
Increased Expression of Syncytin-1 in
Skeletal Muscle of Humans With
Increased Body Mass Index
Jayachandran Ravichandran1, Lori R. Roust2 and Christos S. Katsanos1,3*

1School of Life Sciences, Arizona State University, Tempe, AZ, United States, 2College of Medicine, Mayo Clinic in Arizona,
Scottsdale, AZ, United States, 3Department of Physiology and Biomedical Engineering, Mayo Clinic in Arizona, Scottsdale, AZ,
United States

Obesity negatively impacts skeletal muscle protein metabolism, and also impairs skeletal
muscle maintenance and regeneration. We analyzedmuscle biopsy samples from humans
with increased body mass index (BMI) (i.e. > 30 kg/m2) and controls (i.e., BMI < 25 kg/m2)
for expression of syncytin-1, a fusogenic protein regulating skeletal muscle regeneration.
When compared to controls, humans with increased BMI and concomitant reduction in
muscle protein synthesis had higher expression of syncytin-1 in skeletal muscle (p < 0.05).
Across human subjects, muscle protein synthesis correlated inversely (r = −0.51; p = 0.03)
with syncytin-1 expression in muscle. Using a C2C12 cell line we found that expression of
syncytin-A (i.e, corresponding protein in murine tissue) is increased by insulin, and that this
response is impaired in the presence of fatty acids, whose metabolism is altered within the
metabolic environment induced by increased BMI. In C2C12 cells, the response of the
protein 4E-BP1, which signals increase in protein synthesis in muscle, resembled that of
syncytin-A. These findings provide novel insights into the expression of syncytin-1 in
skeletal muscle of humans with increased BMI, as well as its basic regulation by insulin and
fatty acids in muscle. The findings signify the need for further research into the regulation of
syncytin-1 in skeletal muscle of humans with increased BMI, as well as its biological
implications for altering muscle protein metabolism and regeneration.
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INTRODUCTION

Understanding the biological mechanisms that alter protein metabolism and tissue growth in skeletal
muscle under various pathophysiological circumstances constitutes currently an active area of research.
Protein synthesis is reported lower in muscle of humans characterized by bodymass index (BMI) > 30 kg/
m2 (i.e., humanswith obesity) (Guillet et al., 2009; Bak et al., 2016; Tran et al., 2016; Tran et al., 2018), which
provides a mechanism that may reduce muscle mass in these individuals. This phenomenon is evident in
clinical circumstances, and described as “sarcopenic obesity”.Moreover, obesitymay impair skeletalmuscle
maintenance and regeneration possibly due to compromised skeletal muscle cell fusion (Akhmedov and
Berdeaux, 2013). Themechanisms that impairmuscle protein synthesis as well asmusclemaintenance and
regeneration in humans with increased BMI remain currently elusive, limiting our understanding of the
effects of obesity on muscle protein metabolism and growth.

The protein syncytin-1, encoded by the human endogenous retrovirus groupW envelope member
1 (HERVW-1) gene, is responsible for cell fusion, and its role has been characterized to date largely in
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placental development (Lokossou et al., 2014). In murine tissue,
this function is accomplished by syncytin-A. Phylogenetic
analysis shows that syncytin-A and syncytin-1 fall under the
same HERV family, with syncytin-A being homologous to the
human syncytin gene, and that syncytin-A and syncytin-1 carry
out the same fusogenic functions (Dupressoir et al., 2005).
Although most research to date has focused on the role of
syncystin-1 on placental tissue, syncytin-1 is present also in
skeletal muscle, and specifically in the sarcolemma of the
muscle fibers (Frese et al., 2015), where it regulates cell fusion
in muscle (Oluwole et al., 2007; Bjerregaard et al., 2011; Frese
et al., 2015). Given that syncytin-1 has key role in myogenesis
(Frese et al., 2015), a process that is impaired in humans with
obesity (Akhmedov and Berdeaux, 2013), investigating the
expression of syncytin-1 in muscle of humans with increased
BMI may provide novel insights into the development of
sarcopenia in such individuals.

