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Gene regulatory network inference 
using fused LASSO on multiple 
data sets
Nooshin Omranian1,2, Jeanne M. O. Eloundou-Mbebi1, Bernd Mueller-Roeber2 & 
Zoran Nikoloski1

Devising computational methods to accurately reconstruct gene regulatory networks given gene 
expression data is key to systems biology applications. Here we propose a method for reconstructing 
gene regulatory networks by simultaneous consideration of data sets from different perturbation 
experiments and corresponding controls. The method imposes three biologically meaningful 
constraints: (1) expression levels of each gene should be explained by the expression levels of a small 
number of transcription factor coding genes, (2) networks inferred from different data sets should be 
similar with respect to the type and number of regulatory interactions, and (3) relationships between 
genes which exhibit similar differential behavior over the considered perturbations should be favored. 
We demonstrate that these constraints can be transformed in a fused LASSO formulation for the 
proposed method. The comparative analysis on transcriptomics time-series data from prokaryotic 
species, Escherichia coli and Mycobacterium tuberculosis, as well as a eukaryotic species, mouse, 
demonstrated that the proposed method has the advantages of the most recent approaches for 
regulatory network inference, while obtaining better performance and assigning higher scores to 
the true regulatory links. The study indicates that the combination of sparse regression techniques 
with other biologically meaningful constraints is a promising framework for gene regulatory network 
reconstructions.

Biological systems on different levels of organization, from organelles and single cells to tissues, organs, and entire 
organisms, constantly sense the environment and modulate their behavior to ensure optimal performance and 
fitness1–3. The sensing of the environment is accomplished via numerous molecular mechanisms which ultimately 
result in coordinate activation and suppression of, often multiple, regulatory cascades affecting different and 
mutually dependent cellular processes. By propagating the perceived signal, the expression levels of genes coding 
for transcription factors (TFs) are adequately altered, leading to changes in the levels of transcripts encoding 
enzymatic proteins which affect metabolism and organism’s tasks4. Therefore, accurate reconstruction of the com-
plete set of regulatory interactions, forming gene regulatory networks, is one of the key tasks in systems biology5.

In biological systems, the gene regulatory interactions are transitory, as they depend on different factors, 
including: developmental, environmental, as well as internal, given by the genetic make-up of the organism6. 
High-throughput technologies for simultaneous measurement of gene expression have been used to capture the 
transitory behavior of thousands of genes upon internal and external perturbation in different biological systems, 
from bacteria and yeast to algae, plants, and animals7–9. The gathered gene expression levels reflect the underlying 
regulatory relationships, and, thus, can readily be used to reconstruct the operational regulatory networks.

With the increasing number of performed time-series experiments methods are needed to extract gene reg-
ulatory networks supported by all gathered data sets simultaneously. These experiments are over different time 
domains, with different sampling frequency under various conditions, and conducted in different laboratories, 
which may affect the success of network reconstruction10. In addition, each of these experiments is usually 
accompanied by a corresponding reference control experiment, whose profiles are used to determine differential 
gene behaviors11,12.
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Reconstruction of gene regulatory networks is a classical problem in computational systems biology, and vari-
ous methods based on different sets of assumptions and applicable on data from particular experiments have been 
proposed, critically assessed, and systematically reviewed13–15. In general, inference of gene regulatory networks 
begins with application of a similarity measure of choice (reviewed in13) on the investigated data set, resulting in 
a square similarity matrix. This similarity matrix can be sparsified by retaining only the values which are statisti-
cally significant after multiple hypothesis testing.

The resulting (sparsified) matrix usually includes many indirect relationships which need to be detected and 
removed to increase the power of the network inference approach. Therefore, a major challenge in inferring gene 
regulatory networks is the identification of direct (causal) relationships between genes. The classical approach 
to detect indirect relationships is based on partial correlations, which imposes the control of one gene on the 
relationship of others. For instance, the approaches of16–18 attempt to find the causal interactions with partial 
correlations of small order. Moreover, in Gaussian Graphical Models (GGM)19–22 two genes are deemed to be 
directly related if their levels are dependent after removing the effect of all other variables23. To this end, exten-
sions based on regularization methods (L1-norm) have been developed24. Other approaches rely on information 
theoretic-based similarity measures25–27; for instance, the algorithm for the reconstruction of accurate cellular 
networks (ARACNE)25 is based on Gaussian kernel estimator to determine mutual information between the 
expression profiles of genes with a sparsity constraint (to filter out non-significant as well as indirect interactions); 
or context likelihood of relatedness (CLR) which estimates the likelihood of each mutual information score based 
on the local network context. In addition, approaches rooted in Bayesian Networks (BN) employ probabilis-
tic graphical models in order to infer causal relationships between genes as random variables28–31. Moreover, 
the combination of L1-penalized likelihood approach has been applied to structure learning of causal Gaussian 
Bayesian networks32; however, this approach also cannot be used to predict feedback loops and the type of regula-
tory interactions. The most recent methods aim at detecting indirect relationships based on (weighted) structural 
investigations of networks following eigenvalue decomposition and its derivatives33,34, leading to higher inference 
power than the classically applied approaches. The latter approaches have been thoroughly evaluated for their 
dependence on parameters and usage with particular data sets, indicating that claims about their performance 
warrants further examination on additional test cases35.

While these approaches aim at reconstructing bilateral relationships, regression-based methods extract 
one-to-many relationships between genes based on the corresponding transcriptomics profiles36–38. A frequently 
applied regression-based technique in the analysis of high dimensional data involves regularization, whereby the 
learned models are sparse. Regularized regression models, including ridge and least absolute shrinkage and selec-
tion operator (LASSO)39, have been already used to infer gene regulatory networks with promising results40,41. 
In addition, LASSO has been successfully used in model learning not only in computational biology, but also 
signal processing, medical imaging, and economics42–44. GENIE3 decomposes the inference of gene regulatory 
networks into P (number of genes) regression problems, and tree-based ensemble methods are used to predict the 
expression profiles of the transcription factor target genes from the expression profiles of the remaining genes21. 
Recently, Qin et al. applied L0, L1/2, and L1-regularization models to infer gene regulatory networks45. While the 
performances of these models were comparable to the other compared approaches, increase in accuracy was 
observed due to the consideration of ChIP-seq/ChIP-chip data in fixing the initial connections between TFs and 
targets (i.e., initial values for the regression coefficients).

