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Abstract: Culinary herbs and spices are widely used as a traditional medicine in the treatment of
diabetes and its complications, and there are several scientific studies in the literature supporting
the use of these medicinal plants. However, there is often a lack of knowledge on the bioactive
compounds of these herbs and spices and their mechanisms of action. The aim of this study was
to use inverse virtual screening to provide insights into the bioactive compounds of common
herbs and spices, and their potential molecular mechanisms of action in the treatment of diabetes.
In this study, a library of over 2300 compounds derived from 30 common herbs and spices were
screened in silico with the DIA-DB web server against 18 known diabetes drug targets. Over 900
compounds from the herbs and spices library were observed to have potential anti-diabetic activity
and liquorice, hops, fennel, rosemary, and fenugreek were observed to be particularly enriched
with potential anti-diabetic compounds. A large percentage of the compounds were observed to be
potential polypharmacological agents regulating three or more anti-diabetic drug targets and included
compounds such as achillin B from yarrow, asparasaponin I from fenugreek, bisdemethoxycurcumin
from turmeric, carlinoside from lemongrass, cinnamtannin B1 from cinnamon, crocin from saffron
and glabridin from liquorice. The major targets identified for the herbs and spices compounds were
dipeptidyl peptidase-4 (DPP4), intestinal maltase-glucoamylase (MGAM), liver receptor homolog-1
(NR5A2), pancreatic alpha-amylase (AM2A), peroxisome proliferator-activated receptor alpha
(PPARA), protein tyrosine phosphatase non-receptor type 9 (PTPN9), and retinol binding protein-4
(RBP4) with over 250 compounds observed to be potential inhibitors of these particular protein
targets. Only bay leaves, liquorice and thyme were found to contain compounds that could potentially
regulate all 18 protein targets followed by black pepper, cumin, dill, hops and marjoram with 17
protein targets. In most cases more than one compound within a given plant could potentially regulate
a particular protein target. It was observed that through this multi-compound-multi target regulation
of these specific protein targets that the major anti-diabetic effects of reduced hyperglycemia and
hyperlipidemia of the herbs and spices could be explained. The results of this study, taken together
with the known scientific literature, indicated that the anti-diabetic potential of common culinary
herbs and spices was the result of the collective action of more than one bioactive compound regulating
and restoring several dysregulated and interconnected diabetic biological processes.
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1. Introduction

Diabetes is a chronic disease characterized by an insulin deficiency and/or insulin insensitivity,
and was the seventh leading cause of death in 2016 [1–4]. It is a multi-organ disease affecting the
pancreas, liver, muscles, kidney, and central nervous system and several complications such as
hypertension, stroke, blindness, and kidney disease are associated with diabetes [5,6]. The main type
of treatment for diabetes and controlling the associated hyperglycemia is in the form of insulin that
primarily focuses on lowering and maintaining blood glucose levels [5]. However, insulin treatment is
rather expensive and a somewhat invasive treatment strategy. In more recent years, since diabetes is a
multifaceted disease, there has been an increase in the development of specific protein-targeted drugs,
and specific inhibitors for targets like alpha-glucosidase, dipeptidyl peptidase-4 (DPP4), glucagon-like
peptide-1 (GLP-1) receptor, and sodium-glucose co-transporter-2 (SGLT2) have been approved [6].
Unfortunately, some of these approved drugs have been met with several adverse effects [6]. As a
better understanding of the pathogenesis and complexity in treating the disease arises, so too must the
need for the development of more effective and safer drugs to treat the disease.

There is widespread traditional use in several cultures of decoctions prepared from medicinal
plants in the treatment of diabetes [7–11]. In Chinese medicine, the belief is to use a more holistic
approach that not only focuses on the treatment of the associated hyperglycemia but also on the
associated diabetic complications [11]. Various reviews on medicinal plants effective in the treatment
of diabetes can be found in the literature. Li et al 2004 reviewed 82 natural plant medicines used
in Chinese traditional medicine for treating diabetes and included Radix puerariae, Radix ginseng,
Rhizoma anemarrhenae, a mixture of the fruits, leaves and root epidermis of Morus alba, a mixture of
Radix paeoniae and Radix paeoniae alba, Allii sativi bulbus, and Gymnema sylvestre [11]. These plants
were found to contain more than one bioactive compound that besides improving blood glucose
levels also improved the associated hyperlipidemia, improved insulin secretion, exerted antioxidant
effects, improved renal function, and also treated diabetic retinopathy and neuropathy. Harlev et al.
(2013) reviewed 22 desert and semi-desert plants commonly used in Bedouin ethnic medicine for
the treatment of diabetes and included Artemisia herba-alba, Teucrium polium, Ziziphus spina-christi,
Larrea tridentate, and Balanites aegyptica [12]. Compounds such as apigenin, cirsimaritin, christinin-A,
nordihydroguaiaretic acid, isorhamnetin, and isorhamnetin-3-O-rutinoside were identified from these
plants as having anti-diabetic properties. A review by Moradi et al. (2018) lists various medicinal
plants found throughout the world that are effective in the treatment of diabetes and includes Trigonella
foenum-graecum (India), Ferula assafoetida (Iran and Afghanistan), Bauhinia forficate (Argentina, Brazil and
Peru), Combretum micranthum (Africa), Liriope spicata (East Asia and China), Symplocos coccinea (Mexico),
as well as Coccinia indica, Allium sativum, and Aloe vera. Burm that are found distributed worldwide [13].
The biochemical mechanisms for the anti-diabetic activity of these plants identified included the
stimulation of insulin secretion from pancreatic B-cells, inhibition of intestinal glucose digestion,
and absorption as well as the regulation of enzymes such as lipoprotein lipase, glucose-6-phosphatase,
lactate dehydrogenase, and aldose reductase.

