experiments and Results’ 
Section starts with the presentation of the environment, 
data, evaluation framework and scope; then it reports the 
results of the experiments, which eventually leads us to 
identify which type of database satisfies our application 
of interest. Finally, the last Section concludes the paper 
and suggests future research directions.

State‑of‑the‑art review
This section first reviews the development of both rela-
tional and non-relational databases and highlights their 
respective strengths. Second, it analyses the outcomes 
of experiments conducted on various case studies to 
assess their individual performance. Finally, as the main 
area of interest of this study is the usage of databases 
to store and process large volumes of financial trading 
data, usually on a hybrid cloud architecture, this review 
explores then their storage costs and the characteristics 
of their cloud implementation.

Definitions and theory‑based comparisons
In 1970, Edgar F. Codd proposed a new model of data 
called relational database where all data are represented 
in terms of tuples and attributes, formally described 
using tables [21]. The platforms used to manage these 
databases are known as Relational Database Management 
Systems (RDBMS). Most of them employ SQL (Struc-
tured Query Language) as their query language [13]. 
Relational databases rely on the ACID (Atomic, Consist-
ent, Isolated, Durable) properties to operate efficiently 
and correctly [34]. This guarantees data validity despite 
errors, power failures and other mishaps [37].

Relational databases perform best with structured data, 
but they have a limited or restricted ability to represent 
complex semi-structured or unstructured data [55]. A 
study has shown that it is difficult to store clinical visit 
data in an RDBMS due to their semi-structured infor-
mation and dynamic changing properties [94]. Indeed, 
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usage of relational databases for such data leads to cre-
ating fields that are mostly empty resulting in inefficient 
storage and poor performance. Moreover, another limi-
tation of relational databases is their inability to store 
increasing volumes of real-time data [10]. As in the cases 
of national votes and fingerprints data, the amount col-
lected increases drastically both in terms of volumes 
(Terabytes of data) and velocity (rate of data generated, 
in Gigabytes/day), which eventually requires a large num-
ber of tables to accommodate the growth in data. Actu-
ally, the usage of a relational database in such scenarios 
becomes inappropriate because of its inability to scale 
with the ever-growing real-time data [83].

Finally, relational databases cannot take advantage of 
modern advancements in distributed computing as they 
are not designed to function with data partitioning [95].

The non-relational databases were created as a means 
to offer high performance (both in terms of speed and 
size) and high availability at a price of losing the ACID 
trait of relational databases and instead offering the 
weaker BASE (Basic Availability, Soft state, Eventual con-
sistency) feature [12, 52]. These databases store semi-
structured and structured data in a non-complex data 
model such as key-value pairs, which consists of two 
parts, a string which represents the key and the actual 
data which is referred to as value. These keys are then 
used as indices, making the query process faster than the 
RDBMS [50]. Non-relational databases started becom-
ing popular with the internet boom in the mid-1990s as 
relational databases could not handle the flow of infor-
mation demanded by users [41]. Since then, numerous 
companies and organisations have developed their own 
non-relational databases [67, 87].2 Many studies have 
shown that non-relational databases enable better per-
formance in terms of speed and flexibility [36, 38, 89]. 
Indeed, availability, real-time response, advanced data 
analysis, and the ability to manage bigdata remain weak-
nesses which are displayed by relational databases [28]. 
Moreover, these shortcomings are overcome by the latest 
NoSQL systems which have been designed to address the 
challenges associated with dealing with large amounts 
of data [76]. As a consequence, they have become the 
option of choice for applications involving geographi-
cally distributed data, large amounts of data, or scalabil-
ity requirements [47, 56, 88]. This is particularly the case 
for services relying on Internet of Things (IoT) technol-
ogy [89]. For example, in a recent case study where IoT 
enabled sensors provide measurements to monitor man-
ufacturing defects in the automobile industry, usage of a 

NoSQL database allowed real-time data processing and, 
thus, the detection of faults at early stages of the manu-
facturing process [33].

Unlike relational databases that can only scale verti-
cally by adding more resources to the current server, 
non-relational databases also support and embrace hori-
zontal scaling. This is achieved by adding more machines 
to the network and then dividing the workload or in this 
case distributing the data among them [83].

Despite this, the latest Database Engine rankings [23] 
(based on top searches on various search engines, Stack 
Overflow, Google trends, job offers or number of men-
tions in social networks) reveals that relational databases 
remain prevalent: there are only three non-relational 
databases in the top ten and none of them are in the top 
four! This is probably because relational systems have 
been used extensively for many decades and are trusted 
for maintaining accurate transactional records, legacy 
data sources [71, 99], and many other use cases within 
organisations of all sizes [48]. In addition, non-relational 
databases lack a standard query language [57, 60]: there 
are more than 200 implementations, each providing its 
own language and interface [20] that developers and 
users must learn. Finally, a major challenge of non-rela-
tional databases is their weak security mechanisms [6]. 
Indeed, they were initially designed without security 
being considered as an essential feature [81]. Thus, there 
have been growing concerns related to data privacy in 
NoSQL systems which results from compromises made 
for better performance and scalability [32]. Whereas 
relational databases have inbuilt authentication instead 
of relying of a middleware application for authentication 
or authorization of the data source, by design, non-rela-
tional databases offer limited security and place more 
emphasis on data handling [51]. Indeed, the feature of 
distributed data, termed as ‘sharding’ [9], which is con-
sidered the key of their success, is associated with a con-
cern on how the confidentiality and privacy of data is 
maintained across systems [73].

