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Abstract
samβada	 is	 a	 genome–environment	 association	 software,	 designed	 to	 search	 for	
signatures	 of	 local	 adaptation.	 However,	 pre‐	 and	 postprocessing	 of	 data	 can	 be	
labour‐intensive,	preventing	wider	uptake	of	the	method.	We	have	now	developed	
R.SamBada,	an	r‐package	providing	a	pipeline	for	landscape	genomic	analysis	based	
on samβada,	spanning	from	the	retrieval	of	environmental	conditions	at	sampling	loca-
tions	to	gene	annotation	using	the	Ensembl	genome	browser.	As	a	result,	R.SamBada	
standardizes	 the	 landscape	 genomics	 pipeline	 and	 eases	 the	 search	 for	 candidate	
genes	of	 local	adaptation,	enhancing	reproducibility	of	 landscape	genomic	studies.	
The	efficiency	and	power	of	 the	pipeline	 is	 illustrated	using	 two	examples:	 sheep	
populations	from	Morocco	with	no	evident	population	structure	and	Lidia	cattle	from	
Spain	displaying	population	substructuring.	In	both	cases,	R.SamBada	enabled	rapid	
identification	and	interpretation	of	candidate	genes,	which	are	further	discussed	in	
the	light	of	local	adaptation.	The	package	is	available	in	the	r	CRAN	package	reposi-
tory	and	on	GitHub	(github.com/SolangeD/R.SamBada).
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1  | INTRODUC TION

Local	 adaptation	 implies	 the	 existence	 of	 advantageous	 alleles	
conferring	 a	population	 living	 in	 its	 native	habitat	 a	 higher	 fitness	
than	any	other	allochthonous	population	living	in	the	same	habitat	
(Kawecki	 &	 Ebert,	 2004).	 Landscape	 genomics	methods	 (Joost	 et	
al.,	 2007),	 including	 genome–environment	 association	 (GEA),	 are	
among	the	approaches	used	to	detect	signatures	of	local	adaptation	
and	have	become	 increasingly	popular,	mainly	due	to	the	decreas-
ing	cost	of	sequencing,	but	also	because	of	the	recent	availability	of	
fine‐scale	environmental	data	sets	(Balkenhol	et	al.,	2019;	Rellstab,	
Gugerli,	Eckert,	Hancock,	&	Holderegger,	2015).	However,	the	mas-
sive	amount	of	data	that	can	be	analysed	due	to	these	improvements	
have	made	the	development	of	more	efficient	tools	essential	(Stucki	
et	al.,	2017).

To	this	end,	samβada	was	developed	to	perform	large	amounts	of	
logistic	 regressions	 between	 genetic	 markers	 and	multiple	 environ-
mental	variables	(Stucki	et	al.,	2017).	samβada	computes	uni‐	or	multi-
variate	models	between	a	binary	genetic	variable	(e.g.,	the	presence/
absence	 of	 a	 genotype)	 and	 one	 or	 more	 environmental	 variables.	
Significance	 is	assessed	against	a	null	model	 (i.e.,	 constant	model	 in	
the	 case	 of	 univariate	 or	 a	 parent	 model	 in	 the	 multivariate	 case).	
Population	structure	can	be	accounted	for	by	treating	one	or	several	
population	variables	as	environmental	variables	in	multivariate	analy-
sis.	samβada	is	written	in	C++	with	a	particular	emphasis	on	high‐per-
formance	computing	(HPC).	Since	its	publication,	samβada,	as	applied	
alone	or	in	combination	with	other	methods,	proved	useful	to	target	
putative	genomic	regions	underlying	 local	adaptation	 in	a	wide	vari-
ety	of	 species,	 including	domestic	 animals	 such	 as	 swine	 and	 cattle	
(Cesconeto	et	al.,	2017;	Vajana	et	al.,	2018),	wild	animals	such	as	the	
freshwater	sculpin	and	European	pond	turtle	(Lucek,	Keller,	Nolte,	&	
Seehausen,	 2018;	 Pereira,	Teixeira,	 &	Velo‐Antón,	 2018),	 and	many	
different	plant	species	including	the	European	beech	and	the	cow‐tail	
fir	(Cuervo‐Alarcon	et	al.,	2018;	Shih,	Chang,	Chung,	Chiang,	&	Hwang,	
2018).

