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Abstract
Recognizing an object takes just a fraction of a second, less than the blink of an eye. Apply-

ing multivariate pattern analysis, or “brain decoding”, methods to magnetoencephalography

(MEG) data has allowed researchers to characterize, in high temporal resolution, the

emerging representation of object categories that underlie our capacity for rapid recognition.

Shortly after stimulus onset, object exemplars cluster by category in a high-dimensional

activation space in the brain. In this emerging activation space, the decodability of exemplar

category varies over time, reflecting the brain’s transformation of visual inputs into coherent

category representations. How do these emerging representations relate to categorization

behavior? Recently it has been proposed that the distance of an exemplar representation

from a categorical boundary in an activation space is critical for perceptual decision-making,

and that reaction times should therefore correlate with distance from the boundary. The pre-

dictions of this distance hypothesis have been born out in human inferior temporal cortex

(IT), an area of the brain crucial for the representation of object categories. When viewed in

the context of a time varying neural signal, the optimal time to “read out” category informa-

tion is when category representations in the brain are most decodable. Here, we show that

the distance from a decision boundary through activation space, as measured using MEG

decoding methods, correlates with reaction times for visual categorization during the period

of peak decodability. Our results suggest that the brain begins to read out information about

exemplar category at the optimal time for use in choice behaviour, and support the hypothe-

sis that the structure of the representation for objects in the visual system is partially consti-

tutive of the decision process in recognition.

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004316 June 24, 2015 1 / 18

OPEN ACCESS

Citation: Ritchie JB, Tovar DA, Carlson TA (2015)
Emerging Object Representations in the Visual
System Predict Reaction Times for Categorization.
PLoS Comput Biol 11(6): e1004316. doi:10.1371/
journal.pcbi.1004316

Editor: Matthias Bethge, University of Tübingen and
Max Planck Institute for Biologial Cybernetics,
GERMANY

Received: November 24, 2014

Accepted: April 23, 2015

Published: June 24, 2015

Copyright: © 2015 Ritchie et al. This is an open
access article distributed under the terms of the
Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any
medium, provided the original author and source are
credited.

Data Availability Statement: Files containing
processed and analyzed MEG data, as well as
summary statistics for the behavioral data, for each
subject, are available through DRYAD. DOI: 10.5061/
dryad.fv8g8

Funding: This research was supported by an
Australian Research Council Future Fellowship,
FT120100816 (TAC). The funders had no role in
study design, data collection and analysis, decision to
publish, or preparation of the manuscript.

http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1004316&domain=pdf
http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.5061/dryad.fv8g8
http://dx.doi.org/10.5061/dryad.fv8g8


Author Summary

Recognizing an object in the world (e.g. a cat) takes just a fraction of a second. Recent
advances in neuroscience have allowed researchers to measure the emergence and dynam-
ics of time-varying neural signals that allow us to quickly recognize objects visually. At
each moment in time, these neural signals can be characterized as patterns of neural activ-
ity that cluster categorically in a high-dimensional activation space. Within this space, a
boundary can be drawn between the clusters of activity patterns, which can then be used
to discriminate object categories (e.g. cats vs. cars). Based on which side of the boundary a
pattern falls, researchers can guess (or “decode”) the category membership of an object
that an observer is viewing. In the present study, we provide evidence that at the time
when category clusters are best separated in activation space—that is, the time when cate-
gory information is best suited to be “read out” from the brain’s signals—the structure of
activation space can be used to predict behaviour. Our results provide insights into both
when and how the brain’s representational architecture supports rapid object recognition.

Introduction
When recognizing objects the brain does not take its time. Although object recognition is one
of the most computationally difficult feats performed by the visual system, it is carried out in
an ultra-rapid fashion, with relative ease and high fidelity [1–2]. Some of the most convincing
evidence for ultra-rapid recognition comes from behavioural research. Using saccadic eye-
movements, subjects can reliably categorize object exemplars as quickly as 120 ms post-stimu-
lus onset [3–4] and faces as fast as 100 ms [5]. The rapidity of saccadic reaction times for cate-
gorization suggests that information about stimulus category must be available in the brain
very shortly after stimulus onset [3, 6].

The application of multi-variate pattern analysis (MVPA), or “decoding”, methods to time-
series data has allowed researchers to characterize the emergence and dynamics of time-vary-
ing neuronal activity associated with objects in the brain. Concordant with the early availability
of category information observed in behavioural research, information about object category
can be decoded as early as 60–100 ms after stimulus onset [7–10]. While decoding onset is
largely stable across categories, MEG decoding studies have found that peak decoding varies
with the hierarchical organization of object categories; classifiers trained to discriminate subor-
dinate categories (e.g. face, body) peak earlier in their performance relative to ones trained to
discriminate superordinate categories (e.g. animacy) [7–8]. These results suggest that peak
decoding indexes the optimal time to read out information about stimulus categories [7], and
that time-resolved decoding provides a method for revealing the representational dynamics of
the brain [11].

