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Abstract: The field of cancer theranostics has grown rapidly in the past decade and innovative
‘biosmart’ theranostic materials are being synthesized and studied to combat the fast growth of cancer
metastases. While current state-of-the-art oncology imaging techniques have decreased mortality
rates, patients still face a diminished quality of life due to treatment. Therefore, improved diagnostics
are needed to define in vivo tumor growths on a molecular level to achieve image-guided therapies
and tailored dosage needs. This review summarizes in vivo studies that utilize contrast agents within
the field of photoacoustic imaging—a relatively new imaging modality—for tumor detection, with a
special focus on imaging and transducer parameters. This paper also details the different types of
contrast agents used in this novel diagnostic field, i.e., organic-based, metal/inorganic-based, and
dye-based contrast agents. We conclude this review by discussing the challenges and future direction
of photoacoustic imaging.

Keywords: photoacoustic imaging; exogenous contrast agents; tumor imaging

1. Introduction

Photoacoustic imaging (PAI) [1] is a breakthrough invention in the field of bioengi-
neering [2]. It involves the transmission of a short pulse of laser non-invasively onto the
tissues. The absorbed light changes into heat, causing the thermal excitation and expansion
of the tissues. This results in generating acoustic waves that can be detected via a trans-
ducer [3]. PAI offers several advantages, including the utilization of non-ionizing radiation,
the ability to reach greater depths, as well as increased resolution and optical contrast [4].
The discovery of the photoacoustic (PA) effect dates back to 1880, when the phenomenon
was first observed by Alexander Graham Bell [5]. Bell reported that sound is produced
upon the illumination of solid materials with a light beam. The light beam must be of a
vibratory nature for the PA effect to be observed. As laser technology became available
in the 1960s, the PA effect began to be considered for practical applications. By the 1990s,
researchers working in the field recognized the potential use of the PA effect for medical
imaging [6–9]. R. Esenaliev et al. [6] studied the feasibility of using optoacoustic laser
imaging for the early detection of breast cancer. In the phantom study performed in [6],
it was observed that in comparison to ultrasound (US) and mammography, the new laser
optoacoustic imaging technique offers images with improved contrast for phantoms that
were dense and uniform acoustically. Over time, with improvements in hybrid imaging
technologies and advancements in image reconstruction algorithms, it became possible to
use the PA effect for in vivo studies [10–12]. In the past few years, a significant evolution in
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PAI is evident, which will be further discussed in this paper with a focus on contrast agents
used in in vivo PAI studies (refer to Figure 1).
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Figure 1. PAI timeline.

Materials that absorb the transmitted optical signal can be endogenous, i.e., present
naturally in the body, or exogenous, i.e., synthesized/developed outside the body. In vivo
studies have been performed to detect tumors using probes that can be activated by en-
zymes related to cancer [13], probes based on peptides [14], gold nanoparticles [15,16],
dyes [17–19], melanin, oxy- and deoxy-hemoglobin [20,21]. Previous reviews have sum-
marized methods that utilize different contrast agents. However, these publications fall
short of presenting the different agents based on image quality, blood circulation time,
cytotoxicity levels, and laser pulse parameters. Table 1 summarizes contrast agents used
for various imaging modalities.

As PAI is a low-cost, non-invasive imaging modality that uses non-ionizing laser
power for the excitation of target tissues; it can provide real-time physiological information
such as blood oxygenation and other structural information of the site being studied [22].
The penetration depth offered by PAI is higher than that conventionally offered by optical
imaging. Apart from providing great benefits, PAI has certain limitations. Optical fluence,
i.e., the deposited optical energy on the target region through laser, is depth-dependent and
can lead to lower amplitudes of the PA signal arising from deep tissues and vessels [23,24].
Therefore, achieving a clinically desired penetration depth with PAI is challenging, thus
limiting its use in widespread medical applications. Another challenge with PAI occurs
while imaging regions with overlapping tissue types as the acoustic properties between
different tissue types are not consistent [25]. In addition, the safety and compatibility of
exogenous contrast agents used in PAI with the biological system need to be ensured.

Due to the rising trend of imaging tumor tissues using PAI [26–34] (see Figure 2),
this review summarizes the recent major developments in PAI. It summarizes the in vivo
studies that utilize different contrast agents to produce an enhanced image. Furthermore,
this review aims to classify these contrast agents into organic-based, metal-based, and
dye-based agents with a detailed commentary on significant points of interest. The rest of
the paper is organized as follows. Section 2 discussed the contrast agents used for in vivo
studies. Section 3 concludes the paper and presents the challenges facing PAI along with
future research directions.
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Figure 2. Emerging trend in the field of exogenous contrast agents for in vivo literature of tumors
using photoacoustic imaging (Data compiled using Web of Science and ScienceDirect databases).

Table 1. Contrast agents used for different imaging modalities.

