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Abstract: The development of neutron imaging facilities provides a growing range of applications
in different research fields. The significance of the obtained structural information, among others,
depends on the reliability of phase segmentation. We focused on the problem of pore segmentation in
low-resolution images and tomography data, taking into consideration possible image corruption in
the neutron tomography experiment. Two pore segmentation techniques are proposed. They are the
binarization of the enhanced contrast data using the global threshold, and the segmentation using
the modified watershed technique—local threshold by watershed. The proposed techniques were
compared with a conventional marker-based watershed on the test images simulating low-quality
tomography data and on the neutron tomography data of the samples of magnesium potassium phos-
phate cement (MKP). The obtained results demonstrate the advantages of the proposed techniques
over the conventional watershed-based approach.
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1. Introduction

Over the past years, neutron imaging (neutron radiography and tomography) has
become a widely used non-destructive method realized at dozens of neutron facilities over
the world [1]. The specifics of neutron interaction with matter, such as high penetration
into material volume and sensitivity to both light and heavy nucleus, provoke a growing
range of applications of neutron radiography and tomography [2,3] including engineering,
plant science, petrophysics, cultural heritage, cement research, etc. In the particular case
of cement materials, aggregates, cracks, pores and other kinds of inclusions or phases
inside the cement matrix can be visualized using neutron tomography [4]. Based on the
obtained structural data, the physical and mechanical properties of cement materials can
be predicted [5].

Despite unique and advantageous of the neutron imaging method in comparison with
other imaging techniques (e.g., X-ray CT), there are technical difficulties in a high-quality
measurement setup development associated with a beam collimation, efficient detector
system, low radiation background, and the desired energy spectrum of neutrons.

The resolution of the neutron images is mostly constrained by the parameters of the
pin-hole geometry, thickness, and efficiency of the scintillator screen [6]. Complex radiation
conditions and background, which are formed by scattered neutrons from the sample itself,
as well as an unfocused camera, additionally decrease the image quality. As an example,
schematically shown in Figure 1 is the formation of a neutron radiographic image of the
phantom ‘hole’ that simulates a pore in a material. The hole is transparent for neutrons, i.e.,
the neutron attenuation coefficient equals zero everywhere within its boundaries. However,

J. Imaging 2022, 8, 242. https://doi.org/10.3390/jimaging8090242 https://www.mdpi.com/journal/jimaging

https://doi.org/10.3390/jimaging8090242
https://doi.org/10.3390/jimaging8090242
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/jimaging
https://www.mdpi.com
https://orcid.org/0000-0003-0424-7142
https://orcid.org/0000-0001-5680-0769
https://orcid.org/0000-0002-2324-3051
https://orcid.org/0000-0003-4637-2486
https://orcid.org/0000-0003-0900-2654
https://doi.org/10.3390/jimaging8090242
https://www.mdpi.com/journal/jimaging
https://www.mdpi.com/article/10.3390/jimaging8090242?type=check_update&version=1


J. Imaging 2022, 8, 242 2 of 12

we find that the intensity of neutrons behind the phantom after the flat field correction is
not uniform, and depends on the distance between the phantom and the scintillator screen.
Therefore, even the center point of the hole may appear to be attenuative (see Figure 1). The
center point of the hole will be fully transparent for neutrons (incoming intensity equals
detected one) if the following condition is fulfilled:

dh ≥ l
1

L/D
(1)

where dh—hole diameter of the phantom, l—distance from the phantom to the scintillator
screen, L—distance between the pin-hole and the scintillator screen, and D—diameter of
the pin-hole. Due to l 6= 0, the resulting radiographic image of the phantom is blurred, and
the holes with different sizes will appear differently in the image following Equation (1).
The presence of the additional background brings corresponding artifacts to the data,
making the studied sample artificially less attenuative [6,7]. Assuming the intensity of the
background to be small compared to the intensity of the neutron beam, the contribution of
the background to the measured projection may be expressed through:

Pmeas ≈ Psample − ePsample
∆Ibackground

I0
, (2)

where Pmeas—measured projection, Psample—projection solely of the sample,
∆Ibackground—background intensity, and I0—open beam intensity. Equation (2) must be
modified to account for the additional blur coming from the scintillator and unfocused
camera. As a result, measured neutron images can be expressed as

Imeasured = Bcamera ∗ Bscint ∗
(

Isample + ∆Ibackground

)
, (3)

where ∗ denotes the convolution, and Bcamera, Bscint are the kernels defining the blur from
unfocused camera and scintillator, respectively.

Figure 1. Illustration of the blurring effect in the pin-hole geometry (see Equation (1)). Num-
bers denote three base rays of the neutron beam. When the phantom is placed at distance l from
the scintillator the center point of the hole will be absolutely transparent for neutrons, because
I
I0

= I1+I2+I3
I1+I2+I3

= 1. At distance l′ I
I0

=
I ′1+I2+I ′3
I1+I2+I3

< 1, and the hole appears to be attenuative even in
its center point.

The considered example of the phantom ‘hole’ is intended to demonstrate the forma-
tion of neutron images of porous materials and to highlight the fact that the data obtained
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after the tomographic reconstruction may have a low resolution and artifacts. The arising
problem is how to discriminate the pores against other phases in the reconstructed images,
because the aforementioned corruptions produce the effect of uneven illumination making
some pores more or less attenuative in neutron images than others.

There is a large number of segmentation methods and their modifications used in
the image analysis in different fields of research. Concerning pore segmentation in the
tomography data, Otsu’s thresholding [8], k-means [9], region growing [10], watershed [11],
kriging [12], and machine learning techniques [13] have been commonly utilized. The
extensive overview by [14,15] covers most of the segmentation techniques used in X-
ray tomography studies of porous materials. However, there is no any universal pore
segmentation technique that robustly works for any kind of data, especially, when the
image quality is poor [16,17]. In addition, we have not found in the literature the pore
segmentation techniques specifically designed for neutron tomography data.

In this work, we present pore segmentation techniques for low-resolution data. One
of them is the application of the morphological enhanced contrast operators, while the
second one is the extension of the conventional watershed-based technique, which we
called local threshold by watershed segmentation (LTWS). The proposed techniques were
compared on the test images simulating low-quality tomography data and on the ‘real’
neutron tomography data obtained for the samples of magnesium potassium phosphate
(MKP) cement.

2. Pore Segmentation Techniques
2.1. Global Threshold of the Enhanced Contrast Data

The quality of the reconstructed data significantly suffers from blurring effects and
artifacts. The corresponding effect of the uneven illumination does not allow for the reliable
choice of the global threshold. At any chosen gray level, as a global threshold, there will be
the segmented pores, which are oversized, undersized, or both, as compared to the ground
truth. The effect of the uneven illumination may be diminished by enhancing the overall
contrast of the image, i.e., by increasing the gradients at the boundaries of phases. Then,
the corrected image can be binarized using the global threshold.

The corresponding enhanced contrast operator for the gray-tone image f can be
constructed from the morphological top-hat operators [18]. The top-hat contrast operator
for a given structural element or a connected neighborhood is defined as:

κTH( f ) = 3 f − φ( f )− γ( f ), (4)

where φ and γ are the morphological closing and opening operators, respectively. The
output image is further constrained to the dynamic range of an input image as [0, fmax]
in case of porous materials. Subsequent application of κTH multiple times will finally
transform the input image into the binary one. However, the result of such ultimate
binarization will show connected regions of local maxima and minima, rather than the
segmented regions corresponding to pores. This is also due to the fact that most of the
studied materials are presented by more than two phases (e.g., pores, matrix, and highly
attenuative phase inside the matrix), and thus require at least trinarization.