Experiment‑based comparisons
Many experiments have been conducted to compare 
characteristics of non-relational and relational data-
bases including their scalability, performance, flexibil-
ity, power of querying, and security [3, 17, 58, 68, 69, 70, 
86]. Experiments conducted a decade ago proved quite 
inconclusive as performance varied significantly accord-
ing to the type of operation performed and the type of 
data used [58, 86]. Focusing on processing a modest 
amount of structured data, it was shown that MongoDB 
– a popular non-relational database – performed at least 
as well as MySQL with exceptions of aggregate functions 
(such as medians, modes and sums) [69]. A more recent 

2  Note that as non-relational databases cannot use SQL as their query lan-
guage, they are often referred to as NoSQL; in this manuscript, both terms are 
used interchangeably.
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study analysing performance of non-relational databases 
for spatial and aggregate functions suggests that the per-
formance of MongoDB has since improved [3]. Focus-
ing on applications handling large volumes of data (i.e., 
terabytes), it was concluded that non-relational databases 
were preferable because they offer flexible architectures 
which can accommodate a large variety of data storage 
needs [68, 70]. Similar results were obtained in a per-
formance comparison of various types of non-relational 
databases against MySQL [35]. Focused on the storage of 
unstructured data of hospital patients during COVID-19, 
various forms (Key-value stores, Graph based, Column-
oriented, Document) of non-relational databases were 
evaluated based on their data model, CAP (Consistency, 
Availability, and Partitioning) theorem [31], suitability for 
being distributed across multiple servers and other fac-
tors [27]. The authors eventually designed an algorithm 
able to suggest the most suitable database type accord-
ing to the hospital’s needs. Also targeting a COVID-19 
dataset, a recent study investigated data retrieval from 
an unstructured large volume dataset, the COVID-19 
Genome Sequence dataset [17]. It concluded that non-
relational databases outperform SQL databases in aspect 
of data load time. Moreover, it indicated that non-rela-
tional queries were easier to formulate than SQL ones. 
This has been further supported by another study of a 
dataset of COVID-19 patients, where the NoSQL Mon-
goDB database showed superior performance over other 
databases, demonstrating that it is more appropriate for 
processing large amounts of data [8].

In terms of privacy and security, not only do most 
non-relational databases not provide encryption mecha-
nisms to protect user-related sensitive data, but also by 
default the inter-node communication is not encrypted 
for data in transit [79]. A recent review of advancements 
for these databases to improve the security reported 
their use of Kerberos (a computer-network authenti-
cation protocol [65]) to authenticate clients and data 
nodes. It also proposed solutions to deal with remain-
ing shortcomings such as usage of an Identity Provider 
to authenticate and communicate where the user needs 
to login using a Single Sign-on method [91]. In addition, 
researchers have designed a Security-as-a-Service model 
for NoSQL databases (SEC-NoSQL) which supports 
execution of query over encrypted data with guaranteed 
level of system performance [75].

Data storage costs and cloud implementation
Another important aspect when comparing different 
types of databases is the costs of running the database; 
this is particularly significant for large organisations which 
deal with large volumes of data on a daily basis. Focusing 
on financial trading data, four different databases were 

used for comparison in [53]. While MongoDB proved 
the fastest to read and write end-of-day OHLC (Open, 
High, Low, Close) data — the SQL solutions were 1.5 × to 
3 × slower — in terms of costs MongoDB was definitely 
the most expensive due to its commercial licensing costs.

To reduce costs, more and more databases run on 
cloud platforms as they offer low-cost servers and high-
bandwidth networks delivering better reliability, dura-
bility, scalability and accessibility of data [2, 15]. As 
mentioned before, as scalability is a particular strength 
of non-relational databases, their presence on Cloud 
allows their growth in a matter of just a few clicks [1]. 
Not only do the main cloud providers support and man-
age a variety of relational databases (such as the popular 
Oracle, MySQL, and PostgreSQL), but they have also 
been developing their own proprietary non-relational 
databases to address their own needs, e.g., BigTable by 
Google or DynamoDB by AWS (Amazon Web Services) 
[25]. Indeed, for example, in 2006, Google needed a solu-
tion for its ever-growing collection of semi-structured 
data that was distributed across multiple data centres 
worldwide. As the relational model they had been using 
was unable to accommodate such a large pool of data effi-
ciently enough, they created BigTable, a document-based 
database. Nowadays, it handles most of their infrastruc-
ture [18]. Advancements in non-relational architecture 
motivated Yahoo to develop criteria to quantitatively 
evaluate non-relational database systems. Its Cloud Serv-
ing Benchmark is the most widely used and well-known 
benchmarking framework for evaluating NoSQL data-
bases with varying workloads [16, 22, 96].