Modality Commonly Used Contrast Agents References

MRI

Gadolinium, Super paramagnetic iron
oxide nanoparticles (SPIONs), Carbon-13,

Nanodiamonds, Carbon nanotubes,
Graphene, Manganese, Silicon, Peptides

[35]

CT
Gold nanoparticles, Iodine (131I),

Bismuth, Lathanide-based (gadolinium,
dysprosium, ytterbium)

[35,36]

Ultrasound Nanobubbles, microbubbles (with
modifications) [35,37]

PET Gold nanoparticles, Copper (64Cu),
Iodine (124I), Fluorine (18F) [35,38]

SPECT Gold nanoparticles, Technetium (99mTc) [35]

Optical Imaging
Fluorescence, Quantum dots, Gold

nanoparticles, Persistent luminescence
nanoparticles

[35]

Combinations of these contrast agents can be used to create hybrid contrast agents and
optimize imaging [38,39]

2. Contrast Agents for In Vivo Testing
2.1. Basis of PAI and Design Considerations for Contrast Agents

PAI is based on PA tomography (PAT) that incorporates optical imaging and US. A short
pulse of laser is transmitted onto/into the tissues non-invasively. The absorbed light changes
into heat, causing the thermal excitation and expansion of tissues [40]. This results in generating
acoustic waves that can be detected via a transducer. One of the principal subdivisions in PAT
is photoacoustic microscopy (PAM). In PAM, every excitation by a laser pulse creates an image
in one dimension of a point in the object. Numerous one-dimension images can be combined
to form a three-dimension image without using reconstruction algorithms [3].

Endogenous and exogenous contrast agents are used in PAI. Endogenous molecules
found in the body, such as melanin and hemoglobin, have broad optical absorption in
the visible light and near-infrared (NIR) ranges compared to adjacent tissues, leading to
strong PA contrast signals. However, information obtained by imaging a tumor in its initial
phase using endogenous contrast agents is not adequate; hence, biocompatible exogenous
contrast agents are used. The latter provides an enhanced signal contrast and better image
quality compared to endogenous contrast agents [41].
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Contrast agents in PAI are usually chosen to optimize absorption and depth in vivo.
For this reason, contrast agent wavelengths should be in the NIR range. There is min-
imal light absorption in this region by hemoglobin above 650 nm, and by water below
900 nm [42]. More recently, the NIR-II window, in the 1000–1700 nm range, is a focus of
contrast agent development as it has a greater tissue penetration depth due to lower light-
tissue interaction and safe use of higher power density for light irradiation [43]. Longer
penetration depth and higher contrast provided by NIR-II window compared to NIR-I
window are because of reduced tissue scattering and minimal tissue absorption [44]. In
short, minimal absorption means more significant penetration depths. Some of the major
factors that must be taken into consideration to optimize imaging in vivo are: (1) Having
long blood circulation times, i.e., these agents or nanoparticles should be able to evade
the immune response by the reticuloendothelial system (RES) cells, travel across mem-
brane barriers, and avoid elimination by renal and splenic filtration and reach the imaged
tissue, (2) Being biocompatible, i.e., not cytotoxic within the concentration dosage to be
administered for imaging, (3) Exhibiting a strong imaging signal to improve poor contrast,
(4) Possessing biological specificity, i.e., being designed such that it can reach the imaged
area in a reasonable time frame [42].

Since this review will mainly focus on imaging cancer malignancies, it is necessary to
mention the three methods of tumor targeting in oncology: passive, active, and triggered
targeting. Passive targeting involves the utilization of the enhanced permeability and
retention (EPR) phenomenon, which increases the accumulation of nanoparticles (in the
size range of 15–150 nm) at the tumor site [45]. This accumulation occurs due to the presence
of underdeveloped blood vessels at tumor sites, with fenestrations and haphazard blood
flow. Furthermore, due to the fast-growing nature of cancerous tissue, there are few to no
lymphatic vessels, and thus, low drainage allows a 10–50 times higher accumulation than
healthy tissues [46]. As mentioned earlier, several factors should be taken into consideration
when designing these nanocarriers. The optimal size, 10–150 nm, is an essential factor to
avoid filtration by the kidneys, and/or uptake by the liver- unless the region of interest
includes these organs [45]. Active- or ligand- targeting uses receptor-mediated endocytosis
to internalize nanocarriers. The surface of these drug encapsulating vehicles is decorated
with targeting moieties (e.g., folic acid, estrone, Herceptin, etc.) that direct the probe to
receptors overexpressed on the surface of the cancer cells. Triggered targeting can be
achieved using internal and external means. Internal triggers include temperature, enzyme
concentration, and pH levels, while external stimuli include US, NIR, and electromagnetic
waves. As the performance of PAI is dependent on optically absorbing components within
synthesized nanostructures, a combination of these components generally leads to better
results. Therefore, this paper aims to broadly classify these multimodal/hybrid nanoagents
based on component materials with PA functionality (while other components in the
nanoagents perform either therapeutic, other imaging types or biocompatibility functions).

2.2. Organic Contrast Agents

Since each class of materials has specific advantages for different applications, the
key advantage of organic contrast agents is that they are non-toxic and can degrade in
living bodies. Nanosystems are the focus of current diagnostic, theranostic and drug
delivery research due to the versatility of these materials. They are increasingly combined
with organics nanoparticles and biodegradable polymers to build a new generation of
contrast agents that enhance specific parameters. In addition, their size, shape, mechanical
flexibility and surface chemistry can be modified to optimize their efficacy in clinical
applications [47–49]. Due to their in vivo high biocompatibility, fluorescent nature, and
modification flexibility, Xiao et al. [50] synthesized and characterized melanin carbonaceous
dots (MCDs) for dual PAI and fluorescence imaging of breast cancer tumors in mice.
With MCDs having an absorbance peak at 633 nm, near the infrared lower wavelength
limit of 700 nm, higher spatial resolution imaging was produced for higher penetration
depths. MCDs, for PAI, were combined with fluorescent imaging to improve the low
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spatial resolution of the latter. The major advantages of MCDs are their (1) prolonged
blood circulation time, and (2) in vivo accumulation in triple-negative breast cancer (4T1)
xenografts. However, more work is needed before these probes proceed to clinical trials, as
their overall toxicity was high. In addition to tumors, they also accumulated heavily in the
liver and kidneys and can therefore, be used to image both organs.