The dynamic range of the top-hat contrast operator can be saturated by adding factor
n, which scales the impact of the top-hat operators. By such definition:

κTH
n ( f ) = (2n + 1) f − n·φ( f )− n·γ( f ), (5)

and the contrast operator can be tuned by n as any positive number. A range of n < 1 is
useful for preserving the integer format of the output image or for constraining the effect
of the contrast operator. We note that there is finite number nmax, at which the top-hat
contrast operator (5) becomes independent on n, and the output image becomes flattened,
so that the local minima or maxima no longer exist (but only global extrema).
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The enhanced contrast operator can also be constructed from the median filter as
well. If m is medium operator, then the following decomposition into increasing (mi) and
decreasing (md) medium filters can be used:

mi = m ∨ id = max(m, id); md = m ∧ id = min(m, id), (6)

where id is an identity operator. From this definition, it follows:

m = mi + md − id.

While the medium filter is a self-dual operator with respect to the complementation
C: CmC = m; its increasing and decreasing versions are dual: CmdC = mi. Although
medium filters are not idempotent, they share some common properties with morphological
opening and closing. Thus, the alternative contrast operator can be introduced, which is a
self-dual one:

κm( f ) = 3 f −mi( f )−md( f ) = 2 f −m( f ), (7)

The corresponding extended version κm
n ( f ) is constructed in the same way as for the

top-hat contrast operator in Equation (5):

κm
n ( f ) = (2n + 1) f − n·mi( f )− n·md( f ) = (n + 1) f − n·m( f ). (8)

According to Equations (7) and (8), medium-based enhanced contrast operators can
be computed without a decomposition (6). Also, Equation (8) may be further extended
for the use of other filters, e.g., mean and gaussian. If we denote by s such a smoothing
operator, then the corresponding enhanced contrast operator can be written:

κs
n( f ) = (n + 1) f − n·s( f ). (9)

The obvious advantage of using the medium filter in (9) is its edge-preserving property,
which is valid at a low signal-to-noise ratio [19].

The size of either the window or the structural element for contrast operators depends
on whether large or small regions should be sharpened in the image. Finally, images
with enhanced contrast can be binarized using the global threshold, since the illumination
variations, which are larger than the window size of the contrast operator, became smaller
with respect to the difference between the bright and dark regions in the image.

2.2. Watershed-Based Techniques
2.2.1. Conventional Approach (WS)

The purpose of the segmentation is to determine the boundaries between phases. For
the gray-tone image, the boundary can be chosen as the locus of points with the highest
gradient. The problem of the segmentation of phase boundaries employing the gradient
image is efficiently solved by the watershed transform (WS) [20]. The gradient image may
be visualized, as the topographic landscape with ridges as local maximum, and valleys
as local minima. The watershed transform decomposes this image, showing only the
catchment basins of all valleys, which are separated by the watersheds. By computing
the watersheds, the seeking boundaries between phases can be found. Since we are only
interested in pores, an additional image is required—marker image. The marker image is a
binary image showing the approximate locations of pores in the original image. It can be
thought of as an image of seeds placed at the positions of pores. With a help of the marker
image, we can eliminate all local minima in the gradient image, which do not correspond
to the pores by using the minima imposition technique [18]. In addition, this operation
suppresses spurious local minima and prevents over segmentation. In the present work,
we use the following sequencing: gauss filtering of the original image, calculation of the
gradient image, minima imposition using marker image, and watershed transform.
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2.2.2. Local Threshold by Watershed (LTWS)