Despite	its	many	advantages,	samβada's	command‐line	format	is	
sometimes	laborious	and	the	amount	of	pre‐	and	postprocessing	rep-
resents	an	obstacle	to	its	widespread	use.	Indeed,	a	typical	process-
ing	chain,	such	as	the	one	proposed	by	Stucki	et	al.	(2017),	includes	
(a)	the	use	of	a	GIS	software	to	retrieve	environmental	information	at	
sampling	locations;	(b)	molecular	data	filtering	by	standard	software	
such	 as	 plink	 (Chang	 et	 al.,	 2015);	 and	 (c)	 the	 inclusion,	whenever	
present,	of	population	structure	usually	computed	with	a	dedicated	
software	such	as	admixture	 (Alexander,	Novembre,	&	Lange,	2009).	
Similarly,	 postprocessing	 of	 results	 involves	 (a)	 the	 computation	 of	
p- or q‐values	(Storey,	2003)	for	the	association	tests	involving	each	
genotype;	(b)	the	production	of	maps	and	plots	(typically	Manhattan	
plots)	in	which	the	location	in	the	genome	(i.e.,	the	position	in	base	
pair)	of	a	point	representing	the	result	of	a	model	 is	difficult	to	es-
tablish	since	the	plot	is	rarely	interactive;	(c)	the	formulation	of	que-
ries	to	the	Ensembl	genome	browser	(Hubbard	et	al.,	2002)	to	search	
for	candidate	genes	adjoining	the	single‐nucleotide	polymorphisms	
(SNPs)	highlighted.

However,	 the	 r	 software	 (R	 Core	 Team,	 2018)	 provides	 an	
open‐source	 computing	 environment	 adapted	 to	 different	 fields	
in	Biology,	 in	which	many	of	 the	 above‐mentioned	pre‐	 and	post-
processing	tasks	can	be	found	in	various	r‐packages.	Further,	r can 
be	coupled	with	compiled	languages	(such	as	C++)	so	as	to	be	more	
efficient	when	processing	 large	data	sets	 (see	e.g.,	 the	case	of	the	
software	LFMM	2;	Caye,	Jumentier,	Lepeule,	&	François,	2019,	p.	2).

In	this	context,	we	developed	R.SamBada,	an	r‐package	designed	
to	 facilitate	and	enhance	 the	whole	data	process	described	above	
by	integrating	multiple	existing	packages	and	building	new	functions	
into	one	easy‐to‐use	pipeline.	We	present	the	use	of	the	package	by	
illustrating	its	benefits	with	two	case	studies	for	which	driven	signa-
tures	of	selection	were	investigated	as	part	of	the	ClimGen	project	
(https	://climg	en.bios.cf.ac.uk/).	 The	 first	 data	 set	 consists	 of	 160	
Moroccan	sheep	genotyped	with	whole	genome	sequencing	(WGS)	
and	characterized	by	no	clear	population	structure,	while	the	second	
one	encompasses	a	Spanish	Lidia	Cattle	population	of	349	samples	
genotyped	with	50	K	SNP	chip,	with	one	population	variable.	Both	
data	 sets	 are	 already	 published	 (see	Data	 availability	 section)	 but	
have	not	yet	been	analysed	with	samβada.

2  | MATERIAL S AND METHODS

We	first	present	R.SamBada,	with	an	overview	of	its	functions,	and	
then	describe	its	application	to	two	case	studies	from	the	ClimGen	
(https	://climg	en.bios.cf.ac.uk/)	 project,	 detailing	 how	 the	 genetic	
data	 were	 collected	 and	 prepared	 for	 subsequent	 analyses.	 Both	
studies	investigate	climate‐mediated	selection	at	the	genome	level:	
the	first	analysis	is	carried	out	on	a	Moroccan	sheep	data	set	using	
whole	genome	sequences,	 and	 the	 second	one	 involves	a	Spanish	
cattle	breed	(Lidia)	genotyped	with	the	Illumina	BovineSNP50	array.

2.1 | Implementation

R.SamBada	 provides	 functions	 for	 (a)	 preparing	 the	 genetic	 (i.e.,	
SNPs)	and	environmental	information	to	be	processed	(preprocess-
ing),	(b)	running	samβada	directly	into	the	r	environment	(processing)	
and	(c)	performing	post	hoc	analyses	on	the	basis	of	samβada's	output	
(postprocessing).	The	following	sections	detail	these	different	steps	
(Figure	1).

2.1.1 | Preprocessing

Three	 functions	have	been	 implemented	 to	perform	 the	main	op-
erations	required	before	running	samβada.	First,	prepareGeno	is	used	
to	prepare	the	genomic	file,	by	treating	a	SNP	input	data	set	from	
various	formats	(.vcf,	.gds,	.ped	or	.bed)	and	generating	a	filtered	file	
complying	with	samβada's	input	standards.	prepareGeno	relies	on	the	
snprelate	package	 (Zheng	et	al.,	2012)	 to	perform	standard	quality	
control	(QC)	for	minor	allele	frequency	(MAF),	linkage	disequilibrium	
(LD)	and	missingness.	In	order	to	assist	users	in	selecting	adequate	
pruning	levels,	prepareGeno	displays	the	frequency	distributions	of	