Finally, modern techniques try to harness the “wisdom of crowd” concept by integrating the predictions from 
different computational approaches (thoroughly evaluated in the DREAM contest46) as well as over multiple data 
sets in a single network termed consensus gene regulatory network14,47,48. For instance, Hase et al. grouped the 
algorithms by applying Euclidean distance on the confidence scores of the links in the corresponding inferred 
networks48. They showed that integration of diverse algorithms outperform the combination of the individual 
inference methods. Moreover, Villa-Vialaneix et al. introduced a GGM based on two penalties: the first supports 
the global sparsity, while the second minimizes the differences between the coefficients of networks inferred from 
different data sets and a consensus network47. The consensus network was obtained in three ways: by the average 
of the estimated coefficients over conditions, a priori biological knowledge, and pre-calculated coefficients from 
application of GGM on the combined data sets.

Despite these advances, the problem of accurate reconstruction of gene regulatory networks is far from fully 
resolved, especially since many of these methods make assumptions about the underlying dynamics of the net-
works leading to the particular read-outs employed in the reconstruction. Here, we propose a new approach for 
reconstructing gene regulatory networks, whereby we control for the sparsity while simultaneously harnessing 
the evidence from multiple data sources. Integrating multiple data sets from different sets of conditions is rooted 
in the “wisdom of crowds” concept to predict the consensus gene regulatory network. Furthermore, the novelty 
of the approach lies in combining the similarity in differential behavior between genes with regularized regres-
sion methods. To this end, we demonstrate that the approach can be formulated in a form of a fused LASSO 
model. Our comparative analysis shows that the proposed method is comparable to the most recent contending 
alternatives as well as classical methods when applied on time-series expression data obtained from two prokar-
yotic species, Escherichia coli and Mycobacterium tuberculosis, as well as one eukaryotic species, mouse (Mus 
musculus), but is superior with respect to the performance and assigns higher scores to the true regulatory links. 
The comparative study includes not only the network deconvolution algorithm and the global silencing (with 
specification of the used parameter values and precise steps of execution), but also the methods against which 
these approaches have been gauged in the recent critique35—Gaussian graphical models as well as Bayesian net-
works, ARACNE, CLR, and GENIE3, in addition to the different regularization-based models: L0, L1/2 and L1 (see 
Methods). Furthermore, although it has been reported that integrating ChIP-seq/ChIP-chip and gene expression 
data sets enhances the performance of the regularization-based approaches45, the majority of existing computa-
tional approaches still rely on gene expression data sets; the usage of data sets from one type facilitates the fair 
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comparison of performance of different approaches. The results of the comparison indicate that the combination 
of sparse regression techniques with time-resolved differential gene behavior is a powerful approach which can 
be readily extended to include other biologically meaningful constraints in inferring gene regulatory interactions 
from time-series data.

Results
Formulation of the proposed method. LASSO is a linear regression that penalizes the sum of absolute 
value of the regression coefficients49. It relies on combining the L2-norm, i.e., the residual sum of squares, with the 
L1-norm of the regression coefficients, which amounts to sparsity due to shrinking the coefficients towards zero. 
Moreover, the proposal for considering fusion in the classical LASSO formulation was intended to address prob-
lems with a meaningful order in the considered features (i.e., regressors). In fused LASSO, minimization of the 
L1-norm is imposed not only on the (ordered) regression coefficients, like in LASSO, but also on the consecutive 
differences of regression coefficients based on the assumed order of corresponding regressors50.

In this section we formulate the approach which extends the concept of fused LASSO by incorporating infor-
mation about the similarity of differential behavior for the response and regressor genes. Here, every gene is taken 
as response and the genes which code for transcription factors (known as TF genes) are used as regressors. The 
fusion imposes the similarity constraint on the obtained networks from each data set. In this way, the approach 
ensures sparsity, commonly observed in gene regulatory networks, with biologically meaningful data-driven evi-
dence for the inferred relationships. In addition, we introduce the experimental scenario and type of data on 
which the approach is readily applicable.

Experimental scenario and weight matrices. For consistency throughout the text, all superscripts refer 
to the experiments/conditions and subscripts denote genes. We will define the approach for P genes used as 
regressors, and a single gene used as a response. The approach assumes that k gene expression data sets, denoted 
by Xi, are gathered under k different conditions alongside corresponding reference (control) data sets Xc,i, 
1 ≤  i ≤  k, all of them containing the expression levels of P genes over Ni, 1 ≤  i ≤  k, time-points or perturbations 
(Fig. 1, step 1 and 2). Note that the data sets from the k different conditions do not have to be over the same time 

Figure 1. Representation of the analysis flow, data sets and their transformation for usage in the model. 
Representation of condition and control data sets Xi and Xcontrol, respectively, containing the expression levels 
of P genes, as regressors, over Ni time points, 1 ≤  i ≤  k. Block matrix X contains the gene expression values Xi, 
1 ≤  i ≤  k, for the regressor genes (transcription factors) in the diagonal. Y includes the profiles Yi, 1 ≤  i ≤  k, for 
the response genes. Weight matrices Wi contain the similarity of differential behavior between the response 
gene and each of the regressors based on data sets from k perturbation experiments and the corresponding 
controls. Regression coefficient values βi, 1 ≤  i ≤  k, consists of regulatory relationship between a TF and its 
targets from k perturbation experiments.
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domain or with the same sampling frequency; the only requirement is that each data set allows to reliably obtain 
the corresponding covariance matrix for the P genes. In addition, the profiles Yi for the single response gene over 
the k conditions together with the corresponding control profiles Yc,i, 1 ≤  i ≤  k are given.

Since reference data sets Xc,i, 1 ≤  i ≤  k, are available, we first determine the differential behavior for each of the 
regressors as well as for the response in each condition. To this end, we rely on the gene-specific B-statistic11 cor-
responding to the log-odds that the gene is differentially expressed at a given time point of a particular condition 
in comparison to the control. Let ,Prj

i t, 1 ≤  j ≤  P, 1 ≤  i ≤  k, 1 ≤  t ≤  Ni be the probability that gene j at time point t 
under condition i is differentially expressed. Then the matrix Pri of dimension ×P N i gathers the probabilities for 
the time-dependent differential behavior of the considered genes, estimated by the corresponding B-statistics. 
The B-statistics was estimated for each gene and at each time point by comparing data set Xi from the treatment 
and the respective control Xc,i, 1 ≤  i ≤  k.

The derived probabilities can be used to define weight matrices for each condition i (1 ≤  i ≤  k), denoted by 
×WP P

i , which capture the information on the similarities between the response gene and each of the regressor 
genes based on their differential behavior (Fig. 1, step 3), by using the following:
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where ,PrY
i t and ,Prj

i t are the probabilities of differential behavior for the response gene Y and the regressor gene j 
(1 ≤  j ≤  P), respectively, at time point/perturbation t.