The conventional WS approach fully relies on the gradient image. However, the
presence of false local maxima in the gradient image, due to a noise and blur, will lead to
false segmentation. In general, the image intensity along the watershed contours varies
and does not correspond to the single gray level. Based on the fact that each pore can be
segmented by its own threshold, we propose the following modification of the conventional
watershed approach employing the gradient image. The idea of the proposed method is to
compute the local threshold for each of the pores, which were segmented by the watershed.
The value of the threshold is found as the minimum among the gray values of the original
or filtered image belonging to the corresponding watershed lines. This operation helps
to prevent or at least to minimize the false segmentation appearing due to the presence
of wrong maxima in the gradient image. We propose to add the following steps to the
conventional WS method according to the proposed LTWS: labeling of pores segmented by
the conventional WS, for each labeled pore (catchment basin) compute the threshold as the
minimum value of the original image at the corresponding watershed line or simply at the
pore’s boundary; binarization of each labeled pore using the calculated threshold, and final
compilation of all segmented pores in one binary image (or 3D binary data).

3. The Segmentation Test

We have tested the presented segmentation techniques on the set of artificial images
with different quality. The original (gray-tone ground truth) image represents the distri-
bution of four different phases (Figure 2). One of them with zero intensity corresponds
to pores. We have used two different subsets: one is with a flat background, and another
one with a parabolic background shape, which has a minimum at the image center. All
images were corrupted by the blurring and noise, using built-in plugins of the ImageJ [21].
The following variants of image corruptions were used. The first variant coded as s4_n_s2
represents the corruption of the original gray-tone image by Gaussian blurring with the
sigma parameter of 4, Gaussian noise with a mean of 0, and standard deviation of 75, and
Gaussian blurring with the sigma parameter of 2. The second variant coded as s6_n_s2_n_s2
was obtained by Gaussian blurring with the sigma parameter of 6, twice the application
of the sequence of Gaussian noise with a mean of 0, and standard deviation of 75, and
Gaussian blurring with the sigma parameter of 2.

Pore segmentation of the test images was performed using marker-based WS, the
proposed extension LTWS and medium-based (window of 150 pixels) enhanced contrast
image, which was thresholded at the minimum gray level of κm( f ) = 0. Marker images
were obtained using the global threshold t. We have slightly modified the conventional WS
by changing the output to max(WS , marker image). Such modification are necessary when
the marker image overstep the corresponding watershed line; otherwise, the WS fails. We
denoted the WS without this modification, as WS*.

The results of pore segmentation in the tested images are shown in Figure 2. A quanti-
tative assessment of the difference between the ground truth and the segmented images was
performed using the Jaccard index [22] (see Table 1), defined as J(A, B) = |A∩B|

|A∪B| , where A
and B are the binary images. The Jaccard index is a well-known measure of the similarity
of two finite sets. Using a definition, 0 ≤ J(A, B) ≤ 1, where 0 means that A and B have
no matches and 1 means a perfect match. According to Figure 2 and Table 1, the proposed
extension LTWS showed itself as being a more reliable technique than the conventional WS.
Independently, on the input image quality or the background, the LTWS tends to preserve
the shape of the pores, while the conventional WS provides more oversized pores with a
tendency to pore-shape deformation. Moreover, the quality of the WS strongly depends
on the marker image, i.e., on the threshold level that we have chosen to binarize the input
image. In turn, the LTWS shows stable results for all marker images, and did not fail even
for the worst quality image of our set. However, the best Jaccard index in most cases was
obtained for the images binarized using the global threshold of the enhanced contrast
image (Table 1). As seen in Table 1, this technique is close to the best results obtained using
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the watershed-based methods. It also tends to preserve the shape of pores and is almost
independent of the quality of the test images.

Figure 2. The results of pore segmentation test. Notations: bck—nonlinear background; s4_n_s2
and s6_n_s2_n_s2 denote the sequence of Gaussian blur (s) and Gaussian noise (n) added to the test
image, see text for details; t denotes the threshold used for obtaining the marker image.

Table 1. Jaccard index J(ground truth, segmented image) calculated for the binary images of the
segmented pores shown in Figure 2.