The classifiers used in decoding analysis rely on boundaries through high-dimensional acti-
vation spaces that separate patterns of activity for object exemplars based on category (e.g.
faces vs. houses). Classifier performance is better when an activation space is organized along
clear categorical dimensions. For example, object category is highly decodable from the activity
patterns in human and monkey inferior temporal cortex (IT), a region strongly implicated in
representing object categories [12], but only moderately decodable in early visual cortex [13],
which encodes low-level image features (e.g. edges and colors). With time-resolved decoding,
classifier performance improves at time points when activation spaces are better organized
along categorical dimensions. If these spaces indeed reflect underlying representational
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dynamics, then an important question is when and how these emergent activation spaces are
used by the brain in a task related manner.

One approach to forging a link between decodability and behaviour holds that a boundary
that separates object exemplars based on category membership (e.g. animate vs. inanimate) in
an activation space reflects a decision boundary for behavioural categorization (Fig 1A; [14]).
Signal detection theory [15] suggests that evidence close to a decision boundary is more ambig-
uous, while evidence far from the boundary is less ambiguous. Since decision time tends to
increase with the quality of evidence for an observer, and ambiguity is one dimension of evi-
dence quality, a simple consequence of this familiar picture from classic psychophysics is that
reaction times will correlate negatively with distance from a decision boundary: the farther an
object representation is from the decision boundary through the space, the less ambiguous the
evidence, and the faster the reaction times [16–18]. Using fMRI, Carlson et al. [14] tested this
distance hypothesis using an activation-space for objects constructed from patterns of activity
in human IT. They found that distance from a categorical boundary for animacy through the
activation space of the region negatively correlated with RTs, suggesting that object representa-
tions form part of the decision-process for visual categorization (cf. [19]).

In the present study, we show when distances from a boundary through a high-dimensional
activation space is predictive of reaction times, in order to reveal a link between the time-vary-
ing signals revealed by MEG decoding and behaviour. If peak decoding does indeed index the
optimal time to read-out information about object category, then a plausible hypothesis is that

Fig 1. Distances from a decision boundary through activation space can be used to predict reaction times (RT). (A) A hypothetical 2D activation
space for human IT representing animate and inanimate object exemplars. Activation patterns for individual exemplars are projected onto a discriminant axis,
which differentiates patterns based on animacy. A decision boundary placed along the axis allows for classification of animate and inanimate exemplars.
Gaussian distributions along the discriminant axis reflect “decision noise”. Exemplar representations closer to the boundary produce more ambiguous
evidence compared to exemplar representations far from the boundary. An implication of classic signal detection theory is that RTs will correlate negatively
with distance from the boundary. (B) A hypothetical emergent activation space for animate vs. inanimate object exemplars as would be revealed using MEG
decoding methods. Stimulus onset is the time the stimulus is presented. The decoding onset (dashed line) is the first time point that a classifier trained to
discriminate between animate and inanimate examplars performs significantly above chance. Peak decoding (gray box) is the optimal time point to read out
information about stimulus category. Clusters depict the hypothetical 2D activation spaces at notable points in the decoding time-course.

doi:10.1371/journal.pcbi.1004316.g001
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peak decoding is the time at which the brain constructs a representation of the stimulus that is
predictive of reaction time behaviour (Fig 1B). We tested this hypothesis by examining the rela-
tionship between emergent activation spaces for objects in the brain, measured using MEG,
and reaction times for object categorization. Controlling for potential task-related and motor
confounds, our study shows that reaction times begin to correlate with representational dis-
tances during peak decoding, and that the relationship between representational distance and
reaction times in general follows the time-course of decoding. Our results provide support for
the hypothesis that the brain reads out information when sensory evidence is optimal for mak-
ing a decision about object category.

Results
Subjects were shown a series of images while their brain activity was recorded using MEG.
Each image depicted either an animate or inanimate object from a set of twenty-four object
exemplars (Fig 2). Superimposed onto each image was a letter at fixation. We focused on the
distinction between animate vs. inanimate exemplars because it is reliably decoded with MEG
[7–8], and because it was the same distinction relied on in previous work that measured the
correlation between representational distance and reaction time [14]. In separate blocks of tri-
als subjects either actively categorized images as animate or inanimate (categorization task), or
responded whether the letter at fixation was a vowel or consonant (distracted viewing task),
while passively viewing the exemplar stimuli (Fig 2).

Behavioral performance
Reaction time (RT) and choice behaviour were recorded on each trial during the scanning ses-
sion. Overall subjects performed well at both tasks. Mean accuracy for the categorization task
was 91.8% (SD = 5.6%) correct, and 87.2% (SD = 8.5%) correct for the distracted viewing task.

Fig 2. Behavioral paradigm. Trial structure for the two experimental tasks. On each trial a letter (vowel or
consonant) was superimposed on the fixation circle in the centre of each object exemplar. When performing
the categorization task subjects judged whether the exemplar stimulus was animate or inanimate, while
during the distracted viewing task subjects judged whether the letter was a vowel or consonant. After
subjects responded the fixation circle briefly flashed green (correct response) or red (incorrect response or no
response) to provide trial-by-trial feedback on performance.

doi:10.1371/journal.pcbi.1004316.g002
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The mean RTs were 469 ms (SD = 82 ms) for the categorization task, and 516 ms (SD = 96 ms)
for the distracted viewing task.