If the value of ,WY j
i  is close to zero, the jth regressor gene has, on average, a similar differential behavior to the 

response over all time points/perturbations in a data set from one condition. More specifically, ,WY j
i  is close to zero 

if either both genes are differentially expressed or they are both not affected by the perturbation. Due to the sym-
metric nature of the absolute value in Eq. (1), the weight matrix Wi is symmetric with zeros along the diagonal.

Regression-based model. Having k time-resolved gene expression data sets including P +  1 genes and Ni, 
1 ≤  i ≤  k, time points together with the corresponding control data set(s), we aim at formulating a model which 
captures the following three criteria: (1) the expression levels of each gene should be explained by the expression 
levels of a small number of transcription factor (TF) coding genes, i.e., the corresponding regression should be 
sparse to reduce the number of false positives and likely increase the detection of direct relationships; (2) the 
regulatory networks should be inferred simultaneously over the given k data sets to simultaneously explain all 
analyzed conditions; and (3) a direct link should be preferred for genes which exhibit similar differential behavior 
over the considered conditions, since a differentially behaving gene (TF) is likely to alter the behavior of a direct 
target. Here, for the purpose of building the regression models, we focus on using the data sets from the k con-
ditions only, as they are potentially more informative about the responsive genes in comparison to the reference 
state. In addition, the control data set enter the modeling through the probabilities of differential behavior, and 
are, thus, also employed in the reconstruction of the gene regulatory network.

The first criterion can be captured by the classical LASSO, so that the regressors with non-zero regression coef-
ficients are considered to be involved in a direct relationship with the response gene, yielding the gene regulatory 
network. To address the second criterion of simultaneously inferring k networks from the k different data sets, 
one has to ensure that: (i) the integration and transformation of the data should be performed in such a way that 
the LASSO penalty is simultaneously imposed to all data sets, and (ii) the k reconstructed networks should be as 
close as possible in terms of edges (i.e., relationships) their strength given by the coefficients, and the sign of the 
relationship (activating or repressing).

The integration and transformation of the data sets is achieved as follows: the k transcriptomics data sets are 
combined into a single block matrix X of dimensions kN ×  kP, where = ∑ =N Ni

k i
1 , Y is a collection of the profiles 

for the response gene from the different conditions, resulting in a vector of dimension kN ×  1. As a result, the 
estimated coefficients form a kP ×  1-vector corresponding to the edges between the response gene Y and regres-
sor genes in the k network. The vector of estimated regression coefficients is represented with β.

To ensure that the k reconstructed networks are as close as possible, we add the fusion LASSO term β β″ − ′ 1, 
where β′ =  [β1, β2, …, βk − 1]T, β′  =  [β2, β3, …, βk]T and the order of the k data sets is arbitrarily selected. In a 
regression setting, this fusion term imposes the constraint that the sum of absolute differences between the esti-
mated coefficients of the same regressor over the consecutive data sets, with the assumed arbitrary order, is min-
imized (Supplementary Fig. S3 and Supplementary Table S8). This idea differs from the most recent approach 
whereby networks reconstructed from different data sets are individually obtained and later combined in a con-
sensus network by existing techniques14,51.

The third criterion about the similarity of differential behavior between the response and regressors implies the 
inclusion of the weight matrix Wi, 1 ≤  i ≤  k, so that the regressor of higher explanatory power, which are associated 
with non-zero regression coefficients, over the multiple data sets are less penalized in the fused LASSO regression. 
This can be achieved by multiplying the regression coefficients with the weight matrix W (of size kP ×  kP), gather-
ing the similarity of differential behavior between each of the P regressors and the single response gene under the 
k conditions. As a result, the expression βW 1 is included as a modified penalty in the regression.

Therefore, the final model for reconstructing the gene regulatory interactions is given by the following fusion 
LASSO formulation over the k given data sets (Fig. 1, step 4):

β β λ β λ β β= − + + ″ − ′ ,
( )β

ˆ Y X Warg min
22

2
1 1 2 1
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where Y is the response gene which is regulated by the regressors with non-zero regression coefficients.

Gene expression data sets. Escherichia coli. The responses of Escherichia coli to stress conditions have 
already been well-investigated, resulting in characterization of the general and condition-specific components 
that regulate transcriptional changes underlying the adjustment to changing environments52,53. The gathered data 
sets provide an excellent test case to which the performance of the proposed method and the contending alterna-
tives can be readily compared.

The time-resolved transcriptomics data sets gathered with microarray technology were obtained from54, 
where changes in the expression of genes from E. coli strain MG1655 were monitored under four stress condi-
tions, including: non-lethal temperature shifts, i.e., heat and cold treatment, oxidative stress (by adding hydrogen 
peroxide), lactose-diauxic shift (i.e., change of primary carbon source) relative to cultures grown under optimal 
conditions, referred to as control. All cultures were grown simultaneously in the same condition and different 
perturbations were applied at the early mid-log phase (OD 0.6). The sampling was carried out from time points 
10–50 min post-perturbation (at 10 min intervals) and two control time points before each perturbation for all 
considered conditions (data are available at http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc= GSE20305).

The reasons for selecting and using these data sets are that the predictions can be readily validated against the 
gold standard benchmark for E. coli provided by the DREAM5 challenge14 as well as the experimentally verified 
regulatory network interactions from RegulonDB53. In RegulonDB, the information about the effect of the regula-
tors (in terms of activating and repressing interactions) on the target genes is also provided. Moreover, these data 
sets satisfy the requirements of the proposed approach, since the single control can be used to establish the differ-
ential gene behavior across the data sets upon application of the stresses. In addition, the data are gathered from 
the same laboratory following the same protocol, thus, reducing the level of noise. Finally, and most importantly, 
we aimed at using real-world data sets to estimate the actual performance of the proposed method in a realistic 
setting rather than from simulated instances.

Mycobacterium tuberculosis. Mycobacterium tuberculosis (MTB) is a pathogenic bacterium whose gene regula-
tory network is poorly understood. However, recently Galagan et al.55 made the first step in reconstructing the 
complete regulatory network of MTB based on the ChIP-seq and microarray gene expression data gathered under 
conditions of hypoxia and re-aeration. They performed time-resolved transcriptomics experiments in which the 
expression level of genes were measured at 1, 2, 3, 5, and 7 days after culturing MTB strain H37Rv in bacteriostatic 
hypoxia conditions. The samples were then placed back in the aerobic rolling culture and the gene expression 
levels were measured after 1, 2, 4, 5, and 7 days of re-aeration. The expression levels were also measured at time 
point 0 which is considered as the control data set for the differential analysis (data are available at http://www.
ncbi.nlm.nih.gov/geo/query/acc.cgi?acc= GSE43466).