In [26], the author has surveyed non-relational data-
bases on Cloud and recorded their features in terms of 
the storage type (Column, Key-value, Document or 
Graph), the license type (Commercial or Open source) 
and the programming language used to develop them. 
He reported that, out of the 15 cloud databases surveyed, 
MongoDB, Cassandra and HBase were the most used.

The research paper by Fang at el. [29] show how finan-
cial markets have evolved in the last decade and have 
become more complex and interconnected than ever 
before. One cannot get a comprehensive view of a port-
folio with one source of data. In the financial markets the 
volume of the data grows exponentially: with the growing 
capabilities of computers, many companies have used a 
fast-increasing amount of historical data to feed predic-
tive models, forecasts, and trading impacts. Advances in 
big storage and processing frameworks combined with 
the cloud capabilities have helped financial services firms 
to unlock the value of data, improve their volumes and, 
commissions, and reduce the cost-of-trades [39]. More-
over, a recent survey has shown the value of ‘alternative 
data’, i.e., data originating from non-financial sources 
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such as social media, GPS, or sensor data, for predicting 
stock prices and discovering new price movement indica-
tors [40]. Consequently, capital firms need to store and 
stream, in various formats, enormous amount of data, 
and effectively link the data together to get an actiona-
ble insight. Big data processing frameworks, which offer 
parallel and distributed algorithms running on clusters 
of servers such as MapReduce [24], Hadoop [90], Spark 
[98], have fulfilled their requirements at least in terms of 
carrying out their batch processing tasks [80]. With the 
increase in computing power and decrease in data stor-
age costs, collecting and processing large amounts of data 
has become an increasingly viable and exercised routine 
in the financial industry. Still, it is important for such 
organizations to select their database carefully so that it 
can, not only store and process big data, but also handle 
their growth in the long term.

As previous studies have shown, no database system 
provides best performance in all scenarios. On one hand, 
relational databases deliver accuracy and redundancy 
by following the ACID properties. On the other hand, 
non-relational databases support large and distributed 
datasets with frequently changing schemas providing 
better performance and flexibility [73], which makes 
them particularly attractive for industries requiring high-
performance analytics capabilities and distributed large 
data scalability [49]. Currently, efforts are being made 
to merge the two database systems to offer the best of 
both worlds [45, 92], where, for example, a hybrid model 
would provide the flexibility that is prevented by the 
rigid relational database framework [54]. Most recently, a 
hybrid database was implemented where simple requests 
(read, insert) were served by MongoDB, while complex 
operations, such as joins with filtering the requests, were 
forwarded to PostgreSQL [43]. These hybrid models inte-
grate SQL and NoSQL databases in one system to elimi-
nate the limitations of individual systems. Even though 
they have produced promising results, their adoption has 
hardly started. Indeed, not only do they make mainte-
nance more complex as two different databases must be 
handled, but also their associated costs are added. More-
over, a hybrid interface must be written to bridge the two 
databases together. Finally, there is no readily available 
solution that an organisation can install and run like any 
other database system.

Considering all the limitations of database systems 
when dealing with big time-series data and the require-
ment to use a system that can scale on-demand, in the 
next section we will be proposing a set of criteria to con-
sider when selecting a database. We will then use a cus-
tom benchmarking tool for recording the results of our 
experiments and rating each database against the criteria 
to propose the best performing database.

Hybrid cloud architecture for secure and efficient 
storage and processing of financial data
The state-of-the-art review shows that even though rela-
tional databases have been the standard storage systems 
over the last four decades, recent advancements in alter-
native database technologies have put into question the 
status quo. As the exponential increase in data volume, 
velocity and variety challenges what relational databases 
can handle, industries have been turning to NoSQL for 
data storage and management.

Many large organisations including those from the finan-
cial industry have elected a hybrid cloud strategy [29], i.e., a 
combination of a public cloud with on-premises (on-prem) 
data centres. The scale, power, and flexibility of the hybrid 
cloud provides financial companies with significant bene-
fits, particularly the ability to extend existing infrastructure 
without incurring large capital costs while retaining latency 
prone applications and sensitive data/code on-premises as 
appropriate or mandatory by regulations. Moreover, these 
international organisations take advantage of cloud data-
bases to replicate and distribute data immediately to mul-
tiple geographic regions thus offering real-time data access 
worldwide. Users no longer have to deploy middleware to 
deliver database requests anywhere in the world, as clearly 
depicted in the following architectural diagram (Fig. 1). As 
shown in the figure, the data produced from the financial 
institutions in the region is consumed by the applications 
running in the nearest data centre and is stored on the on-
prem data store, from where it is transferred to the cloud 
and processed for model training and inference. The results 
are then stored on to a cloud database and replicated over 
the cloud among various geographical regions, making it 
easy and fast to query for the users, possibly located thou-
sands of miles apart from the original source of the data.

With over 200 solutions available, choosing the right 
database for a given use-case is particularly difficult. In 
this article we suggest a set of criteria to ensure adequate 
storing and querying of OHLC financial data. This selec-
tion is guided by the requirement to query multiple 
records from the database in a high throughput scenario 
where speed is critical. In addition, such performance 
should be achieved with minimal data storage and main-
tenance costs to the organisation. These criteria are listed 
below.