However, due to the tedious, costly, and complex synthesis of carbon dots (CDs),
research groups have been extracting/deriving these CDs from natural resources such as
Hypocrella bambusae (a parasitic fungus) [51], ethylene diamine, phosphoric acid and citric
acid [52], and polythiophene phenylpropionic acid (refer to Figure 3) [53]. The enzyme
horseradish peroxidase, derived from horseradish roots, was also used in conjunction
with 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) and encapsulated in
liposomes to act as an H2O2-responsive in vivo nanoprobe [54]. The idea behind these
nanoprobes is that they will react directly with the targeted molecule and thus, exhibit high
specificity to the desired molecule.
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The nanoprobes mentioned above were used in cancer theranostics to detect H2O2
levels via the following method: synthesized glucose oxidase PEGylated (polyethylene
glycol, PEG) liposomes, for starvation therapy in a 4T1-tumor microenvironment, were
metabolized by the cancer cells to form gluconic acid and H2O2. The synthesized nanoprobe
then detected the H2O2, thus, implementing an innovative theranostic strategy [55].

Since a major branch of theranostics in cancer nanomedicine deals with lipids for drug
encapsulation, contrast agent encapsulation, ligand targeting, and biocompatibility coating,
it is necessary to discuss polymeric nanoparticles and their role as contrast agents in PAI.
Here it becomes essential to remind the reader that lipids exhibit optical absorbance but to
a lesser extent compared to other endogenous contrast agents. Consequently, Liu et al. [56]
synthesized two novel triblock copolymer nanosystems, poly(2-methyl-2-oxazoline)-block-
poly (dimethylsiloxane)-block-poly(2-methyl-2-oxazoline) (PMOXA-b-PDMS-b-PMOXA);
one with positively-charged terminal amino acid groups (P-NPs) and the other with
negatively-charged terminal carboxylic groups (N-NPs). These micelles, spherical self-
assembling single-layered nanocarriers with a hydrophobic core, were used to encapsulate
a hydrophobic NIR photonic agent called hydrophobized phthalocyanine Zinc complex
(H-PcZn) and the absorbance peak of both nanosystems was measured to be 680 nm—note
that this is within the NIR window. A linear increase in the intensity of the PA signal was
also observed with a logarithmic increase in the concentration of both P-NPs and N-NPs.
The PA signal plateaued within 10 min of in vivo administration in mice, with an increased
accumulation observed in the spleen compared to the liver and kidneys for N-NPs, whereas
P-NPs exhibited increased accumulation in both the liver and spleen as compared to the
kidneys and a comparatively stronger signal (by a factor of 1.5 in the spleen) in other
tissues. Therefore, this signifies that organ-specific applications for each nanosystem can be
developed. Still, longer incubation times are required to measure blood circulation times
and the use of targeting moieties for specific tissues and tumors to enhance tumor targeting
abilities [56,57] (see Table 2). In general, the advantage of using conjugated polymers,
aside from their NIR absorbance/emission for PAI and photothermal therapy, is the ability
to modify side chains to achieve desired characteristics such as self-assembly, increased
protein corona formation for better nanoparticle biodistribution and targeted applications
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with the band gap in their π-π* electronic transition influencing emitted spectra and leading
to tunable optical properties [58,59].

Table 2. Detailed Parameters for Contrast Agent Studies.

Material MCDs [50] P-NP and N-NPs [56] PGNR-PT6 and
PGNR-PT7 [14] MAGE-Au-PFH-NP [15]

Purpose In vivo breast cancer
imaging in mice

In vivo organ imaging in
mice

In vivo osteosarcoma
cancer imaging in mice

In vivo melanoma-tumor
imaging in mice

No. of array elements 128 with a circular arc of
270◦ from 680 to 900 nm

256 with a circular arc of
270◦ -

Pulse duration (ns) 10 10 -

Repetition rate (Hz) 10 10 -

Central frequency (MHz) 5 5 - 21

Average size (nm) 40 20 for P-NP, and 100 for
N-NP

81.7 for PGNR-PT6, and
82.7 for PGNR-PT7 354.27

Contrast High High

PGNR-PT6 and
PGNR-PT7 enhanced
contrast by 170% and

230%, respectively

High

Bio distribution (hours) 24 1 (more work needed) 24 24

Peak time
(@Concentrationmax)