The reasons for selecting and using these data sets are that: (i) the predictions can be validated with respect to 
recent real-world data sets from non-model species, (ii) it satisfies the requirements of our approach for inferring 
the gene regulatory network from multiple data sets, as the gathered time series can be considered as two separate 
time-resolved data sets (conditions): hypoxia and re-aeration while including time point 0 as a control, and (iii) 
the predictions can be readily compared to the small sub-network of MTB which was partially verified through 
experiments in55 (Fig. 2 in55).

Mus musculus. Mus musculus represents a model organism for understanding human biology and disease; 
therefore, studying its large-scale gene regulatory network is an important challenging task. Many experiments 
have been performed on mouse embryonic stem (ES) cells to explore the details of their pluripotency and ability 
to self-propagate and renew. To this end, Sene et al.56, measured the expression level of genes from three genet-
ically distinct mouse ES cell lines (R1, J1, and V6.5) during differentiation at 11 time points: 0 h, 6 h, 12 h, 18 h, 
24 h, 36 h, 48 h, 4 d, 7 d, 9 d, and 14 d. The expression levels at time point 0 are considered as the control data set 
for the differential analysis (the processed data has been downloaded from http://www.maayanlab.net/ESCAPE/
browse.php).

This data set provides a good test case for comparing the performance of the compared approaches for gene 
regulatory network extraction in a higher organism. Moreover, the literature-based embryonic stem cell net-
work is used as a global standard network to validate the predictions obtained from the compared approaches 
(downloaded from iScMiD (Integrated Stem Cell Molecular Interactions Database) http://amp.pharm.mssm.edu/
iscmid/literature/index.htm).

Comparative analysis. For the comparative analysis we considered the most recent as well as the 
state-of-the-art approaches which include two criteria, sparsity of the network and removal of indirect relation-
ships. To this end, we used the following approaches: the global silencing33, network deconvolution34, Gaussian 
Graphical Models (GGM)19, mutual information (ARACNE25, and CLR26), Bayesian Network (catnet)57, the 
GENIE3 approach21, and different regularization-based models45 (more details in the Methods section).

Escherichia coli. The resulting networks from these approaches were compared to the network including experi-
mentally verified regulatory relationships from RegulonDB and the gold standards from the DREAM5 challenge. 
The findings were summarized in terms of the resulting true positive and false positive rates, which resulted in 
the corresponding ROC (receiver operating characteristic) curves illustrated in Fig. 2 (based on the used thresh-
old value for retaining a weighted edge in the network). We used the R package minet58 to plot the ROC curves, 
and the statistics obtained by using this package are summarized in Table 1. As illustrated in Fig. 2, the proposed 
approach allowed the prediction of regulatory relationships at a higher percentage of true positives in compari-
son to the GENIE3, network deconvolution and the global silencing methods, while GGM, ARACNE, CLR, and 

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE20305
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE43466
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE43466
http://www.maayanlab.net/ESCAPE/browse.php
http://www.maayanlab.net/ESCAPE/browse.php
http://amp.pharm.mssm.edu/iscmid/literature/index.htm
http://amp.pharm.mssm.edu/iscmid/literature/index.htm
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regularization-based models performed poorly for accurate inference of the regulatory network. Moreover, it is 
evident that, on the used data sets, the proposed method based on the extension of the fused LASSO performed 
similarly to the considered contending approaches when only the connectivity (i.e., presence of an edge/rela-
tionship) is considered. To further quantify the performance of the compared methods, we calculated the area 
under the ROC curves (AUROCs), the area under PR (precision-recall) curves (AUPRs), and the true positive 
rates (TPR) at low false positive rate (most of the compared methods showed maximum difference between TPR 
and FPR at FPR =  0.03), presented in Table 1. We used the R package pROC59 to estimate the AUROC curves 
and their respective confidence intervals (CI) (Supplementary Table S1). The other statistics resulting from the 
comparison of the considered approaches are summarized in Supplementary Table S1. Altogether, our findings 
demonstrate that the performance of the proposed approach is statistically similar to the performance of GENIE3 
and network deconvolution, while outperforming the remaining of contending methods.

In our approach, the network over all data sets was obtained by taking the maximum or the average of the 
corresponding regression coefficients (see Supplementary Fig. S1 (a) for illustration). Since the distribution of the 
differences between the regression coefficients obtained based on each of the four data sets for the same response 
and regressors are almost identical (see Supplementary Fig. S1 (b)), the two networks are not expected to differ. 
Indeed, the comparison between the two networks obtained by taking the average and the maximum of the 
regression coefficients does not show a significant difference with respect to the AUROC values (p-value =  0.6257, 
see Supplementary Table S1).

The performance of each method over the four data sets and their combination was summarized by the 
geometric mean for the five corresponding AUROCs and AUPRs, while the OverallScore is the average of the 
calculated AUROCscores and AUPRscores14:

Figure 2. ROC curves for the methods considered in the comparative analysis (E. coli data sets). ROC 
curves are shown for the gene regulatory networks predicted based on the data sets from (A) cold, (B) heat, and 
(C) oxidative stress as well as (D) lactose-diauxic shift in addition to the (E) combination of all four data sets by 
using the following methods: GGM, ARACNE, CLR, L1/2, GENIE3, Global silencing, Network deconvolution, 
and the proposed approach based on the fused LASSO which simultaneously considers all four data sets. Due 
to the high similarity in the performance of the regularization-based models, the ROC curves of L1/2 model 
is illustrated as the representative to avoid curve overlapping. The color of the dashed lines represents the 
methods. TPR and FPR stand for true positive rate and false positive rate, respectively.
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The OverallScore in Eq. (3) can be used to rank the compared methods, such that a larger value corresponds 
to a better-performing method. As shown in Table 1, the performance of our method was superior to that of other 
contending methods based on the OverallScore. Moreover, the standard deviation of the AUROC curves for the 
proposed method is smaller in comparison to the contenders (see Supplementary Table S1). The stability of the 
obtained networks further supports the usage of the fusion term in the proposed approach, which was considered 
for the very purpose of producing similar networks across different data sets.