There is very limited evidence describing syncytin-1
expression in skeletal muscle of humans (Oluwole et al., 2007;
Frese et al., 2015), and there is no evidence describing syncytin-1
expression specifically in the muscle of humans with increased
BMI. Also, there is paucity of evidence about biological signals
regulating the expression of syncytin-1 in muscle. Relevant
biological signals affected in the metabolic context of obesity
and associated insulin resistance include the insulin and fatty
acids. Although total plasma free fatty acid concentrations are not
necessarily higher in humans with obesity (Karpe et al., 2011),
obesity is associated with skeletal muscle lipotoxicity that affects
protein metabolism in muscle (Meex et al., 2019). In this regard,
effects of fatty acids on impairing muscle metabolism are linked
to specific fatty acids species, with palmitate being detrimental for
myogenesis (da Paixão et al., 2021) and overall muscle protein
anabolism (Tardif et al., 2011), whereas oleate opposes the
detrimental effects of palmitate on protein metabolism in
muscle (Lee et al., 2017). Experiments in C2C12 cells show
that palmitate, but not oleate, impairs signaling for protein
synthesis in skeletal muscle, documented as decreased
activation of the eukaryotic translation initiation factor 4E
(eIF4E)-binding protein 1 (4E-BP1) (Kwon and Querfurth,
2015).

Given the role of syncytin-1 in myogenesis, we tested the
hypothesis that humans with increased BMI and concomitant
reduction in skeletal muscle protein synthesis have lower
expression of syncytin-1 in skeletal muscle. Moreover, we
evaluated the effects of biological signals known to be altered
in the metabolic environment of obesity on muscle syncytin-A
expression in cell culture. We hypothesized that insulin
stimulates syncytin-A expression and that this effect is not
evident in the presence of fatty acids.

MATERIALS AND METHODS

Human Subjects
We evaluated syncytin-1 expression in muscle biopsy samples
from humans with BMI > 30 kg/m2 and control humans with
BMI < 25 kg/m2. Muscle samples analyzed were collected in a

previous study where we found that humans with BMI > 30 kg/
m2 have lower muscle protein synthesis compared to that of
control subjects with BMI < 25 kg/m2 (Tran et al., 2018). Study
participants were recruited through flyer advertisements from the
greater Phoenix Metro area, and the campuses of Arizona State
University and Mayo Clinic in Arizona. Study exclusion criteria
included medication or supplements known to affect protein
metabolism (i.e. amino acids, protein, fish oil), presence of acute
illness, liver disease, renal disease, heart disease, clinically
abnormal hemoglobin or hematocrit values, Diabetes, current
participation in a weight-loss program, extreme dietary practices,
smoking, and use of anabolic steroids or corticosteroids within
the last 3 months. Limited evidence describing syncytin-1 gene
expression in skeletal muscle of healthy humans (Frese et al.,
2015) suggests an effect size of approximately 1.5 in association
with a change in syncytin-1 gene expression in muscle. Statistical
power calculations (Faul et al., 2007) indicated that for a standard
power of 80% and α error of 0.05, approximately eight subjects
per group can detect a difference corresponding to a comparable
effect size (i.e., 1.5) between subjects with increased BMI and
controls subjects. The study procedures were approved by the
Institutional Review Board at Mayo Clinic. Research took place in
the Clinical Studies Infusion Unit (CSIU) at Mayo Clinic in
Arizona, Scottsdale campus.

Screening of the Subjects
Subjects arrived in the CSIU in the morning after an overnight
fasting period (~10 h). Subjects had a blood draw to determine
fasting blood chemistry parameters and then underwent a 2 h oral
glucose tolerance test (OGTT). Subjects with evidence of diabetes
(i.e., fasting plasma glucose ≥ 126 mg/dl or 2 h plasma glucose
during the OGTT ≥ 200 mg/dl) were excluded from the study.
Body composition was determined using bioelectrical impedance

TABLE 1 | Subject characteristics.