Method s4_n_s2 Method s6_n_s2_n_s2 Method bck+s4_n_s2 Method bck+s6_n_s2_n_s2

WS, t = 50 0.75 WS, t = 52 0.52 WS, t = 50 0.58 WS, t = 60 0.52
WS, t = 80 0.50 WS, t = 69 0.47 WS, t = 70 0.63 WS, t = 80 0.46

LTWS, t = 50 0.78 LTWS, t = 52 0.57 LTWS, t = 50 0.58 LTWS, t = 60 0.52
LTWS, t = 80 0.55 LTWS, t = 69 0.65 LTWS, t = 70 0.66 LTWS, t = 80 0.56
κm( f ) = 0 0.79 κm( f ) = 0 0.61 κm( f ) = 0 0.67 κm( f ) = 0 0.60
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We note that the conventional watershed without our modification WS* already
failed on the first test image (Figure 2). This happened because the operation of minima
imposition using the marker image that oversteps the actual watershed line suppressed the
corresponding local maxima in the gradient image.

4. Application to the Neutron Tomography of MKP Cements
4.1. Experimental

Four magnesium potassium phosphate MKP cement samples were studied using
the neutron tomography method. All samples were prepared following exactly the same
formulation: MgO (10 g) + KH2PO4 (35 g) + Fly ash (45 g) + 2% Boric acide (0.9 g) +
2% LiNO3 (0.9 g) + Sand (45 g) + 17 mL D2O. There were labeled as MKP_1, MKP_2, and
MKP+Al_1, MKP+Al_2, which additionally contain 1.75 g of aluminum platelets. The
samples have a parallelepiped shape with a height of about 5 cm and a width of 1 cm.
More information about cement sample preparation and chemical aspects were presented
previously [23].

The neutron tomography experiments were performed at the neutron radiography
and tomography facility placed on beamline 14 of the IBR-2 high-flux pulsed reactor [24].
The neutron flux at the sample position is ~5.5 × 106 n × cm−2 × s−1. A set of neutron
radiography images was collected by the detector system based on a high-sensitivity camera
with a HAMAMATSU CCD chip (2048 × 2048 pixels). A field of view of 10.5 × 10.5 cm2

was used for MKP_1 and MKP_2 samples, while for MKP+Al_1 and MKP+Al_2, a larger
field of view of 12 × 12 cm2 was used. The neutron tomography experiments were
performed with a rotation step of 0.5◦, corresponding to the 360 measured radiography
projections. The exposure time for one projection was 20 s, image acquisition and sample
rotation took additionally about 20 s per image, so the resulting measurements lasted for
about 4 h for each of the cement samples. The distance between the center of rotation of the
sample and the scintillator screen was about 60 mm. The spatial resolution capabilities of
the neutron tomography facility have some restrictions on the minimum size of a resolved
item up to ~135 µm. The imaging data were noise filtered and then corrected by the
camera dark current image and normalized to the image of the incident neutron beam.
Stripes removal and tomographic reconstruction were performed using SYRMEP Tomo
Project software [25]. In particular, the wavelet-Fourier filtering technique [26] was used for
sinogram filtering, and tomographic reconstruction was performed using the simultaneous
algebraic reconstruction technique [27].

Virtual 3D models of cement samples obtained from tomographic reconstruction
(Figure 3) depict the spatial distribution of the neutron attenuation coefficient expressed
in cm−1 units. The observed uneven distribution of the intensity in the gray-tone data
is related to the presence of phases with different neutron attenuation coefficients. The
highest attenuation corresponds to the regions enriched with B, H, and Li elements with
high absorption or scattering cross-sections of thermal neutrons [28]. The regions with the
lowest attenuation corresponded to the pores. In the slices shown in Figure 3, the complex
distribution of the attenuation coefficient depicting different phases including pores and
products of chemical reactions during the cement hardening is clearly seen. However, the
calculated histograms of the attenuation coefficient over the 3D data sets have two major
peaks (Figure 3). One of them is the background and pores, while the second peak is the
cement matrix and other solid phases. The large valley of the non-zero values between
them corresponds to the smooth boundaries (with relatively small gradients) between
phases in the reconstructed data.
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Figure 3. Results of the tomographic reconstruction of studied cement samples: 3D models, selected
slices and the histograms of the neutron attenuation coefficient are shown. Color bars are presented
in cm−1 units.