We next determined the smallest normalized weight at which the first true positive edge can be detected—
termed selector value; selector values closer to 1 indicate that the true positive edges are likely assigned higher 
weights. As shown in Table 2, the proposed method performed the best for networks obtained over all data 
sets. Moreover, our approach is in the two best performing methods when considering individual data sets. The 
discrepancy can be explained by the inclusion of the fusion term which insists on context-independent regu-
latory relationships. Since the edge weights of the networks obtained by ARACNE with each of the four data 
sets were identical, the corresponding selector values are not informative and cannot be used in the compar-
ison. Interestingly, the network deconvolution and the global silencing did not perform well with respect to 
the selector value, despite recent claims on synthetic data. The reasonably high selector values obtained from 
regularization-based models further confirm the power of regularization-based approaches at assigning higher 
scores to the true positive edges.

Furthermore, the accuracy of inferred gene regulatory networks depends on the ability to predict the type of 
the regulatory relationships—activating or repressing. Therefore, we compared the performance of the methods 
regarding the type of regulatory relationships predicted. To this end, we used the network from RegulonDB 
which includes in total 4566 relationships. Table 3 summarizes the percentages of the predicted true activating 
and repressing regulatory interactions for the four data sets and the considered methods. In addition, it includes 
the percentages of the true positive and true negative relationships predicted by different methods, irrespective 
of the type of regulation.

ARACNE and CLR as well as GENIE3 are not able to infer the type of regulatory relationships. As mentioned 
in Section 3.2, the original algorithms for the global silencing and the network deconvolution do not provide the 
sign of interactions, since they aim at ranking the regulatory interactions. As shown in Table 3, our findings indi-
cate that the performance of the proposed method with respect to the prediction of the type of regulatory rela-
tionships is promising. In addition, GGM as well as regularization-based models resulted in the largest fraction 
of true negative edges as well as the smallest fraction of true positive edges. The deconvolution method, however, 

Methods

Cold Heat Oxidative Lactose All data sets

AU-
ROC AUPR

TPR 
(FPR = 0.03)

AU-
ROC AUPR

TPR 
(FPR = 0.03)

AU-
ROC AUPR

TPR 
(FPR = 0.03)

AU-
ROC AUPR

TPR 
(FPR = 0.03)

AU-
ROC AUPR

TPR 
(FPR = 0.03)

Over-
allScore

sd (AU-
ROC)

GGM 0.451 0.0012 0.016 0.450 0.0012 0.013 0.458 0.0012 0.015 0.454 0.0012 0.015 0.460 0.0012 0.015 0.228 0.004

ARACNE 0.478 0.0025 0.023 0.497 0.0027 0.05 0.486 0.0026 0.032 0.495 0.0027 0.025 0.558 0.0031 0.010 0.252 0.031

CLR 0.486 0.0013 0.028 0.477 0.0014 0.018 0.472 0.0013 0.033 0.483 0.0013 0.027 0.483 0.0026 0.046 0.241 0.005

L1 0.487 0.0013 0.015 0.487 0.0013 0.015 0.479 0.0013 0.015 0.469 0.0013 0.017 0.479 0.0013 0.018 0.240 0.007

L1/2 0.487 0.0013 0.015 0.487 0.0013 0.015 0.478 0.0013 0.014 0.467 0.0013 0.017 0.473 0.0013 0.015 0.240 0.009

L0 0.487 0.0013 0.015 0.487 0.0013 0.015 0.478 0.0013 0.014 0.467 0.0013 0.017 0.473 0.0013 0.016 0.240 0.009

GENIE3 0.608 0.0052 0.273 0.616 0.0046 0.256 0.608 0.0052 0.277 0.610 0.0055 0.275 0.591 0.0040 0.235 0.306 0.009

Global 
Silencing 0.605 0.0033 0.195 0.596 0.0037 0.208 0.640 0.0053 0.256 0.613 0.0040 0.217 0.608 0.0033 0.209 0.308 0.016

Network 
Deconvo-
lution

0.624 0.0040 0.246 0.610 0.0046 0.254 0.624 0.0047 0.263 0.624 0.0045 0.257 0.659 0.0071 0.309 0.316 0.018

Proposed 
approach 0.642 0.0053 0.276 0.643 0.0058 0.295 0.654 0.0055 0.284 0.644 0.0056 0.280 0.644 0.0043 0.252 0.325 0.004

Table 1.  ROC-based statistics for the compared methods (E. coli data sets). The first five sections contain 
the values for the AUROCs, AUPRs and the true positive rates (TPR) at relatively low value of false positive 
rate (FPR =  0.03) obtained based on the four different data sets and their combination by using the compared 
methods. The last two columns include the values for the OverallScore and the standard deviation of the 
obtained AUROCs. The ROC statistics are calculated using the R package minet. The entries in bold represent 
the best performer method with respect to the corresponding data set.
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outperformed the rest of the approaches with respect to the fraction of true positive edges for cold and oxidative 
stress as well as lactose-diauxic shift (albeit with much smaller selector values, see Table 2).

In addition, to specifically inspect the efficiency of the inferred networks, we selected a subnetwork from 
RegulonDB including four sigma factors, RopD, RopE, RopH, and RopS, included in the analyzed data sets. 
Sigma factors are proteins required for initiation of RNA synthesis60, and their activities depend on the environ-
mental conditions. While RopD is the primary sigma factor which transcribes most of the genes, the activities of 
the other three are environment-specific; for instance, RopE is the extreme heat stress sigma factor, RopH is the 
heat stress sigma factor activated upon heat exposure, and RopS is the stationary phase sigma factor. Interestingly, 
for the four sigma factors, no edges were predicted by GGM. With respect to the six other approaches as well as 
catnet (applied only on genes included in the illustrated networks), by inspecting Fig. 3 (for the sake of readability, 
the resulting networks for CLR, GENIE3 , L0, /L1 2, and L1-regularization models are shown in the Supplementary 
Fig. S2), it becomes evident that the proposed approach predicted a considerably smaller number of false posi-
tives, due to the sparsity constraints, and a comparable number of true positives, due to the regression-based 
formulation. In addition, as a result of the imposed constraints in the fused LASSO formulation, the networks 
extracted for the four different data sets based on our method are exactly the same (except for slight differences in 
the weights - see Supplementary Fig. S1), which is biologically expected. However, this was not the case for the 
networks reconstructed by ARACNE, CLR, GENIE3, catnet, the network deconvolution and the global silencing 
methods; in addition, the networks from GENIE3, catnet and the deconvolution method were the densest over all 
data sets. Altogether, regularization-based models largely underestimated the true positive edges, although they 
were consistent in predicting the edges for each single data set. The proposed approach performed particularly 
well with respect to predicting the type and not only the presence of a regulatory relationship, evident in the cases 
of the RpoH and RpoD sigma factors.