(hours)
2 0.2 4 2

Biosafety Low Not measured High High

Physical efficacy High High Very High High

A problem associated with using US transducers is signal intensity loss due to US
transducers having limited frequency range detection; therefore, a study by Kim et al. [60]
used porphyrin phospholipid microbubble to produce resonance-based frequency-selective
PA signals. Porhyrin, and other small-molecule organic dyes such as cyanine and squaraine,
are being used increasingly due to their flexibility for structural modification and faster
clearance with porphyrin being used as contrast and phase-change from nanodroplets
to microbubbles for both ultrasound and PAI [61,62]. Theranostic molecular engineered
dyes such as heptacyclic B, O-chelated BODIPY organic molecules have also demonstrated
14 times enhancement in PAI contrast post 10 h injection along with 58.7% photothermal
conversion for hyperthermic tumor ablation [63]. Development of self-assembling pH-
sensitive charge-transfer nanocomplexes by 3,3′,5,5′-tetramethylbenzidine within the NIR-II
window has shown good contrast up to 5 cm and can be further investigated for NIR-II
PA contrast agents [64]. Similarly, Pu et al. [65] used the electronic and optical properties
of semiconducting oligomers and BODIPY dyes. The former acted as a PA matrix and the
latter acted as PA signal enhancer and pH indicator for improved ratiometric response and
increased pH sensitivity. Another study used oligomerization to its advantage for PA signal
modulation based on intramolecular interactions [66]. Recent reviews summarizing studies
on organic contrast agents and their future trends demonstrate a greater shift towards
contrast agents in the NIR-II window [33,67]. Further studies were detailed in Table 3 with
additional studies found in [68–91].
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Table 3. Classification and Summary of Tumor-Targeting In Vivo Studies for PAI Organic Nanoparticles/ Nanosystems Contrast Agents.

Classification Material Used Imaging
Modalities Application Studies Conducted Relevant Measured

Parameters Transducer Used Computational
Techniques

Publication
Year/Reference

Semiconducting
Polymer

poly{3-(5-(9-hexyl9-
octyl-9H-fluoren-2-

yl)thiophen-2-yl)-2,5-
bis(2-hexyldecyl)-6-

(thiophen-2-yl)pyrrolo
[3,4-c]pyrrole-

1,4(2H,5H)-dione}
(PDPPF, SP0) with SP5

and SP10 (self-quenching
SPs)

PAI
Imaging of breast

cancer and cervical
cancer tumors

HeLa cervical
adenocarcinoma

epithelial cells for
In vitro; In vivo and
ex vivo on 4T1 breast

cancer tumor in
mice/mice organs

Maximum PA signal
of SP10 at 4h for both
SP10-RGD and SP10

with slower
clearance rate for

SP10-RGD and 1.78
fold higher PA

intensity for
SP10-RGD as well

LAZR instrument
(Visualsonics, 2100

High-Resolution
Imaging System)

- 2017 [92]

Derived from natural
resources

DPAHB nanovesicles
(hypocrellin B (HB)

modified with
1,2-diamino-2-methyl

propane encapsulated by
PLGA-PEG)

PAI,
fluorescence,

photodynamic
and

photothermal
therapy

Imaging of 4T1
breast cancer tumors

In vitro and in vivo
PAI.

High-intensity
signals and

enhanced spatial
resolution was
achieved using

DPAHB nanovesicles.
PA signal intensity
attained maximum
peak at 12 h after

injection of
nanovesicles.

MSOT inVision 128
PAT system 2018 [93]

Other 2018 [51]
2017 [52,54] 2015 [53]

Carbon nanodots Nitrogen-Doped Carbon
Nanodots PAI

Imaging of sentinel
lymph node to detect

metastatic cancer

In vivo and ex vivo
mapping of sentinel
lymph node, in vivo
PAI of the bladder.

Post injecting
N-CNDs PA signal

reached a peak at 30
min, and the signal

kept decreasing until
180 min. Results

show that the
contrast agent was
circulating in the
lymphatic system

before being
degraded.

Ultrasound
transducer with

spherical focusing
and having a 5-MHz

central frequency,
Acoustic-resolution
reflection-mode PA

imaging system

Raster scanning to
acquire PA images 2016 [94]
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Table 3. Cont.

Classification Material Used Imaging
Modalities Application Studies Conducted Relevant Measured

Parameters Transducer Used Computational
Techniques

Publication
Year/Reference

Organic small
molecule

Diradicaloid molecular
(DRM) structure PAI and PTT Imaging of A549

lung cancer
PAI-guided PTT

in vitro and in vivo

The average PA
signal of tumors
excised from the

mice injected with
DRM NPs is over 4
times higher than

that from the control
group

Vevo LAZR-X
imaging equipment

DFT calculations of
optimized

geometries of the
DRM in the ground
and excited states

2021 [95]

Mitochondria-
targeted BODIPY

NPs

BODIPY NPs with a
cationic

triphenylphosphine
(TPP) group

(Mito-BDP1–5 NPs)
bearing different lengths
of ethylene glycol (0–4

units), along with
HO-BDP5 without a
cationic TPP group

PAI and PTI
Imaging of

mitochondria in
HeLa cells

In vitro
mitochondrial

imaging, and in vivo
PTI and PAI

Mito-BDP5
possessed high
photothermal

conversion efficiency
(η) of 76.6%, and was
able to accumulate in

the tumor sites
through the EPR

effect, subsequently
strong PT and PA

signals can be
observed in tumor

sites.

PAI was conducted
on a PA computed-

tomography system
equipped with a 10
MHz, 10 mJ cm−2,
384-element ring
ultrasound array,

and a tunable pulsed
laser

- 2021 [96]

Carbon nanohorns
carbon nanohorn-
polyglycerol-gold

(CNH-PG-Au) NPs
PAI and x-ray

Imaging of 4T1
mouse breast cancer

cells

In vivo PAI of tumor
treatment using

DOX@CNH-PG-Au

The photoacoustic
intensity of the

tumor site increased
gradually and

reached a maximum
48 h post-injection

(735 ± 47),
indicating that

DOX@CNH-PG-Au
NPs steadily

accumulated in the
tumor during this

period

MSOT inVision 256
PAI systems - 2021 [97]

Laponite (LAP)
nanoplatforms

polydopamine (PDA)
coated LAP

nanoplatforms modified
with polyethylene glycol-
arginine-glycine-aspartic

acid (PEG-RGD)

PAI
Imaging of 4T1

mouse breast cancer
cells

In vitro and in vivo
PAI-guided chemo-

phototherapy of
cancer cells

NPs showed an
increased PA signal
at tumor sites after

injection, and the PA
signal peaked at 2 h

post-injection.