1.	 Database scalability. Top level databases are distin-
guished by their ability to grow the capacity of the 
database on demand. In traditional databases, expan-
sion is achieved by replacing the existing storage or 
server with a bigger server. As seen in the previous 
section, even the biggest affordable servers might 
not be able to meet storage requirements of data vol-
ume increasing exponentially [10, 83], which leads to 
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either restriction of rapid data expansion or a single 
point of failure. On the other hand, databases that 
support partitioning of data across servers, which is 
often referred to as horizontal scaling or scaling out, 
allow increasing storage requirements at minimal 
cost.

2.	 Data model and throughput. As revealed in the lit-
erature review the primary difference between the 
SQL and NoSQL databases is that the latter promote 
flexible design by not using relational data models 
[50]. Such flexibility allows the design of much sim-
pler and cheaper alternatives which can deliver high 
efficiency and throughput (transactions per second). 
Moreover, unlike relational databases which rely on 
table schema, NoSQL’s flexible nature makes it also 
a lot easier to add new fields and attributes to the 
data. On the other hand, relational databases are use-
ful when the relationships between different entities 
need to be explicitly expressed.

3.	 Elasticity, i.e., the degree to which a system can adapt 
to workload changes by provisioning and deprovi-
sioning resources. The elasticity of a system deter-

mines how responsive it is to current demand, affect-
ing directly performance and costs. Cloud managed 
databases are more elastic compared to the user-
managed systems as indicated in our review [1], since 
these systems can auto-scale both in terms of com-
pute (number of CPUs/cores) and storage. In princi-
ple non-relational databases benefit from this by scal-
ing horizontally, this then allow faster retrieval of data 
as the load is distributed among the new servers.

4.	 Maintenance of databases. A secure and effi-
cient database system must keep up with the latest 
changes, bug fixes and security patches. With cloud 
managed databases the maintenance is completely 
outsourced as the cloud providers automatically 
update instances to ensure that the underlying hard-
ware, operating system, and database engine are reli-
able, performant, secure and up to date [15]. Opera-
tional costs can be greatly reduced for organisations 
using cloud managed databases as they are easier to 
provision, update, and scale along with being more 
reliable (with almost no downtime) and secure.

Fig. 1  Hybrid cloud deployment architecture
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5.	 Storage efficiency and costs. Efficient storage permits 
limiting the amount of space required to store data, 
which reduces storage costs. Moreover, by accom-
modating rapid data growth, it can ensure sustained 
performance regardless of the size of the database 
[26]. As cloud databases use next generation I/O 
(Input–output) optimized storage drives, they can 
provide faster access to the data for only a negligible 
amount of extra costs.

There are relationships and overlap (see Venn diagram 
in Fig.  2) between these individual criteria which often 
sees an improvement in one coming at the expense of 

another. For instance, scalability, elasticity, and mainte-
nance directly affect the database running costs and so 
does the database storage efficiency.

In the next section we carry out experiments to eval-
uate the performance of various database systems in 
terms of the above-mentioned criteria. Given the struc-
tured nature of the OHLC data, the flexibility of the data 
model is less important in this analysis. Figure  3 shows 
a block diagram of how our custom benchmarking tool 
[14] operates to carry out the experiments with databases 
running on the cloud. The dataset is first downloaded and 
stored on to a cloud data store from where it can be easily 
accessed by the Linux server running our benchmarking 
tool. This data is then loaded on to the databases run-
ning on either a user managed server or as a service man-
aged by the cloud provider. Our conclusion will be based 
on how well these databases perform when run against 
various data workloads. Finally, we will propose the best 
performing database as an optimal choice to store the 
ever-growing OHLC financial data.

Experiments and results
After specifying the cloud environment and the data-
bases selected for the experiments, this section presents 
the dataset and the evaluation framework that have 
been used. Then, it reports and analyses the results for 
all the considered benchmarking workloads. Finally, a 
discussion leads to the identification of the type of data-
base that is the most suitable to store and query OHLC 
financial data.

Fig. 2  Criteria chosen to evaluate database performance and their 
overlaps

Fig. 3  Architecture used to conduct our experiments
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Cloud environment and databases
The experiments we present in this paper have all been 
executed on the cloud as it offers flexibility to run data-
base workloads both traditionally (on a virtual server) or 
as a service (managed by the cloud provider). More spe-
cifically, the cloud delivers large storage, high through-
put, and low latency capabilities. In addition, it offers 
scalability when the load increases. As per the recent 
Gartner (world’s leading research and advisory company) 
report [11], the top three leaders in cloud computing in 
order of their popularity are Amazon, Microsoft, and 
Google, where the leader, Amazon Web Services (AWS), 
holds about 40% of the market share providing some of 
the best services to choose from. In particular, it offers 
a wide range of database services including relational, 
non-relational, hybrid and time series databases. AWS 
is therefore the choice of cloud provider for the experi-
ments performed in this study.