Finally, we obtained the run time of each inference method which is presented in Supplementary Table S2. 
Since the proposed method includes many independent regression models, we parallelized the approach (as 
described in Methods). Therefore, the run time of the proposed method is only provided for performing a single 
regression. Clearly, the algorithms which rely on matrix inversions in the presence of hidden parameters (e.g., 
network deconvolution) are faster in comparison to the proposed method which requires solving multiple regres-
sions. While cross validation is expected to increase the computational demand, if a single value is used across 
all genes (i.e., models) the regulatory interaction in the vicinity of a gene can be inferred in a drastically reduced 
time in order of a few seconds.

Mycobacterium tuberculosis. Motivated by the predictions from applying the proposed approach on the combi-
nation of all E. coli data sets, we next investigated the comparative analysis only on the combination of both data 
sets from MTB (i.e., hypoxia and re-aeration). To obtain gene regulatory networks, we applied all compared meth-
ods to the pre-processed gene expression values as well as the log 2-transformed gene expression fold changes 
between control (time point 0) and the hypoxia and re-aeration time-series samples. The ROC analysis for the 
compared methods was then obtained by using the R package minet58 for both: the top 31 (as the gold standard 
network includes 31 edges) and 100 highly ranked edges, and the corresponding statistics are summarized in 
Supplementary Table S3. It is evident that the proposed approach allowed the prediction of regulatory relation-
ships at a higher percentage of true positives in both cases of using gene expression values and log 2-transformed 
gene expression fold changes when comparing to the performance of GENIE3, network deconvolution and global 
silencing methods. Likewise with E. coli, GGM, ARACNE, CLR, and regularization-based models performed 
poorly for accurate inference of the regulatory network; however, the performance of the majority of the com-
pared methods was increased upon applying to the log 2-transformed gene expression fold changes. In addition, 
the selector values for all compared methods were the same and equal to one.

Furthermore, to specifically inspect the efficiency of the inferred networks, we investigated on three 
experimentally verified TF regulatory interactions that are highlighted in the Result section from Galagan 
et al. (page 180,55): TF Rv0081 negatively regulates TFs Rv3597c and Rv3416 (whiB3) (Rv0081 →  Rv3597c 
(Lsr2), Rv0081 →  Rv3416 (whiB3)), and TF Rv3133c and Rv2034 (DosR) negatively regulate each other 
(Rv3133c ↔  Rv2034 (DosR)). All interactions and their regulatory types were successfully predicted by the 

Method Cold Heat Oxidative Lactose diauxie All data sets

GGM 0.66 0.50 0.61 0.43 0.17

ARACNE 1 1 1 1 0.77

CLR 0.15 0.24 0.39 0.35 0.33

L1 0.70 0.70 0.68 0.69 0.67

L1/2 0.76 0.76 0.68 0.62 0.91

L0 0.78 0.76 0.70 0.62 0.90

GENIE3 0.65 0.63 0.93 0.79 0.94

Global silencing 0.31 0.27 0.69 0.43 0.36

Network deconvolution 0.17 0.35 0.27 0.23 0.45

Proposed approach 0.44 0.96 0.65 0.69 0.96

Table 2.  Selector value - E. coli data sets. The columns contain the selector values for the networks 
reconstructed based on the four data sets and their combination by using the compared methods.

http://mathbiol.mpimp-golm.mpg.de/Mul-fLASSO/index.html
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proposed approach with sufficiently high ranks (Supplementary Table S4). Global silencing as well as network 
deconvolution methods were not successful with respect to the type of regulatory interactions and obtained 
rather low ranks, while GENIE3 predicted all interactions with high ranks but is not able to infer the type of regu-
latory relationships. Likewise, GGM, ARACNE, and CLR were not successful in predicting the interactions, while 
regularization-based models performed very inconsistent with respect to the sign and predicting true edges.

Moreover, we counted the number of predicted true interactions in the top 100 highly ranked edges 
(Supplementary Tables S4, S5, and S6) considering the gold standard sub-network which includes 31 interactions 
(Fig. 2 in55). It is evident that the proposed approach obtained the highest overlap with the gold standard while 
the minimum rank of the intersected interactions is remarkably high (above 0.6). Finally, the networks predicted 
by the compared approaches were filtered by the corresponding median edge ranks and the ROC analysis has 
been performed to the resulting sub-networks. Here, too, our proposed approach resulted in the highest AUROC 
and AUPR values while the edges in the filtered sub-network have considerably higher ranks (above 0.6075 and 
0.379 when applied to gene expression levels and log 2-transformed gene expression fold changes, respectively) in 
comparison to the median ranks of the other contending methods.

Mus musculus. Finally, to verify the performance of the proposed approach in a higher organism, we performed 
a comparative analysis on the combination of tissue-specific time-series data sets from three genetically dis-
tinct mouse ES cell lines during differentiation. We applied all compared methods to the log 2-transformed gene 
expression fold changes between control (time point 0) and the rest of time-series from the corresponding ES cell 
lines, motivated by the resulting improvement in the performance of the inference approaches applied to the MTB 
data sets. The ROC analysis for the compared methods was then carried out on the top 248 (as the gold standard 
network includes 248 edges) and 500 highly ranked edges, and the corresponding statistics are summarized in 
Supplementary Table S7.

It is evident that the proposed approach allowed the prediction of regulatory relationships at a higher per-
centage of true positives when compared to the performance of GENIE3, network deconvolution and global 
silencing methods. Likewise with other data sets CLR as well as regularization models performed poorly for 
accurate inference of the regulatory network; however, the performance of the GGM is increased in comparison 
to its performance on the other data sets, while ARACNE failed to predict any true positive edge. In addition, the 
selector values for most of the compared methods were high and close (or equal) to one.

Moreover, we counted the number of predicted true interactions in the top 248 highly ranked edges 
(Supplementary Tables S7 and S9) considering the gold standard sub-network (which includes 248 interactions). 
It is evident that the proposed approach obtained the highest overlap with the gold standard, while the mini-
mum rank of the intersected interactions is remarkably high (above 0.5). Finally, the networks predicted by the 
compared approaches were filtered by the corresponding median edge ranks and the ROC analysis has been 
performed to the resulting sub-networks. Once again the proposed approach resulted in the highest AUROC and 
AUPR values, while the edges in the filtered sub-network have similar ranks as the other predicted sub-networks 
by the other contending methods.