Decoding animacy from MEG time series
We first replicated previous studies showing that animate vs. inanimate object exemplars can
be decoded on a trial-by-trial basis from the MEG time-series data [7–8]. Linear discriminate
analysis (LDA; [20]) was used at each time point to classify the category of the exemplar (ani-
mate or inanimate) displayed to the subject. Fig 3 shows decoding performance as a function of
time for the MEG data from the categorization and distracted viewing tasks epoched from -100
to 600 ms post-stimulus onset (reported in d’). Performance was similar for both data sets. The
decoding onset (i.e. the first time point at which decoding is above chance) was 60 ms post-
stimulus for both tasks. Following the onset, there was a broad peak in decoding with two
smaller peaks. The first smaller peak at 140 ms was the same for both task data sets. The second
smaller peak occurred at 220 and 240 ms for the distracted viewing and categorization task
respectively. Our main theoretical interest was the time of peak decoding–the optimal time for
decision information to be “read out” from the brain’s representation of the stimulus. To define
this time-period, we calculated the mean decoding performance for the two smaller of peaks
(d’ = .61), and then tested all time points to determine those that were not significantly differ-
ent from this mean peak value (see Methods). The time points from 120–240 ms were not sig-
nificantly different from the peak value. In what follows, we will refer to this period as the
period of peak decoding, which is highlighted as a grey region in Fig 3.

Representational distance predicts reaction times for categorization
throughout the decoding time-course
We sought to test whether distance from a decision boundary through an activation space con-
structed at the period of peak decoding would predict RTs for categorization. For each time

Fig 3. MEG decoding for animacy.Mean classifier performance (d’) for both the categorization task (red)
and distracted viewing task data (orange) plotted over time. Shaded regions above and below the mean lines
indicate +/- 1 SEM across subjects. Color-coded asterisks indicate time points at which classifier
performance was significantly above chance, using a Wilcoxon signed rank test (* = false discovery rate
(FDR) adjusted p < 0.05). Decoding onset for both data sets (60ms) is indicated by a dashed vertical line. The
period of peak decoding is indicated by a gray box extending 120–240 ms post-stimulus onset. The bar along
the x-axis indicates the stimulus duration.

doi:10.1371/journal.pcbi.1004316.g003
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point we constructed a multidimensional activation space from the MEG sensor data (see
Methods). In the activation space, the average activity patterns of individual exemplar repre-
sentations were the exemplars’ coordinates. LDA was used to calculate a discriminate axis and
decision boundary for animacy through this space. The individual exemplar activation patterns
were then projected onto the discriminate axis, and we computed the distance of the exemplar
pattern from the decision boundary (see Fig 1A and 1B). The procedure was done separately
for the categorization and distracted viewing task MEG data sets, yielding “representational
distances” (one for each object exemplar) for each task at each time point.

To study the relationship between RT behaviour and the emerging representation of the sti-
muli in the brain, the time varying distances of the object exemplars from the representational
boundary for animacy were correlated with RT performance on the categorization task. To
reduce noise and increase statistical power, we performed a fixed-effect analysis, utilizing the
average representational distances at each time-point and normalized median RTs across sub-
jects. Based on our primary hypothesis, we predicted that RTs for the categorization task
would correlate negatively with representational distances during the period of peak decoding.
Contrary to our expectations, the correlation time-course was significant at multiple time-
points from decoding onset onwards (Fig 4). Several of these time points were before (< 120
ms) or after (> 240 ms) peak decoding, while the correlation notably failed to achieve signifi-
cance in the middle of the period of peak decoding (160–180 ms).

We next reasoned that median RTs for the distracted viewing task should not correlate with
distances from an animacy boundary, since there is no reason to believe that distance from
such a boundary should be predictive for categorizing letters as vowels or consonants. To test
this null prediction, we grouped RTs for the distracted viewing task based on object exemplar,

Fig 4. Time-series correlation between representational distances from the animacy boundary and
categorization task reaction times. The time-varying rank-order correlation (Spearman’s ρ) between the
average object exemplar representational distance and average reaction time across subjects for the
categorization task (red), distracted viewing task (orange), and cross-over between the tasks (blue), in which
representational distances from the distracted viewing task were correlated with the median RTs for the
categorisation task. Color-coded asterisks indicate time points at which a correlation between distance and
RT achieves significance (* = FDR adjusted p < 0.05). The decoding onset is indicated by dashed vertical
line (60 ms). The period of peak decoding is indicated by the gray shaded region extending from 120–240 ms
post-stimulus onset. The bar along the x-axis indicates the stimulus duration.

doi:10.1371/journal.pcbi.1004316.g004
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so that decision time reflected the time for observers to categorize the co-occuring letters as
vowels and consonants. Based on such a grouping, there should be no relationship between
median RTs and distance from the animacy boundary. As expected, at no time point did the
correlation between distractor task RTs and distances from the animacy boundary achieve sig-
nificance (Fig 4).