BMI < 25 kg/m2 BMI> 30 kg/m2

n (F/M) 8 (5/3) 10 (4/6)
Age (years) 34.5 ± 10.8 36.3 ± 8.8
Weight (kg) 65.0 ± 13.5 101.9 ± 14.6*
BMI (kg/m2) 22.4 ± 2.7 34.4 ± 3.3*
Waist (cm) 79.9 ± 7.4 106.9 ± 10.8*
Waist-to-hip ratio 0.80 ± 0.04 0.91 ± 0.09*
FFM (kg) 49.5 ± 11.3 67.8 ± 9.7*
Body fat mass (%) 23.9 ± 7.3 33.1 ± 7.5*
Fasting plasma glucose (mg·dl−1) 85.6 ± 6.7 98.4 ± 13.9*
Fasting plasma insulin (uIU·ml−1) 3.6 ± 0.8 10.9 ± 6.0*
HOMA-IR 0.8 ± 0.2 2.7 ± 1.8*
Matsuda-ISI 9.4 ± 2.2 4.6 ± 4.3*
HbA1c (%) 5.4 ± 0.3 5.7 ± 0.4*
Plasma triglycerides (mg·dl−1) 70.9 ± 28.3 191.0 ± 140.8*
Plasma total cholesterol (mg·dl−1) 174.1 ± 34.6 178.8 ± 32.2
Plasma HDL-Cholesterol (mg·dl−1) 71.5 ± 18.4 40.9 ± 8.8*
HDL-Cholesterol:Total Cholesterol 0.4 ± 0.1 0.2 ± 0.1*
Plasma LDL-Cholesterol (mg·dl−1) 88.4 ± 28.3 98.4 ± 21.6

Values are mean ± SD. BMI, body mass index; FFM, fat-free mass; HOMA-IR,
homeostatic model assessment of insulin-resistance; Matsuda-ISI, Matsuda insulin-
sensitivity index (as discussed in text); HbA1c, glycated hemoglobin; HDL, high-density
lipoprotein; LDL, low-density lipoprotein; *p < 0.05 versus subjects with BMI < 25 kg/m2.
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analysis (BIA; BIA 310e, Biodynamics Corp., Shoreline,
Washington). All subjects were asked to follow specific
instructions prior to the BIA to improve measurements of body
composition (i.e., no caffeine, food, or alcohol for > 10–12 h; arrive
well-hydrated) (Utter et al., 1999; Chittawatanarat et al., 2011).
Waist and hip circumference measurements were performed using
procedures previously described (WHO, 2011). Table 1 displays
the characteristics of the two subject populations. Participants in
the group of subjects with increased BMI identified as White (n =
10) (2 Hispanic) and those in the control group identified asWhite
(n = 7) and Asian (n = 1) (1 Hispanic).

Stable Isotope Infusion Experiments and
Muscle Biopsies
A catheter was placed into an antecubital arm vein for infusion
(15 μmol kg FFM−1 min−1; priming dose, 6.4 μmol kg FFM−1) of
d10-leucine (L-[2,3,3,4,5,5,5,6,6,6-2H10]leucine) to measure rate
of muscle protein synthesis, while another catheter was placed in
a retrograde fashion in a dorsal hand vein for blood sampling. A
percutaneous muscle biopsy (~100 mg) of the vastus lateralis was
obtained with a Bergström biopsy needle under local anesthesia
(lidocaine, 2%) at 120 and 300 min after the start of the d10-
leucine infusion, and while subjects remained resting in bed. The
muscle sample was rinsed with cold saline to remove blood,
blotted dry, and cleaned of any visible fat and connective tissue
before placing in liquid nitrogen for later analysis. Blood samples
were collected at 110, 115, 140, 260, 280, and 300 for determining
blood d9-leucine enrichment.

Muscle Protein Synthesis
Leucine enrichments in the muscle and blood samples were used
to quantify protein fractional synthesis rate in skeletal muscle,
and by following procedures we have previously described (Tran
et al., 2015). Briefly, blood samples were collected in tubes
containing 15% sulfosalicylic acid (SSA), and mixed well prior
to centrifugation to collect the supernatant. The supernatant was
passed through cation-exchange columns (AG 50W-8x 100–200-
mesh; Bio-Rad Laboratories, Inc.) to isolate the blood amino
acids, and which were eluted using 8 ml of 2N NH4OH. For
muscle, ~15 mg of muscle was homogenized in the presence of
0.5 ml of 5% sulfosalicylic acid to precipitate the muscle proteins.
The proteins were hydrolyzed with 6 N HCl at 110°C for 24 h.
This sample was passed through cation-exchange column (AG
50W-8x 200–400-mesh; Bio-Rad Laboratories, Inc.) to isolate/
purify the amino acids, and which were eluted from the columns
with of 2N NH4OH. Isotopic enrichment of amino acids with d9-
leucine was measured using liquid chromatography tandem mass
spectrometry (LC/MS/MS), and by following procedures we have
also previously described (Tran et al., 2015). Fractional synthesis
rate (FSR; %/hour) of muscle protein was calculated as:

FSR � ΔEm
Eb

x 60 x 100

Where ΔEm is the increment in muscle protein leucine
enrichment between the two biopsies, Eb is the average leucine

enrichment in blood between the biopsies, and T is the time
interval (i.e., in mins) between the biopsies (60 and 100 are used
as factors to express the FSR values in %/hour).

Plasma Chemistry Parameters
Plasma glucose concentrations were measured using an
automated glucose analyzer (YSI 2300, Yellow Springs, OH).
Plasma insulin concentrations were measured using a
commercially available ELISA kit (80-INSHU-E01.1; ALPCO
Diagnostics, Windham, NH). Plasma glucose and insulin
concentrations during the OGTT were used to calculate the
Matsuda insulin-sensitivity index (Matsuda and DeFronzo,
1999). The rest of the blood chemistry parameters reported in
Table 1 were measured by the Mayo Clinic Clinical Laboratory.
The concentration of major species of free fatty acids in plasma
(arachidonic acid, elaidic acid, linoleic acid, linolenic acid,
myristic acid, oleic acid, palmitic acid, palmitoleic acid, stearic
acid) was measured by LC/MS (Persson et al., 2010).

Cell Culture Experiments
Using a C2C12 cell culture model we sought to evaluate how
biological signals altered within the metabolic environment of
obesity affect syncytin-A expression in muscle. This experimental
model allows isolating specific effects on syncytin-A expression in
muscle, and in the absence of other concurrent biological signals
present in vivo in humans. Insulin is well-established as a muscle
anabolic hormone. Current evidence indicates specific roles of
palmitate and oleate in regulating muscle growth and protein
metabolism (da Paixão et al., 2021; Tardif et al., 2011; Lee et al.,
2017; Kwon and Querfurth, 2015). Also, we found differential
contribution of these fatty acid species to the total plasma free
fatty acid concentrations in our human subjects with increased
BMI (see Results section). Therefore, we chose to specifically test
the effects of palmitate and oleate in our cell culture experiments.

C2C12 myoblasts (RRID:CVCL_0188) obtained from
American Type Culture Collection (ATCC; Cat#: CRL-1772)
were used for the cell culture experiments. C2C12 myoblasts
were grown in growth media containing Dulbecco’s Modified
Eagle’s Medium (DMEM) with 20% fetal bovine serum and 1%
antibiotic-antimycotic at 37°C. The cells were grown in 6-well
Collagen I-coated plates (Thermo Fisher Scientific; Cat #:
A1142801). After 95% confluency, cells were differentiated in
differentiation media containing DMEM with 2% horse serum
and 1% antibiotic-antimycotic for 5 days, and until the cells were
spindle-shaped (Kwon and Querfurth, 2015).

A 200 mM stock solution of palmitate and oleate were
prepared using sodium oleate and palmitate dissolved in 50%
ethanol for 30 min at 70°C. A 10% solution of fatty acid-free
bovine serum albumin (BSA) was prepared in phosphate-
buffered saline for conjugation purposes. Then, 5 mM stock
solution of BSA conjugated fatty acid solutions (i.e., palmitate
and oleate) were prepared by adding 200 mM stock solution of
oleate and palmitate in 10% fatty acid-free BSA. Conjugation of
the fatty acids and BSA was performed at 37°C for 1 h before cell
treatment. C2C12 cells were incubated in serum free DMEM
media for 2 h before treatment. The conjugated fatty acid-BSA
serum was filtered and added to serum free DMEM media. Cells
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were treated with either 300 μm palmitate, 300 μm oleate, their
combination, and with or without 20 nM insulin for 24 h. Before
harvesting, cells were stimulated with 100 nM of insulin for
15 min. Myotubes were harvested as described by Kwon and
Querfurth (Kwon and Querfurth, 2015).