AWS offer their users a choice between running a 
self-managed instance of database on a virtual compute 
server (EC2 – Elastic Compute Cloud) and their Data-
base as a Service, Amazon Relational Database Systems 
(RDS) which supports six database engines –MySQL, 
PostgreSQL, MariaDB, Oracle, Microsoft SQL Server and 
Amazon’s own cloud-native RDBMS, Aurora. Both Ama-
zon EC2 and Amazon RDS offer different advantages. 
Amazon RDS is easier to set up, manage, and maintain 
than running a database on Amazon EC2. This lets the 
user to focus on other important tasks, rather than the 
day-to-day administration of the database. Although 
running databases on an Amazon EC2 is uncommon 
because of the lengthy process of setting up and main-
taining the infrastructure, it provides a secure, resiz-
able compute capacity in the cloud giving the user more 
control, and flexibility over the resources. Both Amazon 
EC2 and Amazon RDS have an associated storage vol-
ume called Elastic Block Store (EBS). EBS offers a high-
performance block-storage which is easy-to-use, highly 
available, durable, and scalable. A recent study by Inter-
national Data Corporation (IDC), a premier global pro-
vider of market intelligence, advisory services, and events 
for the technology markets [44] found that the customers 
using RDS had 39 percent lower database operation costs 
and 264 percent return on investment over three years. 
When it comes to the non-relational AWS managed 
databases, diverse data models are supported including 
key-value (e.g., DynamoDB), document (DocumentDB), 
in-memory (ElastiCache), graph (Neptune) and time 
series (Timestream).

For this experiment, the most popular and widely sup-
ported databases in each of the categories were selected. 
Note that commercial databases, such as Oracle and 
Microsoft SQL Server, were not considered due to licensing 

constraints. For the relational databases, the opensource 
MySQL and PostgreSQL were chosen. Data workloads 
were first run with databases running on EC2s and the 
results were recorded into a CSV (Comma separated val-
ues) file. RDS MySQL and RDS PostgreSQL databases 
were then used for running the workloads followed by the 
NewSQL/Hybrid database by AWS – Aurora MySQL and 
Aurora PostgreSQL. All these databases use the same ver-
sion of MySQL (version 5.7) and PostgreSQL (version 13.3) 
respectively. The same pattern was followed for non-rela-
tional databases, by running the data workloads first with 
MongoDB running on an EC2, followed by DocumentDB 
(AWS managed Document Database that supports Mon-
goDB workloads) [97], and finally DynamoDB (serverless 
AWS managed NoSQL database) [19].

For all our experiments, the server-based databases were 
run using the r5.2xlarge (db.r5.2xlarge for AWS managed) 
instance type which includes 8 vCPUs and a 64 GBytes 
RAM (Random Access Memory) running on an Amazon 
Linux 2 AMI (Amazon Machine Image). Although these 
are modestly sized instances, especially when it comes 
to the memory requirements, it is sufficient to conduct 
this study’s experiments. Each database was allocated its 
minimum required SSD (Solid State Drive) storage, i.e., 
8GBytes for user-managed databases running on EC2s, 
10GBytes for Aurora and DocumentDB, and 20GBytes 
for RDS instances. On the other hand, as DynamoDB is a 
serverless database, it has the ability to scale up or down 
its required resources based on the demand. Therefore, 
there is no fixed compute or storage for DynamoDB.

In addition to the above resources a virtual com-
pute server or an EC2 is used to run the benchmark-
ing tools. The EC2 instance type is a t3.2xlarge instance 
with 100GBytes SSD volume to store the datasets. 
The scripts are run on an Amazon Linux 2 AMI with 
Java SDK8 (Software Development Kit) and Python3.6 
installed on top.

Data
There are a number of online sources (including Google 
Finance, Yahoo Finance) that provide OHLC data. The 
data set used in this study has been sourced from Kag-
gle, an online community of data scientists which pro-
vides financial data at no cost. Kaggle is a popular data 
provider that has been used in many of the research pro-
jects [4, 42, 84]. Specifically, this study uses the “Huge 
Stock Market Dataset” [62], which provides millions 
of historical data points across a broad range of instru-
ments. This study will be using the historical daily price 
and volume data for securities on the NYSE (New York 
Stock Exchange) and NASDAQ (National Association of 
Securities Dealers Automated Quotations). The dataset 
contains the OHLCV (OHLC along with the total traded 
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volume) values for up to 7,195 stocks and 1,344 ETFs 
(Exchange-Traded Funds) for each day between 1968 and 
2018 (according to their availability on the market), i.e., 
a total of 12,648 trading days. For each security there is 
a single file named after its ticker symbol which contains 
one record per day starting from the day the security was 
first listed on the exchange until either its last day on the 
exchange or the end of 2018. Each record contains six 
values: the date, open price, high price, low price, close 
price, and the volume. Table 1 shows a sample of records 
for ‘Apple’ in the year 1984 when it was first listed on 
NASDAQ. Prices are represented by numbers with five 
decimal places. The data is in its raw format without any 
transformations besides adjustments to the prices for 
dividends and stock splits to provide a more accurate 
measure of the real value of the stock [4].