https://climgen.bios.cf.ac.uk/
https://climgen.bios.cf.ac.uk/
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F I G U R E  1  Overall functionalities and process in R.SamBada. Grey boxes with italic names indicate functions included in the package. The process 
starts with a genomic file and a file with sample locations or list of IDs. The preprocessing will format the genomic file and prepare the environmental 
file; samβada	is	then	run	parallelly	on	multiple	cores;	after	computing	of	p‐,	q‐values,	Manhattan	plots	and	maps	can	be	drawn	and	Ensembl	
database	can	be	queried
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MAF,	 LD	 and	missingness	 along	with	 the	 proportion	 of	 SNPs	 dis-
carded	corresponding	to	the	thresholds	applied;	in	this	way,	QC	can	
be	tailored	to	avoid	reducing	the	data	set	too	much	while	controlling	
for	missing	information.

Second,	if	coordinates	are	not	available,	setLocation	can	be	used	
to	open	a	local	web	page	that	assist	users	in	defining	sample	loca-
tions	using	mouse‐clicks	on	an	interactive	map.	The	projection	sys-
tem	 used	 is	WGS84	 (corresponding	 EPSG	 –	 European	 Petroleum	
Survey	Group	–	code:	4326),	a	worldwide	system	with	coordinates	
in	degrees	 (longitude/latitude)	 (more	 information	on	projections	 in	
Leempoel	et	al.,	2017).

Then,	createEnv	provides	the	user	with	a	pipeline	to	produce	an	
environmental	data	set	out	of	the	file	containing	sample	locations.	
If	 raster	 files	 representing	 environmental	 variables	 are	 available,	
then	 habitat	 information	 is	 directly	 derived	 at	 the	 sampling	 loca-
tions.	However,	 if	 these	 files	 are	 not	 present,	 createEnv	 is	 able	 to	
use	the	samples’	geographic	coordinates	to	identify	the	correct	tiles	
in	the	WorldClim	(Hijmans,	Cameron,	Parra,	Jones,	&	Jarvis,	2004)	
and	 SRTM	 (Shuttle	 Radar	 Topography	Mission)	 (Farr	 et	 al.,	 2007)	
databases	and	to	download	adequate	climatic	and	altitudinal	 infor-
mation.	The	WorldClim	database	contains	monthly	minimum,	maxi-
mum	and	average	temperature	and	total	precipitation	together	with	
a	series	of	bioclimatic	variables	computed	from	these	variables	(e.g.,	
precipitation	of	wettest	quarter	of	the	year,	complete	list	available	
at	http://www.world	clim.org/bioclim),	while	SRTM	only	provides	al-
titude.	Coordinates	can	be	given	 in	any	projection	system	(as	 long	
as	the	EPSG	code	of	the	projection	is	given	as	an	input	parameter	of	

the	function).	A	comma‐separated	value	(.csv)	file	 is	then	returned	
containing	the	sample	IDs,	their	locations	and	the	values	of	the	cor-
responding	 environmental	 variables.	 The	 interactive	 mode	 shows	
maps	 of	 sample	 locations,	 so	 as	 to	 locate	 potentially	 misplaced	
points	or	erroneously‐set	projection	systems.	This	function	can	save	
substantial	effort,	since	one	single	command	substitutes	a	long	pro-
cessing	 chain	 that	 typically	 includes	 the	 download	 of	 voluminous	
data	for	the	entire	globe,	the	 import	of	both	sample	 locations	and	
raster	environmental	data	into	GIS	software	and	the	retrieval	of	en-
vironmental	values	at	point	location.

Finally,	 the	 prepareEnv	 function	 produces	 a	 file	 containing	 the	
design	matrix	that	samβada	will	process.	At	first,	highly	correlated	en-
vironmental	variables	are	removed	according	to	a	correlation	coeffi-
cient	threshold	defined	by	the	user	in	order	to	keep	only	independent	
eco‐climatic	 factors	 in	 the	 analysis.	The	 interactive	mode	will	 show	
the	graph	of	 the	number	of	variables	discarded	as	a	 function	of	 the	
chosen	correlation	threshold.	Then,	 the	genetic	structure	of	popula-
tions	is	assessed	by	means	of	a	principal	component	analysis	(PCA)	as	
implemented	in	snprelate.	The	user	is	provided	with	the	possibility	of	
further	processing	PCA	output	by	a	clustering	algorithm,	which	calcu-
lates	individual	membership	coefficients	as	a	function	of	the	distance	
from	the	clusters	centroids	(Lee,	Abdool,	&	Huang,	2009).	Changes	in	
the	clustering	solution	according	to	the	chosen	k‐number	of	clusters	
can	 be	 interactively	 visualized.	 After	 ordering	 individuals	 according	
to	their	identifiers	(as	in	the	genomic	file	and	necessary	for	samβada's	
analysis),	a	final.csv	file	is	generated,	containing	the	samples’	IDs,	the	
retained	environmental	variables	 and	either	 the	PCA	score(s)	 or	 the	
membership	coefficient(s)	representing	population	structure.