Immunoblotting
Lysates of human muscle and C2C12 myotubes were prepared
following procedures we have previously used in our laboratory
(Tran et al., 2016). Protein concentration in the lysates was
measured using Pierce™ Coomassie Plus (Bradford) protein
assay reagent kit (ThermoFisher Scientific; Cat# 23200), and
by following the manufacturer’s protocol. Briefly, BSA
standards were used in the concentrations of 0, 0.2, 0.4, 0.6,
0.8, and 1 mg for standard curve measurements. Lysates were
diluted in a ratio of 1:40 (Lysate: Mili Q water). A 10 μl of the
standard or the lysate was loaded into a 96 well plate. 190 μl of the
Coomassie/Bradford reagent was added and the plate was
incubated at room temperature for 10 min before measuring
the absorbance at 595 nm in a spectrophotometer.
Approximately 40 ug of protein from the human muscle lysate
and 15 ug of protein from the myotube lysate was diluted (1:1) in
a 2X Laemmli sample buffer and boiled for 5 min at 95°C, and the
proteins were separated by SDS-PAGE on Any kD™ precast
polyacrylamide gels (Mini-PROTEAN TGX, Bio-Rad
Laboratories, Inc.). Proteins were transferred to nitrocellulose
membrane in the case of human muscle homogenates and
polyvinylidene difluoride membrane in case of C2C12 cell
lysates for 1 h at 90 V, followed by incubation of the
membrane with primary antibodies overnight at 4°C. Prior to
incubation, the membranes were blocked at room temperature
with TBST +5% non-fat dry milk (Syncytin-1/A) or TBST +5%
BSA (4E-BP1, p-4E-BP1) for 60 min.

Syncytin-1 expression was quantified using an anti-syncytin-1
primary antibody (Biorbyt; Cat# orb100573; RRID:AB_2857960).
The same antibody was used also in the C2C12 myotube
experiments. Although the immunogen sequence was designed
to detect human syncytin-1, it allows for mouse cross-reactivity
and detection of syncytin-A in a mouse cell line (Ethiraj et al.,
2018). Other primary antibodies used were: anti-GAPDH
(Rockland Immunochemicals; Cat# 600-401-A33; RRID:
AB_2107593), anti-4E-BP1 (Cell Signaling Technology; Cat#
9452; RRID:AB_331692), anti-phospho-4E-BP1 (Thr37/46) (Cell
Signaling Technology; Cat# 9459; RRID:AB_330985), and anti-
myosin (Santa Cruz Biotechnology; Cat# sc-32732; RRID:
AB_670118). A dilution of 1:1000 was used for all primary
antibodies in Tris-buffered saline with 0.1% Tween®-20
(TBST) + 5% BSA, except for that for syncytin-1, which was
diluted at 1:250 in TBST. We chose myosin (instead of GAPDH)
as the housekeeping protein for the cell culture experiments
because GAPDH showed considerable variation across the cell
culture experimental conditions (see Results section).

The following day, the membrane was washed with TBST and
incubated for 60 min at room temperature with secondary
antibody. Secondary antibodies used were anti-rabbit (Cat. #
205718; Abcam) and anti-mouse (Cat. # sc-516102; Santa
Cruz Biotechnology) IgG HRP-linked antibodies at a dilution

of 1:2000 (anti-mouse) or 1:5000 (anti-rabbit) in TBST. Excess
secondary antibody was washed with TBST.

Protein bands were visualized using the Clarity™ Western
ECL Blotting Substrate (Bio-Rad, Hershey, PA) and imaged using
the ImageQuant LAS 4000 (GE Healthcare, Wauwatosa, WI).
Images of the membranes were captured in the increasing
exposure intervals of 30 s except for GAPDH which was
imaged at 5 s. Density of bands was quantified using the
ImageJ software (National Institutes of Health, Bethesda, MD).
The band intensity of the protein of interest was normalized
against the respective band intensity of the housekeeping protein
present in the same lane.