Discussion
Here we proposed a novel computational method for the reconstruction of gene regulatory networks which har-
nesses the information available in multiple data sets (time-series or perturbations) from different conditions. 
The approach is based on a fused LASSO formulation which incorporates not only the constraint that the sparse 
networks extracted from the different data sets are supposed to be as similar as possible, but also the requirement 
that the genes predicted to participate in a regulatory interaction should exhibit similar differential behavior 
under different conditions. We applied the proposed method to the different real-world gene expression data sets 
from two bacteria as well as Mus musculus. The thorough comparative analysis with the most recent as well as the 

Method Cold Heat Oxidative Lactose diauxie

GGM
+ − TN TP + − TN TP + − TN TP + − TN TP

0.027 0.016 0.994 0.006 0.029 0.019 0.994 0.002 0.029 0.017 0.995 0.004 0.026 0.022 0.995 0.004

ARACNE — — 0.937 0.088 — — 0.963 0.102 — — 0.969 0.063 — — 0.887 0.242

CLR — — 0.968 0.028 — — 0.968 0.039 — — 0.968 0.033 — — 0.968 0.027

L1 0.004 0 0.994 0.005 0.004 0 0.994 0.005 0.003 0 0.994 0.004 0.005 0 0.994 0.007

L1/2 0.003 0 0.994 0.005 0.003 0 0.994 0.005 0.003 0 0.994 0.004 0.007 0 0.994 0.006

L0 0.003 0 0.994 0.005 0.003 0 0.994 0.005 0.003 0 0.994 0.004 0.004 0 0.994 0.006

GENIE3 — — 0.968 0.273 — — 0.968 0.295 — — 0.968 0.277 — — 0.968 0.275

Global silencing 0.347 0.327 0.968 0.195 0.367 0.312 0.968 0.208 0.362 0.278 0.968 0.256 0.340 0.318 0.968 0.217

Network deconvolution 0.374 0.298 0.968 0.275 0.406 0.279 0.968 0.254 0.391 0.278 0.968 0.284 0.344 0.315 0.968 0.280

Proposed approach 0.247 0.156 0.968 0.246 0.247 0.156 0.968 0.256 0.247 0.156 0.968 0.264 0.247 0.156 0.968 0.257

Table 3.  Prediction of regulatory types - E. coli data sets. The fraction of correctly predicted activating 
(+ ) and repressing (− ) regulatory relationships with respect to the experimentally verified regulations from 
RegulonDB are presented for the four different data sets. The fractions of true positive (TP) and true negative 
(TN) edges irrespective of the regulatory type are also included. The ‘—’ is considered where the method is not 
able to infer the regulatory type
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state-of-the-art approaches demonstrated that the proposed method (i) showed highest performance on individ-
ual data sets (E. coli data set), (ii) outperformed the other contending approaches with respect to the predicted 
networks from MTB as well as Mus musculus on combination of all data sets, (iii) was promising for inferring 
the type of regulatory interactions (E. coli data set), (iv) partially outperformed the alternatives on the combined 
data sets (E. coli data set), (v) was superior for selector values, and finally (vi) was more stable with respect to the 
inferred networks from single data sets. In addition, solving the problems relying on computing inverse matrices 

Figure 3. Sub-networks including sigma factors. The gene regulatory network for four sigma factors, RopD, 
RopE, RopH, and RopS, together with their experimentally verified interactions obtained from RegulonDB53. 
The colored edges belong to the sub-network retrieved from RegulonDB, where red edges denote activating, 
while blue edges indicate repressing regulatory relationships. The edges marked in green are of unspecified 
regulatory type. If an edge was predicted by a method but is not included in the network from RegulonDB, it 
is colored in black. The predicted edges for ARANCE, catnet, the network deconvolution and global silencing 
methods are marked by ‘A’, ‘C’, ‘D’ and ‘S’, respectively, next to the corresponding edges. The letters are color-
coded—red, blue or green fonts represent activating, repressing or unspecified relationships, respectively. 
The dotted edges denote the relationships predicted by the proposed approach. Illustrated are the predicted 
regulatory relationships and their types based on data from (A) cold, (B) heat, (C) oxidative stress, and  
(D) lactose-diauxic shift time-series experiments.
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(e.g., inverse of covariance, used in GGM and global silencing) or distance matrices (e.g., based on mutual infor-
mation) can be solved in shorter time than individual regressions for each gene (as a response in the regression 
model), but since covariances for most of the gene expression data sets are ill-conditioned, the proposed approach 
opts for regularized regression. In addition, with respect to the results from MTB, we could show that the per-
formance of the majority of the inference approaches increased by using fold changes (obtained from differential 
analysis) rather than gene expression values; however, this needs to be further investigated and specifically eval-
uated. Finally, and of most interest, the proposed approach provides predictions of regulatory interactions which 
can be readily interpreted due to the incorporation of biologically meaningful constraints in the usage of data.

Methods

Data preprocessing. Escherichia coli. We used the preprocessed and normalized data for each data set 
(detailed description in54). The final data sets contain the expression of 4400 genes at the aforementioned time 
points. To test our approach, we used the set of transcription factors present in RegulonDB (TF-gene and TF-TF 
interactions) as well as DREAM5 challenge. Based on the available microarray data sets, the profiles of altogether 
210 regulators (TFs) and 1561 non-regulators were considered for the inference of the gene regulatory networks.

The model proposed in Eq. (2) was then solved for each of the 1561 genes as responses in the regression and 
the 210 TFs as regressors. We calculated the weight matrices Wi, 1 ≤  i ≤  4, and the transformations were applied 
on the four data sets. The weight matrices were calculated using the limma package61 in R62. The probabilities of 
being differentially expressed at each time point were estimated by the B-statistic of a contrast (for a time point).

Mycobacterium tuberculosis. We used the preprocessed and normalized data for each data set (available 
in ArrayExpress with the accession number E-GEOD-43466, http://www.ebi.ac.uk/arrayexpress/experi-
ments/E-GEOD-43466/). The final data sets used for inferring gene regulatory network include only 20 TFs 
present in the experimentally verified TF regulatory sub-network available in55 (Fig. 2, page 180).

The model proposed in Eq. (2) was then solved for each of the 20 TFs considered similarly as responses 
and regressors in the regression. We calculated the weight matrices Wi, 1 ≤  i ≤  2, and the transformations were 
applied on the two data sets. The weight matrices were calculated in the same fashion as for E. coli.