4.2. Pore Segmentation Results

We performed the segmentation of neutron images using the same techniques used in
the segmentation tests (see Section 3). They are the global thresholding, the medium-based
(window of 100 pixels) enhanced contrast image thresholded at the minimum gray level
(κm( f ) = 0), the conventional marker-based WS, and the proposed extension LTWS. We
used the same threshold for both the conventional global threshold technique and for the
marker image. However, the choice of the global threshold was not based on the histogram
data (Figure 3). For this purpose, we performed the WS technique in 2D slices to the sample
itself and found its boundaries. Following the idea of LTWS, we collected the minimum
gray values at the watersheds for each of the 2D slices. The resulting histogram is shown in
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Figure 4. We obtained almost the same Gaussian-like distribution for all samples. Trying to
preserve the maximum number of pores, we chose the global threshold as the maximum
value over the obtained distributions among all samples.

Figure 4. Distributions of the minimum gray values at the boundary between the samples and air
calculated over the stack of the tomography slices.

In Figure 5, binary images with the segmented pores obtained by different techniques
are shown. For all samples, we can see noticeable differences between conventional WS
and all other techniques. In the case of the MKP_2 sample, even WS has failed and shows
obvious spurious segmentation. As was expected, the LTWS method provided more
reliable results. In comparison with the results of the segmentation tests (Figure 2), the
difference between the binarized enhanced contrast data and the LTWS is somewhat larger.

The calculated porosities based on the obtained segmentations are listed in Table 2. It
is evident that WS provides drastically different values than other methods, which may be
explained by the wrong segmentation. However, the enhanced contrast technique and the
conventional global thresholding demonstrated almost the same results for the samples’
porosity (Table 2), while the application of LTWS yielded almost the same porosity for all
samples of about 0.4%.

Table 2. Samples porosities (%) calculated from the binary images shown in Figure 5.

Method MKP_1 MKP_2 MKP+Al_1 MKP+Al_2

Global threshold 0.20 0.28 0.12 0.25
κm( f ) = 0 0.24 0.30 0.14 0.28

WS 1.33 1.71 1.11 1.23
LTWS 0.41 0.44 0.40 0.37



J. Imaging 2022, 8, 242 10 of 12

Figure 5. Three-dimensional models of spatial distribution of the segmented pores in the studied
cement samples obtained by means of different segmentation techniques.

Enhanced contrast operators (Equations (5) and (7)) help to increase the phase-to-phase
contrast and even can be used for unsupervised binarization. However, we cannot declare
the robustness of the corresponding segmentation results, because image binarization by
using the global threshold cannot provide segmentation without the potential biases from
the user’s choice or from the low quality of the image. Scale parameter n (Equation (5))
brings more variability into image processing, but does not resolve the ambiguity problem
of the parameter choice. In contrast, the proposed LTWS technique relies only on the
marker image and takes into account the information from both the input grey-tone image
and its gradient version. The results of tests (Figure 2) and application on the neutron
images (Figure 5) have shown encouraging results and the potential of this technique for
pore segmentation in low-quality data.

5. Conclusions

We have presented new techniques for pore segmentation in low-resolution images
or tomography data. They are the global thresholding of the enhanced contrast data and
the local threshold by the watershed (LTWS). The performed tests demonstrated their
possibilities and also their advantages over the conventional marker-based watershed
technique. The considered techniques were applied to the neutron tomography data of the
MKP cement samples. The following comparison of the segmented data, as well as of the
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calculated porosity of the cement samples, confirmed the results of the tests, showing the
failings of the conventional watershed as compared to the proposed techniques.
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