2.1.2 | Processing

samβada	includes	a	useful	module	called	supervision	that	is	designed	to	
split	the	input	file	into	several	subfiles	and	merge	the	split	result	files,	
thus	reducing	drastically	the	computation	time	by	allowing	manual	start	
of	 parallel	 sessions.	This	module	 has	 however	 rarely	 been	 employed	
to	date,	possibly	due	to	its	laborious	and	time‐demanding	preparation	
procedure.	This	limitation	is	overcome	in	R.SamBada	through	the	sam‐
badaParallel	function	that	implements	supervision	by	default,	and	relies	
on	the	doparallel r‐package	(Microsoft	Corporation	&	Weston,	2017).	
Furthermore,	unlike	the	previous	version	of	samβada	(0.5.1	used	in	Stucki	
et	al.,	2017),	version	0.8.1	(included	in	R.SamBada)	makes	it	possible	to	
directly	assess	the	effect	of	population	structure	by	comparing	the	full	
model	(containing	all	population	variables	and	one	or	more	environmen-
tal	variables)	with	the	null	model	(containing	only	population	variables).

2.1.3 | Postprocessing

Four	ad	hoc	functions	have	been	developed	for	obtaining	and	visual-
izing	samβada's	outputs.	In	the	postprocessing	pipeline,	the	statistical	
significance	of	genotype–environment	associations	is	derived	since	
only	G‐	and	Wald‐scores	are	calculated	by	samβada,	and	no	hypoth-
esis	 testing	 is	 performed.	Here,	 R.SamBada	provides	 the	 function	
prepareOutput,	which	computes	(i)	p‐values	by	comparing	the	spread	

F I G U R E  2  Manhattan	plot	showing	the	q‐values	for	each	
marker	(with	G‐	or	Wald‐Score	>	6)	on	chromosome	23	of	
Moroccan	sheep	associated	with	annual	precipitation	as	calculated	
in samβada	in	a	univariate	mode.	Points	in	red	correspond	to	
models	involving	two	nonsynonymous	SNPs	(ss1208941124	
and	ss1208941157)	in	the	MC5R	gene	(ss1208941124	having	
the	lowest	q‐value	of	the	two).	The	red	horizontal	bar	shows	a	
significance	threshold	of	0.05	[Colour	figure	can	be	viewed	at	
wileyonlinelibrary.com]
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of	G‐	or	Wald‐scores	from	samβada	to	a	chi‐squared	distribution	and	
(ii)	q‐values	based	on	Storey's	method	(Storey,	2003).	The	visualiza-
tion	of	the	position	of	outlier	loci	along	the	genome	is	possible	using	
the	plotManhattan	 function	 that	generates	Manhattan	plots	based	
on	the	p- or q‐values	as	computed	by	prepareOutput.

Next,	 plotResultInteractive	 can	 be	 used	 to	 display	 interactive	
Manhattan	plots.	In	particular,	users	can	specify	which	chromosome(s)	
they	want	to	visualize	for	which	environmental	variable,	the	p- or q-val-
ues,	being	then	plotted	for	each	genotype	as	a	function	of	their	genomic	
coordinates.	Marker	name,	position,	p‐value,	functional	relevance	(e.g.,	
intergenic‐,	nonsynonymous	variants)	as	well	as	proximal	genes	–	when-
ever	present	–	can	be	then	retrieved	for	each	marker	by	directly	clicking	
on	the	set	of	points	of	interest	being	displayed.	Gene	annotation	and	
functional	investigation	are	performed	by	internal	calls	to	the	Ensembl	
genome	browser	(Hubbard	et	al.,	2002)	and	the	Variant	Effect	Predictor	
(VEP)	 (Yates	 et	 al.,	 2015),	 respectively,	 while	 the	 whole	 interactive	
graphical	interface	relies	on	the	r‐package	shiny	(Chang,	Cheng,	Allaire,	
Xie,	&	McPerson,	2018).	Additionally,	a	basic	geographic	map	shows	the	
geographic	distribution	of	the	marker,	the	environmental	variable	and	
the	population	structure	(examples	presented	in	Figure	S1).

Finally,	the	plotMap	mapping	function	makes	it	possible	to	rep-
resent	the	geographic	distribution	of	(a)	the	putative	signature(s)	of	
selection,	(b)	the	environmental	pressure	associated	(as	a	raster	back-
ground	if	available),	(c)	the	neutral	population	structure	(Figure	5	for	
an	example)	and	(d)	the	degree	of	genetic	similarity	among	sampling	
sites	for	the	target	markers	(i.e.,	its	spatial	autocorrelation,	see	Stucki	
et	al.,	2017).	plotMap	relies	on	the	functionalities	embedded	within	
the	 packcircles r‐package	 (Bedward,	 Eppstein,	 &	Menzel,	 2018)	 to	
shift	nearby	sampling	points	and	prevent	them	from	overlapping.