Evaluation framework and scope
Performance comparison was achieved by loading the 
“Huge Stock Market Dataset” to the selected databases, 
performing queries, and running various workloads. This 
was informed by the workloads defined in the Yahoo! 
Cloud Serving Benchmark (YCSB) [22], the most popu-
lar benchmarking framework for NoSQL databases. The 
YCSB tool could not be used as it does not have sup-
port for traditional relational databases. Therefore, to 
ensure benchmarking consistency, we designed our own 
custom scripts [14] to interact with all databases. Our 
custom benchmarking tool was developed using well-
documented libraries in Python and, similar to YCSB, it 
comprises of two components: a data generator where 
the data is loaded on to the database (load operation), 
and a workload generator which runs predefined work-
loads (run operation) based on parameters such as per-
centage of inserts, reads, updates or deletes, as well as 
the number of operations and the number of records. 
To ensure a fair comparison all databases were evaluated 
by running the same set of queries with the predefined 
workloads, also maintaining the query execution order.

Due to the application requirement of dealing with real 
time data, an appropriate database needs to be able to 
load the selected dataset with at least 250 k inserts/sec. 
For such a high throughput it should allow batch inserts 

and reads, and usage of multiple threads or concurrent 
connections. This is particularly important to take advan-
tage of the parallel processing power of the system on 
which the analysis is running. Moreover, as OHLC data is 
time series data, their analysis requires performing rapid 
operations such as aggregations, filtering, and joins on 
the date and time fields.

This experiment has been conducted using a small 
dataset involving two exchanges. In real-world appli-
cations, analysis is run on much larger data sets which 
is multiple-folds the size of the experiment. Thus, an 
appropriate system must be able to scale out to support 
huge datasets (multiple terabytes or even petabytes) and 
very high request rates. Fortunately, most of the cloud 
native databases (including RDS, Aurora, DocumentDB, 
DynamoDB) were architected to scale-out by distributing 
load across multiple servers [5].

Although in a production workload, high availability 
of the data and disaster recovery provisions are essen-
tial, these aspects are not considered in this study since 
they are delivered by cloud databases that store database 
snapshots and support multiple replicas over multiple 
regions [59]. Instead, the focus of this study is to meas-
ure latency and throughput in terms of reads, writes and 
updates over time as the data grows, database scalability 
and elasticity (i.e., the ability to adapt to changing work-
load by provisioning and deprovisioning resources), stor-
age space usage, and associated costs [61].

Experimental results
This section presents the results obtained after running 
the predefined workloads with each of the selected data-
base systems. For running the experiments, the dataset 
was divided into two equal parts — ‘load’ and ‘insert’. 
Whereas the ‘load’ data were solely used to load the data 
in the database before running the workloads, the ‘insert’ 
data were exploited to perform insert operations when 
running the workloads. For these experiments a total of 
five workloads were defined with varying proportions of 
‘insert’, ‘read’ and ‘update’ operations as shown in Table 2. 
Note that the values of the first 4 workloads were chosen 
to emulate the default workloads defined in YCSB [22]. 
Moreover, an additional balanced load was included.

The initial load operation was performed with 100,000 
data records on each of the database systems. During the 
process, throughput (operations/second) and maximum, 
minimum, and average latencies over fixed time intervals 
were recorded. Analysis of the associated graph, Fig.  4, 
shows that MongoDB outperforms all other systems in 
terms of required loading time. It was able to load the whole 
subset of data in 48 s, whereas the runner-up MySQL took 
more than twice the time, i.e., 112 s. We note similar per-
formance of MySQL running on either user managed EC2 

Table 1  Sample input data for apple (AAPL)

Date Open High Low Close Volume

1984–09-07 0.42388 0.42902 0.41874 0.42388 23,220,030

1984–09-10 0.42388 0.42516 0.41366 0.42134 18,022,532

1984–09-11 0.42516 0.43668 0.42516 0.42902 42,498,199

1984–09-12 0.42902 0.43157 0.41618 0.41618 37,125,801
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or AWS managed RDS instance, whilst Aurora MySQL 
requires 29% more time. This may be explained by the 
fact that Aurora offers high availability by storing multiple 
copies of the data in different availability zones. While the 
PostgreSQL database on EC2 only requires 12% more time 
than its MySQL equivalent, its RDS and Aurora versions 
deliver much poorer performance. Eventually, the AWS 
proprietary DynamoDB database proves to be the slowest 
system, taking around five times longer than MongoDB. 
This behaviour will easily be explained by the following 
analysis of the size of the created tables.

Table 3 presents the size of the tables created for each of 
these database systems. As expected, there is good correla-
tion between table size and data loading time: MongoDB’s 
is the most compact, while DynamoDB requires more 
than 24 times more space. Indeed, DynamoDB stores most 
of the data in form of a character string.

Table  4 shows the average values of maximum, 
minimum and average latencies (and standard devia-
tions) in milliseconds for all databases in a two-second 

interval. The average and the minimum latency values 
are in line with the graph displayed in Fig. 4: while Mon-
goDB requires less than 1  ms to perform one ‘insert’, 
DynamoDB takes about 6  ms. The maximum latency 
values (also visible on Figs.  5 and 6) vary widely from 
database to database. Such variations may be associated 
to various phenomena, including the locking strategy 
employed by MongoDB databases, the latency observed 
while waiting for data to be replicated to redundant 
instances for high availability of RDS databases, and the 
presence of abnormal traffic load. Despite high maximum 
latency values, standard deviations are quite low indicat-
ing that those maxima should be seen as outliers.