Mus musculus. We used the preprocessed and normalized data for each data set (available in ESCAPE databse, 
http://www.maayanlab.net/ESCAPE/browse.php). We used the gene expression data obtained from MOE430A 
array due to measuring genes which are better characterized. The final data sets contain the expression of 8274 
genes (the genes with more than one expression profiles in the array were removed) at the aforementioned time 
points. To test our approach, we used the set of transcription factors present in the literature-based ES network 
(iScMiD, http://amp.pharm.mssm.edu/iscmid/literature/index.htm). Based on the available microarray data sets, 
the profiles of altogether 26 regulators (TFs) and 61 genes were considered for the inference of the gene regulatory 
networks.

The model proposed in Eq. (2) was then solved for each of the 61 genes as responses in the regression and the 
26 TFs as regressors. We calculated the weight matrices Wi, 1 ≤  i ≤  3, and the transformations were applied on the 
three data sets. The weight matrices were calculated in the same fashion as for E. coli.

Methods used in the comparative analysis. Escherichia coli. For each of these methods used in the 
comparative analysis (except catnet, due to its time complexity), we employed the data sets from each perturba-
tion separately and all together, and divided the profiles into the 210 TFs (regulators) and 1561 non-regulator 
genes. For the network deconvolution and the global silencing methods, we proceeded as follows: First, for the 
given data set, we calculated the Pearson correlation coefficients matrix ×Sg g

i 63. Given g1 regulators and g2 

non-regulators, with g =  g1 +  g2, the correlation matrix can be modified as ′ =
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denotes the zero matrix, to include biological roles (TF and non-TF genes). We then applied the network decon-
volution and global silencing methods to the modified correlation matrix S′ i, 1 ≤  i ≤  4 from the four data sets (i.e., 
cold, heat, oxidative stress, and lactose-diauxic shift) and the combination of all, resulting in five gene regulatory 
networks per method. However, the global silencing depends on finding the inverse of the correlation matrix 
which is rank-deficient in the case p > >  n, like with the data analyzed here. Since finding an inverse for a 
rank-deficient matrix is an ill-posed problem, we resolved it by adding a noise term which renders the matrix 
positive-definite. In the comparative analysis, we selected the best result from 10 runs of the procedure as a final 
outcome used in the comparative analysis.

We used the package GeneNet64 to infer gene regulatory networks based on the GGM proposed in19 to 
also obtain four gene regulatory networks for each of the stresses and one network for the combination of data 
sets. Likewise, R packages minet58 and catnet57 were applied to reconstruct gene regulatory networks based on 
ARACNE25 (as well as CLR26) and categorical Bayesian network65, respectively. For GENIE3, we used the corre-
sponding online tool available in GP-DREAM14,66 (http://dream.broadinstitute.org/gp/pages/index.jsf). Finally, 
for different regularization models; L1, L1/2, and L0, we used the available source code from http://jjwanglab.org/
LpRGNI/.

To be consistent with the obtained edge weights from each network inference method, we rescaled them to 
positive values between 0 and 1 (by dividing the absolute value of the edge weights by the largest absolute value 
of the edge weights). Then the edges were sorted in a decreasing order of their weights, and the top 100,000 
highly ranked edges were selected for the rest of the statistical assessments. We note that the resulting networks 
from global silencing and network deconvolution are rescaled by default. In addition, the actual edge weights 
(before rescaling) were stored for each network to estimate the percentages of predicted true positive and negative 

http://www.ebi.ac.uk/arrayexpress/experiments/E-GEOD-43466/
http://www.ebi.ac.uk/arrayexpress/experiments/E-GEOD-43466/
http://www.maayanlab.net/ESCAPE/browse.php
http://amp.pharm.mssm.edu/iscmid/literature/index.htm
http://dream.broadinstitute.org/gp/pages/index.jsf
http://jjwanglab.org/LpRGNI/
http://jjwanglab.org/LpRGNI/
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regulatory effects (i.e., activation and inhibition, respectively). The inference of regulatory type, in terms of acti-
vation or inhibition, would not be possible without capturing the edge weights before rescaling, described above.

Mycobacterium tuberculosis. The comparative analysis was performed only on the combination of all data sets 
resulting in one gene regulatory network per method. As the gold standard network for MTB includes only 
transcription factors, we applied the network deconvolution and the global silencing methods to the correlation 
matrix S′ i, 1 ≤  i ≤  2 from the combination of both data sets (i.e., hypoxia and re-aeration) without further modifi-
cation. The rest of the analysis was performed in the same way as for E. coli, except the selection of highly ranked 
edges for which due to the smaller network size, we selected the top 31 (the size of gold standard network) and 
100 highly ranked edges.

Mus musculus. The comparative analysis was performed only on the combination of all data sets resulting in 
one gene regulatory network per method. The inference of the gene regulatory networks and the comparative 
analysis of the compared approaches were performed in the same manner as for E. coli, except the selection of 
highly ranked edges for which due to the smaller network size, we selected the top 248 (the size of gold standard 
network) and 500 highly ranked edges.

Implementation notes for the proposed approach. To implement the modified fused LASSO 
approach for reconstruction of gene regulatory networks over different data sets, we defined a penalty matrix D 
composed of two blocks: The first block D1 is a diagonal kP ×  kP matrix for the LASSO penalty which includes W 
in diagonal, while the second block D2 corresponds to the fusion penalty, expressed as:

=
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= . ( )
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( − ) ×( − ) ( − ) × ( − ) × ( − ) ×( − )

D W

D I O O I

D D D 4
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k P k P k P P k P P k P k P

T

1

2 1 1 1 1 1 1

1 2

To solve the proposed extension to the fused LASSO, we used the lqa package in R67, with remarkable compu-
tational performance due to the Cholesky decomposition68 which requires + / p np 22  operations, in which n is 
the number of observations and = +p p 1 while p is the number of regressors. We also slightly changed the 
function fused.lasso in lqa package to allow inclusion of the penalty matrices defined in Eq. (4). The regression 
coefficients were robustly estimated by 10-fold cross validation based on the optimum values for λ1 and λ2 from 
the sets {0.05, 0.1, 0.5, 1, 1.5} and {0.1, 0.5, 1, 1.5, 2}, respectively. To further speed up the algorithm, we used 
mclapply function from R package parallel62. In addition, we used minet20 and pROC59 packages in R to draw 
ROC curves and estimate statistics for them.

The code snippets for all approaches used in this study is available at http://mathbiol.mpimp-golm.mpg.de/
Mul-fLASSO/index.html. The complete implementation of the proposed approach for the data sets used in this 
study as well as the general analysis flow for applying the proposed approach on new data sets are available at 
https://github.com/omranian/inference-of-GRN-using-Fused-LASSO.
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