Statistical Analyses
Unpaired t-test or one-way ANOVA with Dunnett’s post-hoc
tests were employed to compare data from two or more than two
experimental groups, respectively. A two-way ANOVA with
Bonferroni correction for multiple comparisons was used for
two-factor analysis (i.e., BMI x sex). Correlations were evaluated
using the Pearson product-moment correlation coefficient (r).
Data are presented as means ± SD. p value of <0.05 was
considered statistically significant. All statistical tests were two-
sided. Statistical analyses were performed using GraphPad Prism
version 8.4 (GraphPad Software, La Jolla, CA).

RESULTS

Subject Characteristics
Subject characteristics shown in Table 1 indicate that the two
subject groups represent distinct populations in terms of body
composition and metabolic characteristics. In addition to having
greater percent body fat, subjects with increased BMI were also
characterized by significantly higher waist-to-hip ratio, and
increased plasma insulin, glucose and triglyceride
concentrations, as well as insulin resistance, all typical
observations in humans with obesity.

Although the total concentration of the measured plasma free
fatty acids did not differ between subjects with increased BMI and
controls, plasma oleate concentrations were lower in the group
with increased BMI (Supplementary Table S1). Plasma oleate
and palmitate concentrations constituted ~62% of the total
plasma free fatty acids measured, with palmitic acid
contributing significantly more (27.6 ± 1.7 versus 25.9 ± 1.1%;
p = 0.02) and oleic acid contributing significantly less (33.4 ± 2.0
versus 37.2 ± 2.4%; p < 0.01) to the total plasma free fatty acids in
the subjects with increased BMI compared to controls.

Syncytin-1 Expression in Human Subjects
When compared to that in control subjects, skeletalmuscle syncytin-
1 expression was higher in the group of subjects with increased BMI
and concomitant reduction in muscle protein synthesis (protein
synthesis: 0.059 ± 0.014 versus 0.084 ± 0.019%/hour; p = 0.01)
(Figure 1A). ANOVA analysis indicated no overall effect for sex (p=
0.54). Interestingly, although it did not reach statistical significance
(probably because of low sample size), female (0.134 ± 0.038 versus
0.078 ± 0.027; p = 0.07), but not male (0.109 ± 0.031 versus 0.080 ±
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0.052; p = 0.32), subjects with increased BMI displayed increased
expression of syncytin-1 in skeletal muscle.

Expression of syncytin-1 in muscle across study subjects
correlated significantly and inversely with muscle protein
synthesis (Figure 1B). Moreover, this correlation was significant
for female (r = −0.70; p = 0.03), but not male (r = −0.29; p = 0.45),
subjects. Among the subject characteristics evaluated (Table 1),
syncytin-1 expression displayed positive correlation with HbA1c
(r = 0.58; p = 0.01) and negative correlation with HDL-Cholesterol:
Total Cholesterol (r = −0.47; p = 0.05).

Syncytin-A Expression in Cell Culture
Myotubes
Expression of GAPDH in skeletal muscle did not differ between
subjects with increased BMI and control subjects (p > 0.05).

However, ANOVA analysis showed significant effect of cell
culture treatments on GAPDH in the myotube experiments
(p = 0.02). On the other hand, there was no significant effect
of cell culture treatments on myosin expression in the myotube
epxeriments (p = 0.66). Therefore, myosin was used as the
housekeeping gene to express responses of syncytin-A and 4E-
BP1 in the myotube experiments.

Insulin treatment alone consistently increased the expression
of syncytin-A, but this effect was not significant in the presence of
fatty acids (Figure 2). Neither insulin or any of the fatty acid
treatments affected the response of p-4E-BP1/t-4E-BP1 (for all
p > 0.05) (Figure 3A). On the other hand, p-4E-BP1 expression
increased by insulin alone, but this effect was not evident when
either palmitate or oleate was present along with the insulin
(Figure 3B). However, there was a significant effect of combined
palmitate and oleate (i.e., without the presence of insulin) on
increasing p-4E-BP1 expression (Figure 3B). The effects of
insulin and fatty acid treatments on t-4E-BP1 were identical to
those for p-4E-BP1 (Figure 3C).