Following the presentation of load performance, which 
has shown the dominance of MongoDB, the focus moves 
on the evaluation of the various systems under the pre-
defined workloads. One should note that for us, the most 

Table 2  Benchmarking workloads

Workload Insert (%) Read (%) Update (%)

a 0 95 5

b 0 50 50

c 50 50 0

d 50 0 50

e 33.3 33.3 33.3

Fig. 4  Performance of databases with ‘load’ operation

Table 3  Database table size

Database Size (MBytes)

mongodb 4.93

mysql 6.52

rds-mysql 6.52

aurora-mysql 6.52

postgres 8.35

rds-postgres 8.35

aurora-postgres 8.35

documentdb 25.67

dynamodb 120.00
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important ones are workload-a (read-intensive) and 
workload-c (read & write intensive), as in our use case 
the dataset is rarely updated. Figures  5 and 6 show the 
performance of the databases in terms of their through-
put for workload-a and workload-c respectively.

For the read intensive workload-a, the AWS managed 
MySQL databases perform best completing the 100,000 
operations in about half a minute. This may be explained 
by the throughput optimized storage that these instances 
use. The SQL instances running on EC2s require up to 45% 
more time. While AWS managed PostgreSQL instances, 
i.e., aurora- and rds-postgres, are less efficient, the NoSQL 
databases are those which perform worse. In particular, 
DynamoDB needs a total of 218 s to finish the task. Such 

slow processing is likely to be the outcome of the data par-
titioning used for storing a database on multiple nodes.

However, experiments with workload-c reveal a 
similar picture with the exception of MongoDB which 
performs best. Also, as workload-c consists of a set of 
randomly arranged read and write operations, most sys-
tems deliver a throughput with large variations. In the 
case of MongoDB, the ‘reads’ have much higher latency 
than the ‘inserts’. Note that similar results were obtained 
for the remaining three workloads that include a higher 
proportion of update operations. Their associated 
graphs can be seen in the appendix of this manuscript.

In terms of cost comparison, Table 5 provides estimates 
of what it would cost to load the data and run workload-
a on each database assuming the database is shut down 

after the operations finish. As seen in the table, these 
databases have different minimum storage requirements: 
while RDS databases require a minimum of 20GBytes to 
be pre-provisioned on creation, Aurora and DocumentDB 
instances need a minimum of 10GBytes, and for the data-
bases running on an EC2, the root volume size should not 
be less than 8GBytes. Along with a minimum storage these 
instances also have a minimum billing time, it is 60 s for 
the EC2s and 600  s for RDS, Aurora and DocumentDB. 
The costs are calculated using the following formula

c

3600
+

s ∗ g

30 ∗ 24 ∗ 3600
∗ t

Table 4  Latency statistics

Database Max 
Latency 
(ms)

Min 
Latency 
(ms)

Avg 
Latency 
(ms)

Std 
Deviation 
(ms)

mongodb 2.83 0.82 0.85 0.28

mysql 9.36 1.62 2.13 0.74

rds-mysql 9.33 1.10 2.15 0.71

aurora-mysql 7.48 2.14 2.80 0.63

postgres 8.32 2.13 2.40 0.86

rds-postgres 9.14 3.53 3.81 0.95

aurora-postgres 7.74 3.04 3.32 0.31

documentdb 7.44 2.56 2.88 0.32

dynamodb 17.63 5.36 6.01 2.74

Fig. 5  Performance of databases with Workload-a (Read-intensive tasks)
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where,
c is the compute cost in USD-per-hour (United States 

Dollar-per-hour) 
s is the allocated or the used storage size in GBytes 
g is the storage costs in USD per GByte-month (here it 

is assumed that a month has 30 days) 
t is maximum of either the minimum billing time or the 

time it took to finish the execution of the load operation 
and workload-a, in seconds.

Table 5 reveals that, as AWS is solely responsible for 
the maintenance, including upgrades without downtime 
and operational tasks like automated backups, failover, 
high availability and durability of all RDS instances 
including the MySQL, and PostgreSQL and the Docu-
mentDB, their costs are up to 10 times those of the user 

managed instances. Still, in the long-term AWS man-
aged databases would be a good choice if outsourcing 
the maintenance work was seen beneficial by reduc-
ing operational costs even at additional running costs. 
Moreover, since Aurora instances offer additional func-
tionality such as storage auto-scaling and high avail-
ability, their costs are even higher. Finally, DynamoDB 
with provisioned capacity of 1000 read units and 1000 
write units would cost about $0.134, which is cheaper 
than any other AWS managed databases used in our 
experiments.