Vevo LAZR PAI
system equipped

with an 875 nm laser
- 2021 [98]



Nanomaterials 2022, 12, 393 9 of 24

2.3. Metal/Inorganic Contrast Agents

Metals such as gold and silver significantly enhance contrast in PAI as their optical
absorbance is based on surface plasmon resonance (SPR). Therefore, these structures exhibit
higher absorbance than other optical agents such as dyes [26]. Metallic agents can also serve
as contrast agents in multiple imaging modalities, and so can inorganic nanoparticles. There
is increasing interest in using inorganic contrast agents as desirable properties such as tun-
able peaks in the NIR regions, better brightness, superior photostability, and magnetic and
optical scattering and absorption, along with luminescence, renders them useful for multi-
modal imaging purposes [99]. Ma et al. [14] also synthesized a biocompatible nanosystem
that conjugated PEGylated gold nanorods to oligopeptides PT6 and PT7, termed PGNR-PT6
and PGNR-PT7, respectively. These actively targeted nanosystems exhibited an absorbance
peak at 810 nm and a high specificity towards osteosarcoma in UMR-106 tumor-bearing
mice. Furthermore, a remarkable 2.6- and 3.4-fold contrast from PGNR-PT6 and PGNR-PT7,
respectively, was found compared to a PBS-administered control group. Due to the reasons
mentioned above and their low cytotoxicity, these nanorods have a strong potential for
osteosarcoma-PAI applications. Another study conducted by Li et al. [15] incorporated a
liquid perfluorocarbon (perfluorinated hexane/PFH), used as a contrast agent in cancer
biomedicine, and gold nanorods, used in PAI due to its strong light absorption in the NIR
window, with the nanoemulsion encapsulated in a poly(lactide-co-glycolide) (PLGA) shell.
This highly biocompatible shell was then conjugated to a monoclonal MAGE-1 antibody
to target melanoma cancer therapy specifically by binding to melanoma antigens. This
nanosystem (MAGE-Au-PFH-NP) can be used in dual-modality contrast agents for PA and
US imaging. With an encapsulation efficiency of 70.61%, the MAGE-Au-PFH-NPs showed
an enhanced PA signal and a linear increase in absorption intensity and concentration.
In vivo experiments using melanoma-bearing mice demonstrated peak PA signals after
2 h of injection and a liquid-gas phase transformation after laser irradiation to form mi-
crobubbles, functioning as efficient US contrast agents, with a final temperature increase to
70 ◦C (of the gold nanorods), leading to a PFH phase change. The US signals reached peak
values 10 min after laser irradiation and therefore, this nanosystem is a suitable contrast
and treatment agent for melanomas. While gold-based contrast agents are a popular choice
in PAs, it has several drawbacks, including photoinstability and difficulty in synthesis at
the nanoscale [100].

Due to the high optical absorption coefficient of blood in the NIR window, researchers
explored the use of magnetic nanoparticles (MNPs) as PA contrast agents, where the
magnets’ motion directly influences signal intensity, leading to high contrast images with
suppressed images background signals [100,101]. Chau et al. [102] reviewed magnetic
molecular imaging and targeting for carbon nanomaterials. They reported that prior to
2015, researchers were functionalizing carbon nanotubes, plated with gold, with proteins
for targeting and iron oxide cores for magnetic manipulation. Yang et al. [103] employed
the magnetic properties of metals for the trimodal imaging (PET/MRI/PAI) of tumor tissue.
Apoferritin, an unloaded natural iron protein with a cage-like structure and transferrin
receptor 1 (TfR1) targeting ability, was loaded with melanin nanoparticles (AMF), 64Cu2+
and Fe3+ to image HT29, high TfR1 expression, and HepG2, low TfR1 expression, in
tumor-bearing mice. Not only were AMF NPs found to be well suited to the PET and
MRI imaging modalities, but the PA signal was twice that of the controls used in the HT29
mice model. Due to the low TfR1 expression in the HEPG2 mice models, there was no
obvious contrast observed. To enable the clinical translation of MNPs to the field of PAI
Li et al. [100] not only synthesized a MNP with a functionalized folic acid PEGylated
polypyrrole (PPy) shell by polymerizing PPy on the MNP surface to target cervical tumors
in a mouse model, but also developed a second-generation magento-motive PAI (mmPAI)
system to reduce background noise produced from static and moving tissue incorporating
cyclic magnetic motion and US speckle tracking (see Figure 4). A major point of interest
in this study was that since conventional PAI cannot easily distinguish a tumor unless
there is already prior knowledge of the tumor location, mmPAI was employed to improve
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the contrast by two orders of magnitude compared to conventional PA images. This
imaging technique can detect 100 to 100,000 tumor cells, whereas current technology
has the ability to detect tumor sizes in the mm3 to cm3 range [100]. Other groups such
as Wu et al. [104] and Chang et al. [105] have also utilized the magnetic properties of
metals, gadolinium/bismuth, and manganese tungsten oxide, respectively, to provide
simultaneous multimodal imaging and therapy for oncological purposes (see Table 2).
Additionally, studies using low-frequency range PAI to track metallic nanoparticles and
their aggregates, in this case, silver nanoparticles and zinc oxide, are available and can be
further used to monitor individual scattering and absorption, specifically in the presence of
multiple contrast agents [106,107].
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tion and speckle tracking (b) Distinctive displacement motion using magnetic fields created with
synthesized magnetic nanoparticles within targeted tissue to eliminate PA background signal from
non-ROI tissue [100].