DISCUSSION

The finding that expression of skeletal muscle syncytin-1 was
higher in subjects with BMI in the obese range when compared to
subjects with BMI in the lean range was not expected. This is
because syncytin-1 regulates muscle maintenance and
regeneration/myogenesis (Frese et al., 2015), and these

FIGURE 1 | Western blot analysis of syncytin-1 expression in skeletal
muscle of subjects with increased BMI (i.e,. BMI > 30 kg/m2) and control
subjects (i.e., BMI < 25 kg/m2). Individual data points are shown along with
mean ± SD (A). Pearson product-moment correlation (r) between
syncytin-1 expression and protein synthesis in skeletal muscle across all
subjects whose data are depicted in panel A above (B).

FIGURE 2 | Western blot analysis of syncytin-A expression in
differentiated C2C12 myotubes treated with either insulin (INS; 20 nM),
palmitate (PA; 300 uM), oleate (OLE; 300 uM), or their combinations, and
compared with the no treatment condition (i.e., control). Individual data
points are depicted along with mean ± SD.
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processes are decreased in obesity (Akhmedov and Berdeaux,
2013; O’Leary et al., 2018), and assuming syncytin-1 has a
dominant role in upregulating these processes in skeletal

muscle. However, there is evidence supporting increase in
tissue syncytin-1 expression in pathophysiological
circumstances. Syncytin-1 expression is higher in neuronal
cells of patients with multiple sclerosis (Antony et al., 2004), a
condition characterized by chronic inflammation (Pegoretti et al.,
2020), which is also observed in the metabolic environment
associated with obesity/increased BMI (Lumeng and Saltiel,
2011). Moreover, treatment of neuronal cells with the
inflammatory molecules TNF-α and IL-6, which are also
induced within the metabolic environment of obesity
(Dorneles et al., 2016; Kern et al., 2018), activates syncytin-1
gene expression (Antony et al., 2007; Mameli et al., 2007).
Therefore, it is reasonable to speculate that the inflammatory
state linked to obesity may increase the expression of
syncytin-1 in skeletal muscle of our subjects characterized
by increased BMI. On the other hand, syncytin-1 may induce
inflammation through release of NO as well as activation of
toll-like receptor family proteins (Wang et al., 2018).
Although the exact direction of the cause-effect
relationship between syncytin-1 expression and
inflammation remains to be determined, the evidence
discussed in this paragraph supports increased tissue
(i.e., muscle) syncytin-1 expression within the
proinflammatory environment associated with
increased BMI.

Syncytin-1 is a target gene of the peroxisome-proliferator-
activated receptor γ (PPARγ), and where stimulation and
inhibition of PPARγ increases and decreases syncytin-1
expression, respectively, in human cytotrophoblasts involved
in placental development (Ruebner et al., 2012). Therefore,
increased syncytin-1 expression in subjects with increased BMI
may result from increased muscle PPARγ, whose expression is
reported higher in muscle of humans characterized by obesity
(Park et al., 1997; Kruszynska et al., 1998). Our novel findings on
syncytin-1 in skeletal muscle of humans with increased BMI open
the door for future research into the mechanisms implicated, as
well as the role and consequences of increased syncytin-1
expression in muscle of these individuals.

Interestingly, the rate of protein synthesis in muscle
correlated inversely with the expression of syncytin-1 in
muscle. Overexpression of syncytin-1 suppresses its two
receptors, alanine/serine/cysteine transporter 1 (ASCT1) and
ASCT2 (Antony et al., 2007), two proteins that also serve as cell
membrane amino acid transporters (Scopelliti et al., 2013;
Scalise et al., 2018). Furthermore, evidence in humans shows
that downregulation in the gene expressions of muscle ASCT1
and ASCT2 is observed concurrently with increased expression
of syncytin-1 in muscle (Frese et al., 2015). Because reduction in
muscle amino acid transporters reduces muscle protein
synthesis (Hyde et al., 2005), it is possible that lower protein
synthesis in muscle of subjects with increased BMI is observed
secondary to a syncytin-1-mediated downregulation of amino
acid transport in muscle. In this regard, experimental blockade
of these amino acid transport proteins reduces cellular amino
acid uptake (Oburoglu et al., 2014). Also, lower protein
synthesis in muscle of an animal model of obesity
(i.e., Zucker rat) (Reeds et al., 1982) occurs together with

FIGURE 3 | Western blot analysis of p-4E-BP1/t-4E-BP1 (A), p-4E-
BP1 (B) and t-4E-BP1 (C) in differentiated C2C12 myotubes treated with
either insulin (INS; 20 nM), palmitate (PA; 300 uM), oleate (OLE; 300 uM), or
their combinations, and compared with the no treatment condition
(i.e., control). Individual data points are depicted along with mean ± SD.