Finally, we review the possible solutions using the 
set of criteria previously defined. Our experiments 
show that, in terms of Database scalability, a cus-
tomer-managed instance of a database running on an 

Fig. 6  Performance of databases with Workload-c (Read & Write Intensive tasks)

Table 5  Running costs (as on 1st December 2021)

Database Database Type Compute costs 
(USD-per-hour)

Storage 
(GBytes)

Storage costs (USD 
per GByte-month)

Billing Time 
(secs)

Total Costs (USD)

mongodb Customer managed 0.592 8 0.116 128 0.021

mysql Customer managed 0.592 8 0.116 157 0.026

rds-mysql AWS managed 1.12 20 0.133 600 0.187

aurora-mysql AWS managed 1.36 10 0.10 600 0.227

postgres Customer managed 0.592 8 0.116 170 0.028

rds-postgres AWS managed 1.176 20 0.133 600 0.197

aurora-postgres AWS managed 1.36 10 0.10 600 0.227

documentdb AWS managed 1.30 10 0.116 600 0.217

dynamodb AWS managed serverless 0.78 0.12 0.03 524 0.113
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EC2 is not self-capable of scaling up or down based 
on the demand. An organisation requiring such capa-
bilities would have to opt for an AWS managed data-
base. Regarding Data throughput, with the exception 
of read-intensive tasks, MongoDB outperforms all the 
other database systems we investigated. Alternatively, 
when considering read-intensive workloads, SQL data-
bases, in particular MySQL, seem to be the solution 
of choice as they consistently deliver good through-
put in all evaluated scenarios. On the topic of Elastic-
ity, self-managed database instances require a manual 
intervention to add or remove new nodes based on 
the demand, whereas an AWS managed instance can 
deliver such services without such intervention. One of 
the useful features of using Cloud  technologies is that 
it offers autoscaling of resources which can be trig-
gered based on the utilisation metrics of resources. 
This needs to be manually configured for the customer-
managed instances whereas it is automatically provided 
with AWS managed databases. With respect to Main-
tenance, operational tasks, such as updates, security 
patches, and encryption, are automatically performed 
by AWS for all the managed databases, whereas these 
tasks need to be carried out manually for customer 
managed instances. In addition to requiring in-house 
expertise and resources, the latter are often associated 
with delays and downtimes. Lastly, in terms of Storage 
efficiency, MongoDB is the most economical followed 
by the SQL databases. However, it is important to spec-
ify that in addition to the data volume, the maintenance 
type and throughput directly affect the database run-
ning costs. Although DynamoDB, the AWS managed 
serverless database, performed worst in our experi-
ments, AWS claims that some substantial performance 
improvements (up to 10 × faster) might be observed 
by introducing a caching layer (DAX – DynamoDB 
Accelerator [85]) in front of the DynamoDB table. We 
were not able to test this, but one should keep in mind 
that would come with additional costs and would only 
impact the ‘read’ operations.

Regarding our specific case study which involves storing 
and querying an essentially linearly growing (as histori-
cal data is never discarded and variations of the number 
of stocks are limited) volume of OHLC financial data, our 
experiments suggest that MongoDB is the best choice. 
Firstly, in all tested configurations with the exception of 
Workload-a, it delivers best performance. Secondly, it 
is also the cheapest, which is particularly important as 
data records permanently increase in number. Indeed, 
MongoDB has ability to efficiently compress data, which 
directly reduces the costs of running and maintaining 

them. Thirdly, being a NoSQL database MongoDB can 
be scaled horizontally by adding more servers to the net-
work, which makes it more elastic compared to the SQL 
databases. Naturally, this would come at the expense 
of spending extra time and resources on maintenance. 
DocumentDB would be an interesting choice for an 
organisation wishing to outsource these operational tasks. 
Although MySQL offers better ‘read’ performance, it still 
lags behind MongoDB for all other types of workloads. 
Moreover, low latency and high throughput are not the 
only requirements here. As specified earlier: scalability, 
elasticity, storage, and costs all contribute to our decision. 
Since MySQL is a relational database, it cannot scale hori-
zontally. Moreover, it occupies more storage space and is 
costlier than MongoDB. Therefore, a relational database 
like MySQL would not be an optimal choice especially 
when we are talking about Peta-byte range of data [74].

Conclusion
As more and more financial organisations run their pro-
duction load in hybrid cloud environments and many 
alternatives to the standard relational databases are 
available, the selection of the most appropriate data-
base has become more challenging. To address this, this 
study evaluated performance of popular relational and 
non-relational databases for storing and querying finan-
cial Open High Low Close data. This was performed by 
conducting experiments whose outcomes were analysed 
according to a set of application-relevant criteria, i.e., 
scaling power, throughput and latency, elasticity, mainte-
nance, storage space used and their associated costs.

Those experiments revealed that the non-relational 
databases are fully capable of replacing the relational 
databases traditionally used for storing OHLC data. In 
particular, MongoDB offers best performance in terms of 
query execution time for most of the considered work-
loads while consuming only a fraction of storage space 
used by relational databases. Moreover, unlike relational 
databases, it is also very responsive to both the ever-
growing data flow and highly variable workloads. Finally, 
we suggest that, in the context of a hybrid cloud environ-
ment, organisations would benefit from the additional 
capabilities offered by cloud-native databases since they 
offer valuable services such as automated maintenance, 
automatic backups and replication including cross-
regional replication and creating read-replicas of the 
database, which delivers higher availability. In further 
work, it would be interesting to evaluate the responsive 
power of these cloud-native databases in terms of scal-
ability, when data outgrows the storage capacity, and also 
elasticity by varying the load on the database.
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Appendix
Fig. 7 

Fig. 8

Fig. 7  Performance of databases with Workload-b (equal number of reads and updates)

Fig. 8  Performance of databases with Workload-d (equal number of inserts and updates)
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Fig. 9
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