The advent of theranostics, the combination of diagnostics and therapeutics, led to the
development of several nanoparticles that functioned both as multimodal imaging agents
and had a therapeutic function. Hence, novel nanosystems, based on previously well-
researched agents, were resynthesized, incorporating desirable characteristics to produce
optimal nanosystems suitable for theranostics. Challenges such as complex synthesis routes,
decreased biocompatibility, and high instability became an issue [108]. Gold nanoparti-
cles, among the most widely researched and promising exogenous contrast agents [109],
were synthesized as gold nanoclusters with strands of polyallylamine and their surface-
functionalized with bovine serum albumin (BSA) to serve as diagnostic in vivo PA contrast
agents as well as hyperthermic-anticancer agents—for 4T1 tumor-bearing mice [110]. A
study using ultra-small Cu2ZnSnS4 (CZTS) nanocrystals functionalized with BSA combined
the high NIR photothermal ability of the crystals to simultaneous provide photothermal
therapy (PTT), along with dual PA/MRI for in vivo H22 liver tumor-bearing mice where
the accumulation of the nanosystem and therefore, the signal intensity was found adequate
for image-guided tumor therapy [108]. Antimony (Sb) was mentioned by Li et al. [111] as a
potential contrast agent in the field of PAI, and it was further researched by Hou et al. [112]
by preparing an oleylamine coated Copper-Antimony- Sulfur (Cu-Sb-S) nanoparticle func-
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tionalized with poly(vinylpyrrolidone) (PVP) to act as a PA contrast agent and for use in
PTT/photodynamic therapy (PDT). Hong et al. [113] demonstrated that PEGylated melanin
dots loaded with gadolinium could serve as effective tumor contrast agents in MRI, and later
the same group investigated this agent in vivo [114]. Additional studies were conducted
in [75–77,79,110,115–122] (2018), [114,123–126] (2017), [127–133] (2016), [111,134–136] (2015)
with further detailed studies summarized and classified in Table 4. In addition, Figure 5
depicts an example of the role contrast agents play in indicating tumor sites.
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2.4. Dye-Based Contrast Agents

Studies have shown the ability of some exogenous dyes to absorb NIR light and
produce high-intensity PA signals leading to enhanced image contrast [74,115,137,138]
(2018); [85,139–141] (2017); [142–147] (2016); [80,88,148–153] (2015). One of the most com-
monly used dyes is indocyanine green (ICG) that is FDA approved. ICG is typically used
in combination with other materials to attain a maximum PA signal. G. Wang et al. [142]
used a nanocomplex consisting of hyaluronic acid and ICG enclosed within a nanotube
of carbon to detect squamous cell carcinoma in mice. J. Chen et al. [143] detected Hela
xenografts in mice using contrast agents made of ICG, polyethylene and nano-graphene
oxide. The results showed that the composite could target the tumor passively and had
a prolonged circulation time. Gao et al. [144] combined ICG with superparamagetic iron
oxide for the in vivo detection of tumor imaging brain vasculature. In addition to ICG,
other dyes such as NIR dyes (IR-825) [85,148], the black hole quencher (BHQ) dye [139],
and DiR fluorescent dyes [145] have been used extensively for PAI. A detailed description
of dye-based contrast agents and their application are listed in Table 5.
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Table 4. Classification and Summary of Tumor-Targeting In Vivo Studies for PAI Metal-based/ Inorganic Contrast Agents.

Classification Material Used Imaging Modalities Application Studies Conducted Relevant Measured
Parameters Transducer Used Computational

Techniques
Publication

Year/Reference

Gold nanorods
(AuNR)-based

AuNR PAI
Imaging of lymph
vessels/nodes in

breast cancer tumors

Phantom using PTFE
tubes; in vivo on

mice

Attenuation
coefficient:
−1.90 dB/mm

380 times as
compared ICG

Concave
poly(vinylidene fluo-
ride/trifluoroethylene)

(P(VDF-TrFE)) US
transducer

Delay-and-sum
(DAS) beamforming

method
2018 [154]

89Zr-labeled
bGNR@MSN(DOX)-

PEG (Zirconium
labeled PEGylated

gold nanorods, GNR,
coated with

mesoporous silica
nanoshell)

PAI, PET, PTT and
chemotherapy

Imaging of 4T1
breast cancer tumors

In vitro and in vivo
on mice

NP diameter:
135.9 nm; 4.7 fold

stronger signal from
PAI 24 h

post-injection as
compared to
pre-injection

VEVO LAZR PA
imaging system - 2018 [155]

AuNR coated with
CTAB. PAI, US Imaging of tumor

metastases in mice

In vivo
EGFR-targeted PAI

of lymph node
metastases and

tumor mass

Enhanced PA signal
observed after 24 h
in lymph node with

metastases
post-injection of gold

nanorods.

LZ-550 linear array
transducer, Vevo

2100 LAZR
high-frequency US

and PA imaging
system.

- 2016 [127]

Gold nanoparticles PAI, US
Imaging of

micro-metastases in
lymph nodes

In vivo imaging of
lymph node.