2.2 | Case studies

2.2.1 | Moroccan sheep

Sampling and genetic data

 Preprocessing

Quality	 control	 analysis	 was	 performed	 using	 the	 prepareGeno 
function	with	MAF	<0.05	and	SNP	missingness	<0.1,	 leading	 to	
a	pruned	data	set	composed	by	20,226,452	SNPs	(corresponding	
to	60,679,356	genotypes).	SRTM	and	Worldclim	variables	 (56	 in	

F I G U R E  3  Spatial	occurrence	of	the	CC	genotype	for	SNP	ss1208941124.	In	the	background,	the	shaded	topography	with	mean	annual	
precipitation	(given	in	[mm/year])	is	displayed	[Colour	figure	can	be	viewed	at	wileyonlinelibrary.com]
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total)	were	downloaded	with	createEnv,	 and	prepareEnv	was	 run	
to	 check	 for	 variable	 correlation	 in	 order	 to	 exclude	 variables	
showing	an	r2	higher	than	90%,	resulting	in	a	final	data	set	con-
sisting	of	16	environmental	variables	(13	Bioclim	variables,	2	raw	
WorldClim	and	altitude).	No	population	variable	was	included	in	
samβada's	models	(univariate	mode)	since	no	evidence	of	popula-
tion	structure	emerged	using	the	PCA	method	implemented	in	sn-
prelate	(with	genomic	filter	of	MAF	<0.05,	SNP	missingness	<0.1	
and	LD	threshold	<0.2).

Postprocessing

q‐values	based	on	G‐scores	were	visualized	with	a	Manhattan	plot	
using	 a	 significance	 threshold	 of	 0.05.	 plotResultInteractive	 was	
used	to	detect	genes	neighbouring	the	markers	under	selection	as	
well	as	to	identify	variant	functions	(e.g.,	nonsynonymous	SNPs).

2.3 | Spanish Lidia cattle

2.3.1 | Sampling and genetic data

The	Lidia	cattle	breed	 (Bos taurus)	emerged	during	the	XVIII	cen-
tury	 and	 evolved	mainly	 in	 the	dehesas	 ecosystems	of	 the	west/
south‐west	 Iberian	 Peninsula,	 composed	 of	 pasturelands	 inter-
spersed	with	Mediterranean	oaks	(Quercus ilex)	(del	Barrio,	Ponce,	
Benavides,	&	Roig,	2014).	Since	its	establishment,	Lidia	was	prompt	
to	isolation	by	preventing	crossbreeding	with	allochthonous	cattle	
(Eusebi,	Cortés,	Dunner,	&	Cañón,	2017)	and	became	fragmented	
into	 reproductively	 isolated	 lineages	 (called	encastes)	with	homo-
geneous	morphology,	 behaviour	 and	 genetics	 (Boletin	Oficial	 del	
Estado,	 2001).	 Such	 a	 peculiar	 evolutionary	 and	 cultural	 context	
boosted	 Lidia's	 population	 size	 to	 become	 the	 largest	 Spanish	
breed	 and	made	 it	 one	of	 the	most	 inclusive	 intergrading	bovine	

F I G U R E  4  Spatial	distribution	of	the	Lidia	cattle	population	structure	according	to	the	scores	of	the	first	principal	component,	with	a	
shaded	relief	and	mean	annual	temperature	[°C	*	10]	as	background,	as	provided	in	the	WorldClim	database.	Due	to	overlaps,	close	points	
are	scattered	around	the	farm	[Colour	figure	can	be	viewed	at	wileyonlinelibrary.com]
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population,	granting	high	level	of	genetic	richness	among	encastes 
coupled	with	low	average	genetic	diversity	values	within	lineages	
(Cañón	et	al.,	2008).	A	total	of	349	individuals	were	sampled	among	
61	 different	 breeders	 evenly	 distributed	 across	 southern	 Spain's	
dehesas	region	(Figure	4).	Between	one	and	seventeen	animals	per	
breeder	were	selected	based	on	pedigree	information	to	minimize	
the	 risk	 of	 kinship	 among	 individuals.	 Animals	 were	 genotyped	
using	the	Illumina	BovineSNP50	array	v.2	(Eusebi	et	al.,	2017).