Carlson et al. [14] correlated representational distances from IT, measured using fMRI
while subjects passively viewed object exemplars, with RTs for object categorization, which
were obtained from a separate group of subjects. Even though the fMRI subjects were not per-
forming a categorization task, representational distances still correlated with RTs. The find-
ings of Carlson et al. suggest that the structure of neural representations in the visual system
driving categorization behaviour is not wholly task-dependent. We reasoned that even
though subjects “passively” viewed exemplars while performing the distracted viewing task
the representational distances constructed from the distracted viewing task MEG data would
still be predictive of RTs for the “active” categorization task. We measured the correlation
between representational distances for the distracted viewing task with the median RTs for
the categorization task. This cross-over correlation followed a similar trajectory to the catego-
rization task correlation time-course (Fig 4), achieving significance for nearly the complete
time-course from decoding onset onwards, and again with the notable exception of 160–180
ms during the period of peak decoding. These findings show that the emerging representation
that predicts RTs is a core representation that is constructed by the visual system even during
passive viewing, and thus must be independent of task-specific decision or motor processing
(see Methods).

In order to quantify the relationship between decoding and the representational distance-
RT correlations, we correlated both decoding time-courses with both significant representa-
tional distance-RT correlation time-courses. We observed a significant negative correlation
between each pair of decoding and correlation time-courses (Fig 5), reflecting the fact that as
classifier performance increased there was an increase in the negative correlation between rep-
resentational distance and RTs. Thus the relationship between representational distance and
RTs appears to track the time-course of decoding.

Animate exemplars drive relationship between representational distance
and reaction times for categorization
There is evidence that animate and inanimate objects are represented differently in the ventral
visual stream of humans and monkeys [13, 21–22]. In their study, Carlson et al. [14] found

Fig 5. Matrix of correlations between decoding time-courses and representational distance-RT
correlation time-courses. The “heat” of each tile reflects the strength of the rank-order correlation
(Spearman’s ρ) between a decoding time-course and a representational distance-RT correlation time-course.
Asterisks indicate significant correlations (* = p < .01; ** = p < .001).

doi:10.1371/journal.pcbi.1004316.g005
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that the correlation between distance and RTs that they observed was driven entirely by ani-
mate exemplars, with no significant correlation between representational distance and RTs for
inanimate exemplar stimuli. Thus we sought to determine whether the correlations we
observed between representational distance and RTs were also driven by the data for the ani-
mate exemplars.

We again measured the categorization task and cross-over correlation time-courses, this
time analysing the data separately for animate and inanimate objects (Fig 6A and 6B). The ani-
mate correlations showed a consistent negative pattern, achieving significance around the
period of peak decoding, and at later time-points (� 380 ms). When time-averaged (0–600
ms), the animacy correlations were significantly greater than their inanimate counterparts,
though the latter correlations were also significant (Fig 7). However, only the animate exemplar
correlation time-courses were significantly correlated with the decoding time-courses (Fig 5).
Thus it appears that the animate examplars are indeed driving the time-varying relationship
between representational distances and RTs. Furthermore, given that the mean RT for the cate-
gorization task was 469 ms, the significant time points after the period of peak decoding likely
reflect the continued representation of animate exemplars after a decision was already made by
observers (or would have been made, in the case of the cross-over correlation). Thus our pri-
mary prediction is borne out by the correlation time-courses for animate exemplars:

Fig 6. Time varying representational distance for individual exemplars separated by object category. Time varying (A) categorization task (red) and
(B) cross-over (blue) rank-order correlations (Spearman’s ρ) for animate and inanimate exemplar stimuli. The color-coded asterisks in the top row of plots
indicate time points at which there is a significant correlation between distances and RTs (* = FDR adjusted p < 0.05). The bottom row of plots displays the
distances from animacy decision boundaries at each time point, computed for both the categorization task and distractor task data sets. Each time-varying
line depicts the representational distance for an individual exemplar stimulus, at each 20 ms time point (either animate or inanimate). The color of each line is
based on the rank-order of the median RT for each exemplar (rank is always within category). In all plots, decoding onset is indicated by dashed vertical line
(60 ms). The period of peak decoding is indicated by a gray box extending 120–240 ms post-stimulus onset. The bar along the x-axis indicates the stimulus
duration.

doi:10.1371/journal.pcbi.1004316.g006
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information about (animate) object categories is being read-out during the period of peak
decoding (Fig 6).

The lower plots of Fig 6A and 6B show the averaged representational distances for animate
and inanimate stimuli, color-coded by the rank-order categorization task RTs. Qualitatively,
the representational distances for animate exemplars appear more separable than those for
inanimate exemplars, increasing in relative distance considerably around the time of peak
decoding. Notably, the distances for animate exemplars collapse at 160–180 ms, which corre-
sponds to a slight dip, or “valley”, during the period of peak decoding (Fig 3), and is the point
when the correlation time-courses for mean representational distance and median RT lose sig-
nificance (Fig 4). This “peak and valley” pattern in classifier performance is also found in the
results of other studies that have decoded exemplars based on animacy [7–8]. The collapse in
distances at 160–180 ms appears to explain why classifier performance remains high at these
time points, but the correlation time-courses are not significant: at that time there is substantial
relative distance between category (as reflected in distance from the decision boundary, or 0 on
the y-axes), but minimal relative distance within category, resulting in a poorer ordering with
respect to rank RTs.