High spatial
resolution images of

micro-metastases
(50 µm) were

obtained after 2 h of
peritumoral

injection.

LZ-550 linear array
transducer, Vevo

LAZR
high-frequency US

and PA imaging
system.

Spectral unmixing,
sPA imaging
algorithm to

differentiate several
optical absorbers.

2014 [156]

Furin-cleavable
RVRR

(Arg-Val-Arg-Arg)
peptides (Au-RRVR

NPs)

PAI, PTT
Imaging HCT 116

colorectal
carcinomas

In vitro and in vivo
imaging of tumors

The PA signal
reached an intensity

maximum of
approximately 8 h

post-injection with a
1.6-fold

enhancement
compared to the

initial background.

A multispectral
optoacoustic

tomography scanner
with excitation light

of 680–900 nm

Maynard operation
sequence technique

(MOST)
measurement

2021 [157]
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Table 4. Cont.

Classification Material Used Imaging Modalities Application Studies Conducted Relevant Measured
Parameters Transducer Used Computational

Techniques
Publication

Year/Reference

Gadolinium-
/bismuth-based

Gd-PEG-Bi NPs
(hydrophobic

dodecanethiol-Bi
nanoparticles, for CT

and PA contrast,
coated in

gadolinium, for MRI,
and PEG)

PAI, CT, MRI and for
PTT

Imaging of C6 glial
tumors

In vitro and in vivo
on mice; hemolysis
assay and in vivo

blood clearance and
bio-distribution

NP diameter: 45 nm;
Strong PA signals at
low concentrations

of 0.625 mg/mL and
after 30 min;

Strongest PA signal
at 3 h and blood
half-life at 4.69 h;

High biosafety and
NIR absorption

coefficient

Endra Nexus 128 PA
imaging system - 2018 [104]

Manganese-based

GO/MnWO4/PEG/DOX
(Graphene-oxide,
GO, grown in situ
onto manganese

tungsten oxide in the
presence of PEG and

loaded with
doxorubicin)

PAI, MRI, PTT and
chemotherapy

Imaging of breast
cancer tumors (4T1
mouse mammary

carcinoma)

In vitro and in vivo
on mice; PTT,

chemotherapy and
cytotoxicity

Maximum PA signal
observed at tumor

region 6 h
post-injection

in vivo; however, the
signal was

maintained at
1.4 times that of

pre-injection at 24 h.
Little to no
cytotoxicity

observed

MOST inVision128,
iThera Medical - 2018 [105]

Iron oxide-based Magnetic iron oxide
nanoparticles Molecular PAT Imaging of 4T1

breast cancer tumors

In vivo molecular
photoacoustic
tomography of

breast cancer in mice

Post injection of
contrast agents PA

signal increased
3 times after 5 min
and 10 times after

24 h.

Focused-ultrasound
transducer operating

at 50 MHz and 3.5
MHz

Raster scanning to
acquire PA images,
Hilbert transform

was used to process
acquired signals.

2014 [158]

Copper(II) sulfide
nanoparticles (CuS)

Copper(II) chloride,
sodium sulfide,

methoxy-PEG-thiol
to form polyethylene
glycol (PEG)-coated

copper(II) sulfide
nanoparticles

PAT Imaging of 4T1
breast cancer tumors

In vivo PAT of blood
vasculature of 4T1

breast cancer in
mouse

After 2 h and 5 min
of injecting contrast
agent, PA signal had
maximum intensity

and minute details of
blood vessels at
tumor site were

shown with great
clarity.

- - 2014 [159]
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Table 5. Classification and Summary of Tumor-Targeting In Vivo Studies for PAI Dye-based Contrast Agents.

Classification Material Used Imaging Modalities Application Studies Conducted Relevant Measured
Parameters Transducer Used Computational

Techniques
Publication

Year/Reference

ICG-based

ICG PAI
Imaging of lymph
vessels/nodes in

breast cancer tumors

Phantom using PTFE
tubes; in vivo on

mice

Attenuation
coefficient:
−1.90 dB/mm

Concave
poly(vinylidenefluoride/

trifluoroethylene)
(P(VDF-TrFE)) US

transducer

Delay-and-sum
(DAS) beamforming

method
2018 [154]

ICG-cRGD PAI

Imaging of human
glioblastoma

(U-87MG, high αvβ3
expression) and

epidermoid
carcinoma (A431,

low αvβ3
expression)

In vitro and in vivo
on mice; followed by

ex vivo of mice
organs

Signal: plateaued
after 30–60 min for
ICG-RGD in U-87
MG and sustained

for 24 h
post-injection;

25 times greater for
U-97MG than for

A431

Vevo LAZR LZ250
PA imaging system Spectral unmixing 2018 [17]

SDF-
1/ICG/PFH/DOX

PLGA NPs
(PLGA shells

encapsulating PFH,
Doxorubicin and

ICG and conjugated
to chemokine SDF-1)

PAI, PTT and
chemotherapy

Imaging of
metastatic lymph
nodes in tongue
squamous cell

carcinoma

In vitro and in vivo
on rabbits

Signal: plateaued at
1 h and was

sustained for 24 h
post-injection; higher

signal intensity for
targeted groups than

for non-targeted
control

VEVO LAZR PA
imaging system - 2019 [160]

Sodium hyaluronic
acid,

Ethylenediamine,
ICG, single-walled
carbon nanotubes

PAI In vivo Imaging of
SCC7 Tumor in mice

In vivo and ex vivo
on mice

PA signal was not
clear with the

injection of free ICG.
ICG combined with

hyaluronic acid
nanoparticles in

SWCNT
encapsulation

provided strong
signals. Image

contrast decreased
after 48 h of injecting

IHANPT.