2.3.2 | Preprocessing

Quality	 control	 analysis	 was	 performed	 using	 the	 prepareGeno 
function	with	a	MAF	<0.05	and	SNP	missingness	<0.1.	The	result-
ing	 molecular	 data	 set	 consisted	 of	 38,335	 SNPs	 (i.e.,	 115,005	
genotypes).	 SRTM	 and	 Worldclim	 variables	 (56	 in	 total)	 were	
downloaded	with	the	createEnv	function,	and	prepareEnv	was	used	
to	 test	 for	 variable	 correlation	 resulting	 in	 only	 15	 variables	 (10	
Bioclim	 and	5	 raw	WorldClim	variables)	 kept	which	 showed	 a	 r2 
lower	than	90%.	Due	to	the	presence	of	population	structure	ob-
served	with	snprelate's	PCA	method	(see	Results	section),	samβada 
was	run	in	bivariate	mode	by	adding	a	variable	to	account	for	pop-
ulation	structure	(score	of	the	first	PCA).	This	variable	is	not	cor-
related	with	other	kept	environmental	factors	(highest	correlation:	
precipitation	in	April,	r2	=	0.25).

2.3.3 | Postprocessing

p‐values	based	on	G‐Scores	were	corrected	for	multiple	testing	with	
Bonferroni	method	and	subsequently	were	displayed	in	a	Manhattan	
plot	(q‐values	were	not	conservative	enough	in	that	case),	with	a	sig-
nificance	threshold	of	0.05,	and	plotResultInteractive	was	then	used	
to	detect	associated	genes.

3  | RESULTS

3.1 | Time efficiency

Besides	the	time	saved	during	pre‐	and	postprocessing,	R.SamBada	
is	more	 time‐efficient	 than	 using	 samβada's	 command	 line	 (version	
0.5.1)	for	two	reasons:	first,	R.SamBada	automatically	integrates	su-
pervision	 to	distribute	the	processing	of	models	over	several	cores,	
which	makes	the	analysis	run	x	times	faster	(where	x	represents	the	
number	of	CPU),	to	which	we	must	add	a	few	minutes	to	split	and	
merge	the	data	set	 (e.g.,	24	min	to	split	and	merge	the	sheep	data	
set,	compared	to	160	hr	saved	by	parallel	computing	on	the	same	11	
cores).	Second,	 if	population	variables	are	 included	 in	the	analysis,	
the	new	version	of	samβada	(0.8.1)	will	only	focus	on	models	includ-
ing	population	 variables.	Here,	 the	 time	 saved	will	 depend	on	 the	
number	of	population	variables	(for	the	Lidia	cattle	analysis,	with	one	
population	variable,	it	reduced	the	computing	time	from	53	to	9	min).

F I G U R E  5  Manhattan	plot	of	the	Lidia	cattle	study,	showing	the	p‐values	with	Bonferroni	correction	as	derived	from	the	samβada	models	
involving	mean	annual	temperature	and	one	population	variable.	The	red	point	corresponds	to	SNP	ARS‐BFGL‐NGS‐106879,	located	30,000	
base	pairs	apart	from	the	HSPB8	gene	[Colour	figure	can	be	viewed	at	wileyonlinelibrary.com]
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3.2 | Moroccan sheep

3.2.1 | Population structure

The	 variance	 explained	 by	 the	 first	 three	 PCA	 components	 was	
0.0085,	0.0083	and	0.0082,	respectively,	indicating	no	clear	popu-
lation	structure.	Therefore,	no	variable	translating	population	struc-
ture	was	retained	for	subsequent	analyses.

3.2.2 | Genotype‐environment associations

When	investigating	samβada's	results,	a	significant	peak	around	posi-
tion	4.38e7	was	observed	on	chromosome	23	in	association	with	an-
nual	precipitation	(Figure	2).	Within	this	genomic	region,	two	SNPs	
(i.e.,	ss1208941124	at	position	23:	43867891	and	ss1208941157	at	
position	23:	43869831)	were	 found	to	be	nonsynonymous	for	 the	
gene	MC5R	(melanocortin	5	receptor)	and	in	strong	LD	(r2	=	0.97).

Given	such	a	high	LD,	the	spatial	distribution	of	these	markers	
is	almost	 identical	 (except	for	one	individual;	data	not	shown),	and	
only	ss1208941124	is	illustrated	(Figure	3).	For	this	locus,	genotype	
CC	is	very	frequent	in	the	northern	part	of	Morocco,	where	annual	
precipitation	is	on	average	high	(reaching	values	of	1,000	mm/year),	
while	being	almost	absent	in	the	south	(at	the	Sahara	Desert's	gate	
where	precipitation	is	as	low	as	50	mm/year).