Latency and amplitude of sensory peaks do not predict reaction times for
categorization
One question is whether the observed relationship between representational distance and RTs
might track evoked responses observable using more conventional analyses. For example, Phi-
liastides and Sajda [23] found that large amplitudes in difference waveforms coincided with
their best decoding time-windows. Similarly, in our data differences in the amplitude of the
evoked responses for animate and inanimate exemplars are evident in the grand average scalp
topographies at the decoding peaks (S1 Fig). Furthermore, difference waveforms were signifi-
cant both at peak decoding, and at ~ 380 ms onward (S2 Fig). Thus we asked whether the

Fig 7. Time-averaged (0–600ms) correlations between representational distance and RTs for both
animate and inanimate object exemplars.Mean time-averaged categorization (red) and cross-over (blue)
correlations (Spearman’s ρ) between representational distances and RTs. Asterisks indicate significant
comparisons (Wilcoxon Signed Rank Test; * = p < .01; ** = p < .001). Error bars indicate +/- 1 SEM across
time-points.

doi:10.1371/journal.pcbi.1004316.g007
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timing or magnitude of evoked responses might also predict RTs for categorization. To address
this question, we isolated the peak latency and amplitude of early sensory peaks (< 160 ms
post-stimulus onset) for each individual exemplar from the grand averaged categorization and
distracted viewing task MEG data. We then correlated these peak latencies and amplitudes
with the median normalized RTs. If RTs reflect peak latency, we expect a positive correlation
(greater latency predicting slower RTs), while if RTs reflect peak amplitude, we expect a nega-
tive correlation (greater amplitude predicting faster RTs). Neither correlation was significant,
for either the categorization task or distracted viewing task peaks, even when separated by ani-
macy (Fig 8). For comparison with the lower plots of Fig 6, S3 Fig also depicts the sensory
peaks for each exemplar, separated by animacy, and color-coded for rank-order RT. As can be
seen in the plots, the peak waveforms exhibit no clear ordering with respect to rank RTs. Given
these null results, the observed relationship between representational distance and RTs does
not appear to straightforwardly track properties of sensory peaks in the MEG evoked response.

Fig 8. Correlations between sensory peak latencies and amplitudes and categorization task RTs. Scatter plots for the rank-order (A) categorization
and (B) cross-over correlations (Spearman’s ρ) between peak latency and peak amplitude and median normalized RTs for the categorization task. (A) Red
circles indicate animate exemplar data points, while red rings indicate inanimate data points. (B) Blue circles indicate animate exemplar data points, while
blue rings indicate inanimate data points. Peak amplitude scale is in units of 10−14 T. For comparison also plotted are the correlations between
representational distance and RTs at 120 ms. Asterisks indicate significant correlations (* = p < .01; ** = p < .001).

doi:10.1371/journal.pcbi.1004316.g008
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Discussion
In the present study we showed when and how the emerging representation of objects in the
brain, as revealed using MEG decoding, can be related to categorization behaviour. Following
previous work with fMRI showing that representational distance from a category boundary in
the activation space of human IT predicts RTs for object categorization [14], we sought to
determine at what time representational distances predicted RT behaviour. The period of peak
decoding provides the optimal period at which to read-out information about stimulus cate-
gory. Thus we hypothesized that representational distances and RTs would exhibit the same
relationship during this period, and predicted that RTs would negatively correlate with dis-
tance from a decision boundary through the activation spaces at the time of peak classifier per-
formance. We found that representational distances and RTs correlated at most time-points
following decoding onset. It was only when the data was separated by animacy that our predic-
tion was supported: RTs began to negatively correlate with representational distance during
the period of peak decoding, with the time-varying correlation tracking the time-course of
decoding more generally. Our results have implications for (i) research on ultra-rapid object
categorization, (ii) how time-resolved decoding results are interpreted to make inferences
about neural representations, as well as for (iii) hypotheses concerning the possible neural loci
of perceptual decision-making in vision.

Implications for ultra-rapid categorization
The fact that ultra-rapid categorization can be performed with some reliability suggests that
information about stimulus category is available shortly after stimulus presentation. Congruent
with this conjecture, information about object category can be decoded 60–100 ms after stimu-
lus onset. However the availability of such information at such early latencies does not show,
by itself, that this information is being used by subjects in a task related manner. In the present
study, classifiers trained on the categorization task and distractor task data both achieved sig-
nificant above chance performance as soon as 60 ms after stimulus onset, in line with previous
MEG decoding experiments [7–8, 24]. When data was pooled across subjects, the first time
point at which we observed a significant negative correlation between RTs and distance from
an animacy boundary was decoding onset. Such an early latency for the predicted relationship
between distance and RTs is consistent with existing psychophysical research showing reliable
saccadic RTs at very short latencies of less than 200 ms [3, 5]. An enticing prospect is that
future research might use the present distance approach to MEG decoding, in conjunction
with behavioural measures, to further characterize the temporal dynamics of ultra-rapid object
categorization. For example, there is evidence that RTs for superordinate categories (e.g. ani-
mal or non-animal) can be significantly faster than those for subordinate categories (e.g. dog or
cat) [25–26]. In contrast, while MEG decoding onset does not appear to vary with object cate-
gory, classifier performance peaks earlier for subordinate relative to superordinate categories
[7–8]. Future research could use our distance approach to reconcile the apparent tension
between these behavioural and decoding results.