Endra Nexus128
imaging system - 2016 [89]
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Table 5. Cont.

Classification Material Used Imaging Modalities Application Studies Conducted Relevant Measured
Parameters Transducer Used Computational

Techniques
Publication

Year/Reference

ICG, polyethylene
glycol, reduced
Nano-graphene
oxide composite

PAI, Fluorescence
imaging

In vivo imaging of
Hela tumor (cervical
carcinoma) models

in mice

PAI of Phantoms, In
Vivo PAI, In Vivo

Toxicity Assessment

Nanocomposite
produced minimal

toxicity. Blood
circulation time was

6 h. PAI showed
accumulation and

distribution of
injected contrast

agents at the tumor
site.

Olympus focused
ultrasound

transducer with a
central frequency of

10 MHz.
Acoustic-resolution

photoacoustic
microscopy system

- 2016 [149]

Squaraine dye
nanoprobe

squaraine dye SQ1
constructed from

ethyl-grafted
1,8-naphtholactam

and square acid in a
donor-acceptor-

donor
structure

PAI, fluorescence
imaging and PTT

PAI of breast cancer
cells (MDA-MB-231

and MCF-7)

In vitro and in vivo
imaging

SQ1nanoprobe
performed well in

both PA imaging and
PTT of solid tumors.

PA images and
corresponding PA

intensities at 930 nm
were obtained by a

PA microscopy
system

- 2020 [161]
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2.5. Biosensors and Nanoprobes for In Vivo Tumor Studies

Since sensitivity and selectivity are vital for the early detection of cancer metastases,
researchers have developed probes that react with molecules that have major functional
roles in pathology—mainly in tumor growth. Such materials have been developed for other
imaging modalities such as fluorescence imaging [162], PET, MRI, computed tomography
(CT), and echography [163] and tested in vivo on tumor-bearing mice. PAI nanoprobes can
detect cancer-associated growth on a molecular level and help clinicians administer precise
dosage amounts to cancer patients, thus decreasing the adverse side effects of conventional
chemotherapy. One such probe was developed by Wang et al. [78], where elevated nitric
oxide levels, a characteristic of tumor sites, would lead to a linear increase in PA signal
based on concentration levels. This probe was composed of benzothiadiazole conjugated
to diphenylamine on both ends in a donor-acceptor-donor conformation. Chen et al. [146]
used a novel approach to synthesize a pH-sensitive probe that performed the dual action
of changing the PA signal intensity based on pH in the microenvironment, with increased
signal in acidic environments, as well as performing photothermal action by self-assembly
of human serum albumin and croconine-dye nanoparticles to eliminate tumor cells. The
same research group used this probe to detect changes in tumor acidity by developing
a metal, calcium ion and organic ligand, dicarboxylic cisplatin prodrug, nanoparticles
covered with poly-l-histidine-PEG (pHis-PEG) to oxidize H2O2 and thus, perform dual-
cancer therapy and real-time in vivo imaging [164].

There are a limited number of studies in the biosensor field, including PAI. This
could be attributed to the tedious process of validating biosensors to determine whether
they are clinically applicable and safe for use [165]. Since the interaction between the
probe molecule and the target molecule should be highly selective, i.e., it should not
respond adversely to other components in vivo, specifically, if other benign diseases exhibit
increased concentrations of the target molecule. The reproducibility and commercialization
of these biosensors might contribute to this comparatively unexplored field of probe and
biosensor in cancer research. Figure 6 presents a summary of the studies conducted using
different types of PAI contrast agents over the past four years.
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3. Conclusions, Challenges and Future Directions

PAI is a promising modality for real-time imaging which can be developed by com-
bining the properties of exogenous contrast agents such as metallic, carbon-based, semi-
metallic, polymer-based nanomaterials and dyes. This review follows and categorizes the
development of exogenous contrast agents for in vivo imaging, specifically tumor imaging.
Different strategies have been exploited to enhance the PA signal, including incorporating
moieties, inducing the plasmon coupling effect, coupling different classes of nanomaterials
and dyes, forming stimuli-responsive nanoagents, magnetic and photo-induced electron
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transfer for background signal reduction, and self-assembly of materials. Other techniques
include improving imaging systems for the synchronized detection of PA signals [166].

The field of optoacoustics/PA has vast implications for clinical translation, with one
of the first studies for intraoperative breast cancer surgeries revealing successful tumor
margin identification and identification of the biochemical contents. The current state-
of-the-art in tumor margin definition is histological analysis, which requires the removal
of the tumor and a 24-h period for analysis. The development of PAI implies that the
clinical need for fast and real-time processing can finally be met in oncology. With regards
to image characteristics, this study showed that PAI used a scan time of 20 min along
with satisfactory penetration depths and high-resolution images compared to fluorescence,
Raman spectroscopy, and diffuse reflection imaging [167]. Numerous studies revealed
promising results [168]; however, extensive cohort studies are still needed before PAI can
be used as a state-of-the-art imaging modality in oncology with a future trend towards
NIR-II contrast agent development. Future studies may focus on developing more efficient
stimuli-responsive agents that track shifts in absorptions peaks based on changes in the
tumor microenvironment, while evaluating its toxicity, biocompatibility, biodegradability,
and photostability.
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