3.3 | Lidia cattle in Spain

3.3.1 | Population structure

The	variance	explained	by	the	first	three	components	of	the	PCA	
was	 0.049,	 0.029	 and	 0.024,	 respectively.	 In	 this	 case,	 the	 first	
principal	 component	 is	 likely	 to	 represent	 population	 structure,	
given	 the	 difference	 in	 variance	 observed	 between	PC	1	 and	 2,	

F I G U R E  6  Presence–absence	of	the	AA	genotype	of	SNP	ARS‐BFGL‐NGS‐106879	reported	with	shaded	relief	and	mean	annual	
temperature	[°C	*	10])	as	background.	Due	to	overlaps,	close	points	are	scattered	around	the	farm	[Colour	figure	can	be	viewed	at	
wileyonlinelibrary.com]
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and	 in	 accordance	 with	 what	 has	 been	 previously	 observed	 in	
between	 European	 cattle	 breeds	 (e.g.,	 Orozco‐terWengel	 et	 al.,	
2015).	Geographically,	genetic	clusters	composed	of	either	single	
or	groups	of	proximately	located	farms	were	identified	(e.g.,	south	
from	Badajoz),	although	no	wider	spatial	pattern	was	evident	(e.g.,	
north–south	gradient)	(Figure	4).

3.3.2 | Genotype‐environment associations

Several	narrow	peaks	were	observed	in	the	models	involving	mean	
annual	temperature	(i.e.,	bio1	bioclim	variable)	(Figure	5).	In	particu-
lar,	the	Ensembl	query	revealed	the	SNP	ARS‐BFGL‐NGS‐106879	(at	
position	17:	56127482)	to	be	located	~	30,000	base	pairs	from	the	
gene	HSPB8	(heat	shock	protein	family	B	[small]	member	8).

Spatial	occurrence	of	genotype	AA	from	ARS‐BFGL‐NGS‐106879	
appears	to	be	related	to	mean	annual	temperature	(Figure	6).	More	
specifically,	this	genotype	is	geographically	widespread	in	the	study	
area,	 except	 for	 23	 individuals	 found	 in	 different	 farms	 from	 the	
Guadalquivir	valley,	a	region	with	temperature	reaching	36°C	during	
the	hottest	month	of	the	year.	Importantly,	however,	when	compar-
ing	 Figures	 4	 and	6	 it	 can	 be	 seen	 that	 the	 genotype	 distribution	
does	not	match	the	prevailing	population	structure;	hence,	this	re-
sult	 is	 independent	of	 the	calculated	population	 structure	present	
within	the	breed.

4  | DISCUSSION

4.1 | Role of the package

We	 have	 provided	 a	 demonstration	 of	 R.SamBada,	 encompassing	
the	entire	pipeline	analysis	from	pre‐	to	post hoc	processing,	follow-
ing	the	classical	samβada	analysis	pathway,	but	much	more	efficiently.	
R.SamBada	helps	saving	user's	time	for	preparing	input	files	thanks	
to	newly	built	functions,	as	well	as	computing	time	through	better	
integration	of	population	structure	and	automated	split	of	computa-
tions	on	parallel	cores.	Additionally,	it	provides	a	standardized	pro-
cessing	chain,	thus	facilitating	reproducibility.

Moreover,	 part	 of	 the	 pre‐	 and	 postprocessing	 chain	 can	 pos-
sibly	 be	 coupled	with	other	 software	 used	 in	 landscape	 genomics	
and	more	generally	with	 software	designed	 to	detect	 signature	of	
selection.	For	example,	the	postprocessing	function	plotResultInter‐
active	could	be	used	with	any	type	of	outputs	as	long	as	its	structure	
is	similar	to	the	returned	value	of	prepareOutput	(i.e.,	columns	indi-
cating	the	position	of	the	SNP	as	well	as	the	p‐value	associated	with	
the	 corresponding	 genotype;	 refer	 to	 the	 package	 documentation	
for	more	detail).

4.2 | Case studies

4.2.1 | Sheep in Morocco

Two	of	the	SNPs	on	chromosome	23	associated	with	precipitation	
(ss1208941124	 and	 ss1208941157)	 are	 nonsynonymous	 variants	

located	 within	 the	MC5R	 gene.	 Although	 understudied	 in	 sheep,	
this	gene	has	been	reported	to	be	linked	to	a	wide	range	of	physi-
ological	 functions	 in	 different	 mammal	 species,	 including	 regula-
tion	of	food	intake	and	sebum	secretion	(Switonski,	Mankowska,	&	
Salamon,	2013).	Wax	secretion	is	of	particular	interest	with	respect	
to	 precipitation;	 indeed,	 sebaceous	 secretions	 in	 Merino	 sheep	
have	been	found	to	hinder	Dermatophilus dermatonomous	 infection	
(Roberts,	1963),	a	skin	disease	affecting	many	domestic	and	wild	ani-
mal	species	that	can	be	lethal	in	extreme	cases.	In	the	same	breed,	
Dermatophilosis	outbreaks	have	been	 found	 to	be	 linked	with	ex-
ceptionally	 rainy	 years	 (Yeruham,	 Elad,	 &	Nyska,	 1995).	 Thus,	 the	
secretion	of	wax	could	play	an	 important	 role	 in	protecting	sheep	
against	rainy	weather,	consistent	with	its	environmental	relationship	
with	annual	precipitation	here.