Implications for the interpretation of time-resolved decoding
It has been claimed that time-resolved decoding methods reveal the temporal dynamics of
“representational geometries” in the brain [11, 27]. However significant above chance classifier
performance only warrants the inference that some information about a stimulus or task con-
dition is available, but not that it is being used by the brain [28]. In this respect, the dynamics
of the correlations between distance and RTs that we report are notable. The few MEG decod-
ing results to date consistently show a “peak and valley” topography when a classifier is used to
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discriminate between animate and inanimate exemplars, as well as between other categories.
From decoding onset classifier performance climbs to an initial peak, followed by a dip into a
high altitude valley, before rising to a second peak. This can be seen in Carlson et al. ([7], Fig
3E), and Cichy, Pantazis and Oliva ([8], Fig 2A), as well as the present results (Fig 3). It is note-
worthy that the “valley” in decoding performance aligns with an approximate point, 160–180
ms, at which there is a collapse in the representational distances (Fig 6A and 6B), and a corre-
sponding lack of correlation between distance and RTs (Figs 4, 6A and 6B). We have
highlighted this qualitative feature of our results because it suggests that although a classifier is
able to use information latent in the patterns of neural activity at this time, the brain itself
might not be using this information. Decodability reflects classifier performance, while the cor-
relation between representational distance and RTs reflects human performance, and so the
latter likely provides a better proxy of when in time object representations have emerged, or
been “untangled” [29]. At the same time, the fact that the correlations between distance and
RTs closely track classifier performance (Fig 5) provides some evidence for the idea that the
brain is indeed a decoder of its own neural signals [11].

Implications for neural models of perceptual-decision making
While our study shows that representational distance predicts RT behaviour, one question is
how to connect this spatial measure, distance, to the temporal dynamics of the decision pro-
cess. Such a connection can be established using sequential analysis models, which have used
to uncover the neural loci of perceptual-decision making [30, 31]. These models have been
related to neural activity, in humans and monkeys, using a variety of stimuli, tasks, and record-
ing methods, including cellular recordings, fMRI, and EEG/MEG [32–38]. While varying in
their details, all sequential analysis models characterize differences in RT as resulting from vari-
ation in the evidence accumulation (or “drift”) rate toward a decision threshold. In order to
make a connection between the evidence accumulation process and the brain’s population
codes (as reflected in the patterns of neural activity clustered in high-dimensional activation
spaces), Carlson et al. [14] implemented a simple sequential analysis model to show that dis-
tance from a decision boundary in human IT results in differences in accumulation rate to a
decision threshold. If drift rate is the only free parameter of the model, it can be fixed based on
distance, since the starting point of the accumulation process is in effect equivalent to the deci-
sion boundary as specified by signal detection theory ([39–40]). When fixed in this way, drift
rate scales with distance from a decision boundary: shorter distances entail slower drift rates,
and longer distances entail faster drift rates. Thus, sequential analysis models, a prominent the-
oretical fixture in the decision-making literature, provide a bridge from representational dis-
tances to the temporal dynamics of the decision processes.

We did not apply a sequential analysis model to our data. However, as discussed by Carlson
et al. [14], it follows analytically from the observed correlations between distance and RTs that
such an application is possible. For example, with our data time averaged distances during
peak decoding could be used to set the drift rate parameter for each individual object exemplar,
resulting in a positive correlation between drift rate and RTs (cf. [41]). In so far as the present
experiment provides further evidence that representational distance predicts RTs, our results
supports the hypothesis that representational distance determines the quality of evidence that
feeds into the evidence accumulation process. Although the correlations we report likely
reflects multiple brain areas rather than a single decision variable accumulating over time, we
do believe our results also offers an important perspective on how decision variables are imple-
mented in the brain; namely, as a trajectory through high-dimensional activation spaces
reflecting the transformation of information over time [29,39]. More broadly our findings
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support the idea that representing is partially constitutive of the decision process for categori-
zation [14].

Summary
Motivated by recent findings, we sought to determine how the time-varying signal for objects,
as identified by time-resolved decoding methods, can be related to behaviour. Previous
research has shown that distance from a partitioning through a high-dimensional activation
space can be used to predict RTs. We reasoned that since peak-decoding indexes the optimal
time for reading-out information regarding stimulus category, it would be during the period of
peak decoding that we would witness a relationship between distance and decision. In line with
our expectations, RTs negatively correlated with distance from decision boundaries during the
period of peak decodability, but only when our data was separated by object category. Our
results provide evidence that the time course of decoding indeed reflects the emergence of rep-
resentations for objects in the visual system. Furthermore, they also give credence to the thesis
that representing and deciding do not necessarily reflect a clean partitioning between sensory
evidence and its evaluation, but are instead fused during the process of categorization.

Methods

Ethics statement
The research in this study was approved by the Institutional Review Board at the University of
Maryland, College Park.

Participants
Thirty subjects from the University of Maryland, College Park, participated in the experiment
(15 female; mean age = 21.1). All subjects had normal or correct to normal vision and were
compensated financially for participating. The MEG data of one subject was corrupted, so only
the data of the remaining 29 subjects was analysed.