Frontiers in Physiology | www.frontiersin.org April 2022 | Volume 13 | Article 8583416

Ravichandran et al. Syncytin-1, BMI, and Muscle Protein Synthesis

https://www.frontiersin.org/journals/physiology
www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


lower uptake of amino acids in muscle (Friedman et al., 1990).
Therefore, decrease in amino acid transport into muscle
secondary to lower content of amino acid transporters in
muscle because of higher muscle syncytin-1 expression may
explain the inverse correlation we observed between syncytin-1
and protein synthesis in skeletal muscle.

Our cell culture experiments show that insulin stimulates
syncytin-A expression in muscle. To our knowledge, our data
provide the first evidence describing regulation of this protein
by insulin in muscle. Related to this evidence, it is known that
syncytin-1 is a target gene for expression through the insulin-
like growth factor signaling pathway (Strissel et al., 2008). Our
findings suggest that insulin may upregulate muscle growth
through increased syncytin-1 expression, and along with
effects of insulin on increasing other muscle growth factors,
such as myogenin and MyoD (Rochat et al., 2004; Litwiniuk
et al., 2016). However, the effect of insulin on syncytin-A
expression in the myotube experiments was not evident in the
presence of fatty acids, suggesting that fatty acids may interfere
with the effects of insulin in increasing the expression of this
protein in muscle.

In addition to the effects of insulin on increasing syncytin-A
expression, insulin enhanced signaling through the 4E-BP1
pathway in the C2C12 myotubes. This is in line with previous
studies showing that insulin activates 4E-BP1 in C2C12
myotubes, and where this effect is observed together with
stimulation of protein synthesis (Williamson et al., 2005).
Moreover, presence of fatty acids, and specifically palmitate,
impairs 4E-BP1 activation in myotubes (Kwon and Querfurth,
2015) and reduces protein synthesis (Perry et al., 2018).
Although palmitate did not reduce basal 4E-BP1 signaling
in our C2C12 myotube experiments, stimulation of 4E-BP1 by
insulin did not occur in the presence of either palmitate or
oleate. It has been previously shown that the presence of oleate
reverses impaired activation of 4E-BP1 by palmitate (Kwon
and Querfurth, 2015) and preserves protein synthesis (Tardif
et al., 2014) in C2C12 myotubes. In our cell culture
experiments, presence of oleate along palmitate in the cell
culture medium enhanced 4E-BP1 signaling. We were not able
to evaluate 4E-BP1 signaling in our human subject
experiments. However, relevant evidence shows that
humans with increased BMI and concomitant reduction in
muscle protein synthesis, a subject population comparable to
that with increased BMI in our study, display impaired 4E-BP1
expression (Bak et al., 2016).

Concurrent upregulation of syncytin-A and 4E-BP1
expressions by insulin in our cell culture experiments indicates
an integrated response with respect to signaling within muscle of
processes that under normal physiological circumstances mediate
overall myogenesis and protein synthesis. However, these
responses may be disassociated in the human metabolic
environment associated with increased BMI. Our overall
findings constitute original evidence regarding the
coordination of biological processes regulating skeletal muscle
growth, and how these processes may be differentially affected in
humans with increased BMI.

CONCLUSION

When compared to controls, humans characterized by increased
BMI and concurrent reduction in protein synthesis in skeletal
muscle have increased expression of syncytin-1 in muscle.
Syncytin-1 expression in muscle shows significant inverse
correlation with protein synthesis in muscle. The underlying
mechanisms inducing increased expression of syncytin-1 in
skeletal muscle of humans with increased BMI and the
biological links between syncytin-1 expression and protein
synthesis in skeletal muscle deserve further investigation.
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