4.2.2 | Lidia cattle

The	 SNP	 ARS‐BFGL‐NGS‐106879	 is	 associated	with	mean	 annual	
temperature	and	located	in	the	vicinity	of	the	gene	HSPB8.	This	gene	
is	thought	to	code	for	a	chaperone	protein,	which	is	upregulated	in	
presence	of	heat	and	other	environmental	stress,	and	exerts	an	im-
portant	cytoprotective	role	(Verma	et	al.,	2016).	In	cattle,	this	gene	
was	 found	 to	be	associated	with	heat	 tolerance	 in	both	crossbred	
and	pure	Bos indicus	Sahiwal	in	India	(Sengar	et	al.,	2018;	Verma	et	
al.,	2016)	that	can	suggest	its	putative	involvement	with	adaptation	
to	heat	tolerance	in	Lidia	cattle	as	well.

This	SNP	lies	at	~30	Kbp	outside	the	HSPB8	coding	region,	either	
suggesting	the	SNP	to	be	in	LD	with	some	adaptive	variant	within	the	
gene	or	to	possibly	have	an	important	regulatory	effect	on	transcrip-
tion.	However,	considering	 the	relatively	 low	average	LD	between	
loci	at	30Kbp‐distance	(computed	r2	 in	this	region	=	0.2),	the	exis-
tence	of	a	significant	variant	within	the	gene	is	unlikely.	In	contrast,	
such	a	distance	would	suggest	more	likely	this	SNP	to	be	involved	in	
regulatory	processes;	indeed,	according	to	Brodie,	Azaria,	and	Ofran	
(2016),	large	insertions/deletions	with	regulative	roles	can	be	found	
as	far	as	2Mbp	around	a	gene	and	associated	with	nearby	SNPs.

4.3 | Perspectives

R.SamBada	represents	a	step	forward	in	facilitating	the	chain	of	pro-
cesses	required	to	implement	a	landscape	genomics	study.	However,	
several	further	improvements	could	be	implemented	in	the	future.	For	
example,	the	query	based	on	the	Ensembl	database	requires	a	refer-
ence	genome	for	the	species	under	investigation,	which	remains	rela-
tively	 uncommon	 for	 nonmodel	 species.	 It	would	 therefore	 be	very	
useful	 to	 further	 develop	 functions	 performing	 a	 BLAST	 alignment	
(Johnson	et	al.,	2008)	and	see	if	any	match	can	be	found	with	ortholo-
gous	genes	from	related	species	where	genomes	have	been	produced.

In	addition,	functionalities	could	be	augmented	to	help	the	user	
define	ad	hoc	QC	thresholds.	For	instance,	a	function	allowing	spe-
cies‐specific	estimation	of	LD	in	order	to	better	calibrate	the	pruning	
applied	before	 computing	 the	PCA	would	be	useful.	 Furthermore,	
R.SamBada	 currently	 only	 implements	 basic	 QC	 of	 genetic	 data	
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(MAF,	 LD,	missingness)	 and	 does	 not	 test	 for	 other	 useful	 checks	
(e.g.,	 Identity	By	Descent	–	 IBD	–	or	Hardy–Weinberg	Equilibrium	
–	HWE).	However,	such	controls	can	easily	be	performed	with	dedi-
cated	software	like	plink	(C.C.	Chang	et	al.,	2015)	or	vcftools	(Danecek	
et	al.,	2011)	before	entering	samβada's	r‐pipeline.	Moreover,	samβada 
is	one	among	several	software	solutions	to	detect	selection	signa-
tures	in	a	spatial	context	and	can	be	used	in	combination	with	other	
packages	 like	LFMM	(Caye	et	al.,	2019),	BayEnv	 (Günther	&	Coop,	
2013)	or	both	 (Stucki	et	al.,	2017)	 in	order	 to	compare	 the	 results	
obtained.	 Further	 functionalities	 could	 be	 developed	 to	 ease	 the	
computation	and	comparison	with	those	methods.

Finally,	 it	 is	 important	 to	keep	 in	mind	that	 landscape	genomic	
approaches	 such	 as	 samβada	 implement	 an	 explanatory	 analysis	
which	allows	rapid	identification	of	candidate	genes,	but	lacks	a	val-
idation	procedure,	meaning	that	derived	hypotheses	need	to	be	fur-
ther	tested	(e.g.,	 through	 investigation	of	variant	effect	on	protein	
tertiary	structure	and	function	or	through	laboratory	experiments).
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