Stimuli and tasks
Stimuli were twenty-four segmented natural images of objects, consisting of a heterogeneous
mix of animate and inanimate exemplars (12 animate, 12 inanimate): human and animal faces
and bodies, and artificial and natural objects. Experiments were run on a Dell desktop PC com-
puter running Matlab (Natick, MA). Stimuli were displayed on a translucent screen located 30
cm above participants in the MEG chamber. On the display, the stimuli were approximately 4
degrees of visual angle. Superimposed onto each image was a small fixation circle (0.4 degrees
of visual angle) containing a letters drawn from the following set of vowels and consonants:
vowels = ‘A’, ‘E’, ‘I’, ‘O’,’U’; consonants = ‘R’, ‘N’, ‘X’, ‘S’, ‘G’.

Subjects performed one of two tasks on alternating runs of the experiment (Fig 2). The cate-
gorization task required subjects to respond whether the exemplar was animate or inanimate
(i.e. whether it was “capable of moving on its own volition”). The distracted viewing task
required subjects to respond whether the character in the fixation circle was a vowel or conso-
nant. Subjects were instructed to respond as quickly and accurately as possible while perform-
ing the tasks.

To remove any potential confounds associated with motor activity, the mapping between
object category/letter type and response alternated on each run of each task. For example, if on
the first categorization task run subjects responded with the left button for animate stimuli,
and right button for inanimate stimuli, then on the next categorization task run the mapping
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would be reversed. Subject’s choice and RT data were collected for each trial. After responding,
subjects were given feedback on their performance: if subjects responded correctly the fixation
circle flashed green; if the subjects responded incorrectly, or failed to respond during the
response period, then the fixation circle would flash red (Fig 2).

Trials were structured as follows (Fig 2). Each stimulus was presented for 500 ms, and sub-
jects had 1000 ms (including the stimulus duration) to respond. The inter-stimulus interval for
each trial was randomly selected from the range 900–1200 ms. Each image was presented 8
times in each run, in random order, resulting in 192 trials per run. Subjects performed 8 runs,
with 4 categorization runs, and 4 distractor runs, resulting in 768 trials per task. At the end of
each run subjects were provided feedback on their response accuracy for the run (percentage
correct).

MEG data acquisition and preprocessing
The neuromagnetic signal of the subjects was recorded using a 160 channel (157 recording; 3
reference) whole-head axial gradiometer (KIT, Kanazawa, Japan). Signals were digitized at
1000Hz, and filtered online from 0.1 to 200 Hz using first-order RC filters. Offline, time-shifted
principle component analysis (TSPCA) was used to denoise the data [42]. TSPCA filters the
data using the reference channels to estimate environmental noise. After denoising the data,
trials were epoched from 100 ms pre-stimulus to 600 ms post-stimulus. Eye-movement arte-
facts were removed using an automated algorithm in Matlab. The average rejection rate of trials
due to eye-movements was 2.1% with 2.6% SD across subjects.

For the MEG decoding analyses, PCA with a threshold of retaining 99% of the variance was
used to reduce the dimensionality of the datasets. The sampling rate was reduced to 50Hz to
increase signal to noise, resulting in 36 time-points with a 20 ms resolution. The data was
downsampled using the decimate function in Matlab, which first applies a low-pass Chebyshev
Type I filter. Filtering when downsampling introduces a latency offset (estimated by simulation
to be 20 ms), which was corrected for after downsampling. For the conventional time-series
analyses, the data was downsampled to 500 Hz and low-pass filtered (Butterworth) at 40 Hz
offline using SPM8 ([43]), resulting in time-points with a 2 ms resolution and negligible latency
offset. No off-line high-pass filtering was applied to the data for either the decoding or conven-
tional analyses.

Sliding time-window decoding analysis
The decoding analysis was run separately for the categorization task and distracted viewing
task MEG datasets. For each set of data, we used a naïve Bayes implementation of linear dis-
criminate analysis (LDA, [20]) to perform single-trial classification of animate and inanimate
objects from the scalp topography at each time point. Generalization of the classifier was evalu-
ate using k-fold cross validation with a 9:1 training to test ratio. In this procedure, the neuro-
magnetic data for all trials of a task were randomly assigned to 10 bins approximately equal in
size. Nine of the bins were pooled to train the classifier, and the trials in the remaining bin were
used to test the classifier. This procedure was repeated 10 times such that each trial was tested
on exactly once. The decoding analysis was run on each time point to measure the time varying
decoding performance for animacy. Classifier performance is reported in terms of d’. Mean
classifier performance at each time-point was tested for significance using the Wilcoxon signed
rank test. To correct for multiple comparisons we also computed the false discovery rate (FDR)
adjusted p-values with α = 0.05. The same correction was performed for all other tests of statis-
tical significance that involved multiple comparisons (i.e. testing at each time point).
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To quantify the period of peak decoding, we first calculated the mean value of the two peaks
in classifier performance for the categorization task and distractor task data (d’ = .61). We then
tested whether classifier performance at each time-point was significantly different from this
peak value using the Wilcoxon signed rank test (FDR adjusted p< .05). The period of peak
decoding was defined as all time-points at which at least one classifier time-course was not sig-
nificantly different than the peak performance value.

Distances in activation space
An activation space is an N-dimensional space with the number of dimensions determined by
the number of components retained after dimensionality reduction using PCA (see above).
LDA was used to compute a discriminant axis for animacy in the activation space constructed
for each 20 ms time-point. The mean activation pattern for each exemplar was projected onto
the discriminant axis. A naïve Bayes classifier was then used to compute a decision boundary
for animacy for each MEG dataset. Individual exemplar distances were computed as the abso-
lute value of the Euclidean distance of a pattern of activity for an exemplar from the decision
boundary. The exemplar distances were computed at each time point providing a time varying
measure of the distance of object exemplar representations from the decision boundary. The
partitioning of the activation space generated by LDA is not perfect. Although an exemplar is
animate, a pattern of activity for the exemplar might fall on the inanimate side of the partition,
since LDA and the classifier only provide the best (not perfect) linear partitioning of a space.
To ensure that each time point had equal data for computing the correlations, classification
accuracy was not taken into consideration when computing the distances. The above procedure
was carried out separately for the two data sets, yielding a set of categorization task distances
for each time-point, and a set of distracted viewing task distances for each time-point.

Correlating distances in activation space with reaction times
RTs from the categorization and distracted viewing tasks were analysed after individual sub-
jects’ RT were normalized and pooled. We measured the rank-order (Spearman’s ρ) correla-
tions between the normalized median RTs and the representational distances at each of the 36
time points. We measured three different correlations between distance and RTs: (i) the corre-
lation between object categorization task RTs and distances computed from the categorization
task time-series data (the categorization correlation); (ii) the correlation between distracted
viewing task RTs pooled by object exemplar and distances computed from the distracted view-
ing task time-series data, and (iii) the correlation between the categorization task RTs and the
distances computed from the distractor task time-series data (the cross-over correlation). We
also measured the categorization and cross-over correlations separately for animate and inani-
mate exemplars. These comparisons produced correlation time-courses which were also corre-
lated (Spearman’s ρ) with the decoding time-courses, or time-averaged.

Analysis of difference waveforms and sensory peaks
To determine whether a substantial difference between evoked responses for animate and inan-
imate exemplars might coincide with the period of peak decoding, we generated difference
waveforms (animate - inanimate) from both the categorization task and distracted viewing task
MEG data. First, using the grand averaged data, we isolated the five sensors that showed the
largest (positive) amplitude in the difference waveforms at the same peak times that were used
to define the period of peak decoding (categorization task: 140 and 240 ms; distracted viewing
task: 140 and 220 ms). The approximate location of these sensors can be seen in S1 Fig. This
resulted in four sets of five sensors, one for each local decoding peak. Second, we averaged the
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data from each set of five sensors for each individual subject, and tested for significance at each
time-point using the Wilcoxon signed rank test (correcting for multiple comparisons using
FDR).

To test whether sensory peak latencies or amplitudes might predict RTs, we first isolated the
five sensors that showed the largest (positive) amplitude -100–160 ms post stimulus onset for
animate exemplars, using the grand averaged data. The approximate location of these sensors
can be seen in S1 Fig. Next, again using the grand averaged data, we averaged the data from
these five sensors for each individual exemplar, and calculated the latency and amplitude of the
maximum peak -100–160 ms. The sensory peaks isolated by this procedure are depicted in S3
Fig. Finally, we then measure the rank-order correlations (Spearman’s ρ) between the peak
latencies and amplitudes and median normalized RTs.

All channel selection for these analyses was done using an automated search for the maxi-
mum amplitude of the evoked responses within the pre-defined time-windows.

Supporting Information
S1 Fig. Grand averaged scalp topographies at peak decoding. Plots show the grand average
scalp topographies for animate and inanimate exemplars, as well as their difference (animate -
inanimate), at each local decoding peak. Black dots indicate the sensors selected for isolating
data for further analysis (see: Results; Methods; and Figs 8, S2 and S3). All amplitude scales are
in units of 10−14 T.
(TIF)

S2 Fig. Difference waveforms with maximum amplitudes at decoding peaks. Each waveform
depicts the grand average data from five sensors that had maximum amplitude at the local
decoding peaks. Lighter colored waveforms have maximum amplitude at the first peak (140
ms), while darker colored waveforms have maximum amplitude at the second peak (categori-
zation task: 240 ms; distracted viewing task: 220 ms). All response amplitude scales are in units
of 10−14 T. Color-coded asterisks indicate time points at which the amplitude of the difference
waveforms achieved significance based on a Wilcoxon signed rank test (� = FDR adjusted
p< 0.05). The decoding onset is indicated by dashed vertical line (60 ms). The period of peak
decoding is indicated by the gray shaded region extending from 120–240 ms post-stimulus
onset. The bar along the x-axis indicates the stimulus duration.
(TIF)

S3 Fig. Sensory peak waveforms for object exemplars. Each waveform depicts the grand aver-
aged data for an individual exemplar, from five sensors with maximum amplitude for animate
exemplars -100–160 ms post-stimulus onset. Each plot contains the waveform for animate or
inanimate exemplars, from the categorization task or distracted viewing task MEG data. The
color of each waveform is based on the rank-order of the median normalized RT for each
exemplar (rank is always within category). All response amplitude scales are in units of 10−14

T. The decoding onset is indicated by dashed vertical line (60 ms). The period of peak decoding
is indicated by the gray shaded region extending from 120–240 ms post-stimulus onset. The
bar along the x-axis indicates the stimulus duration.
(TIF)
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