Plant secondary metabolites such as the flavonoids, terpenoids, alkaloids and polysaccharides
that are found widespread in medicinal plants have been extensively studied for their anti-diabetic
activity [14–17]. The flavonoids like quercetin, myricetin, kaempferol, and genistein have been found
to protect pancreatic B-cells from damage, stimulate insulin secretion from B-cells, promote glucose
uptake by the peripheral tissues, inhibit alpha-glucosidase and alpha-amylase, as well as promote
glycogenesis [14]. Flavonoids have also been shown to have beneficial effects against diabetic
complications such as diabetes-related cardiovascular disease, diabetic neuropathy, and retinopathy.
Similarly, the terpenoids oleanolic acid, corosolic acid, betulinic acid, glycyrrhetinic acid, and gymnemic
acid; the alkaloids berberine, catharanthine, vindoline, cryptolepine and trigonelline as well as
polysaccharides isolated from tea, mulberry, ginseng, pumpkin, peach-gum, and guava have shown a
diverse range of anti-diabetic effects in vitro and in vivo [15–17].
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Herbs and spices are widely used in our daily lives as important seasonings and flavorings for
our food. They are also commonly used for their health benefit properties such as antioxidant,
anti-inflammatory, anticancer, anti-diabetic, antimicrobial, neuroprotective, and cardiovascular
effects [18–23]. They represent attractive therapeutics interventions as they are complex mixtures of
diverse compounds that can potentially and cooperatively modulate the activity of several dysregulated
and interconnected disease targets. They are also widely available and are fairly inexpensive, with the
exception of perhaps saffron. Although several studies can be found on the anti-diabetic activity of
some of herbs and spices and in certain cases extensive scientific evaluations have been conducted,
for the majority however, there is still a lack of scientific knowledge. The aim of this study was to
provide insights into the bioactive compounds of these plants, as well as their molecular anti-diabetic
mechanisms of action.

In silico virtual screening methodologies are ideal for exploratory evaluations of the potential
anti-diabetic activity of medicinal plants. As plants are complex mixtures of several different
compounds, with in silico virtual screening methods, hundreds of compounds can be screened
against multiple diabetes targets rapidly and cost effectively. This strategy has been employed to
identify anti-cancer, anti-stroke, and anti-Alzheimer’s compounds from traditional Chinese medicines
as well as their potential mechanisms of action [24–26]. In this study, we have implemented similar in
silico methodologies to evaluate the anti-diabetic activity of 30 common herbs and spices.

2. Results and Discussion

2.1. Literature Review

The anti-diabetic activity of some common herbs and spices were evaluated in this study with
inverse virtual screening against 18 anti-diabetic drug targets with the DIA-DB web server. The aim
of this study was to identify the bioactive compounds of these plants and provide insights into their
molecular anti-diabetic mechanisms. Several studies can be found on the anti-diabetic activity of
some of these herbs and spices, and the significant studies are summarized in Table 1 for in vivo and
in vitro studies.

The primary in vivo model identified for studying the anti-diabetic activity of these plant extracts
was either streptozotocin-induced or alloxan-induced diabetic rats. Aniseed [32], bay leaves [44,45,210],
cardamom [211], cinnamon [66,211], cumin [212,213], dill [214], ginger [211], hops [118], rosemary [215],
saffron [211,216], sage [217,218], and turmeric [219] have also been evaluated in type 2 diabetic patients.
The major in vivo effects observed for the herbs and spices are a reduction in hyperglycemia and
hyperlipidemia. The hyperglycemia observed in diabetes is the result of pancreatic dysfunction and
insulin resistance, and is associated with unbalanced rates of glycogenolysis and gluconeogenesis
resulting in increased endogenous glucose production [220]. The reduction in hyperlipidemia was
observed as decreases in total cholesterol, low-density lipoprotein (LDL), very-low-density lipoprotein
(VLDL) and triglyceride levels with an increase in the high-density lipoprotein (HDL) levels. Diabetes
is characterized by low plasma HDL and high triglycerides, cholesterol, and LDL levels [221]. Increased
levels of LDL inhibit insulin secretion and induce pancreatic B-cell apoptosis, while an increase in HDL
protects against apoptosis and improves B-cell function, reduces plasma glucose and increases plasma
insulin. An accumulation of triglycerides in the liver, pancreas, and muscles is correlated with insulin
resistance and the cholesterol levels in adipocytes increase with increasing levels of triglycerides [222].
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Table 1. Literature review on the in vitro and in vivo anti-diabetic activity of various herbs and spices.

Plant Name Common Name Part Evaluated In Vitro Anti-Diabetic Effects In Vivo Anti-Diabetic Effects References

Pimenta Dioica Allspice Berries
Alpha-glucosidase and alpha-amylase
inhibitory, increased insulin-stimulated

glucose metabolism in adipocytes

Streptozotocin-induced diabetic
rats-improves antioxidant status [27–29]

Pimpinella anisum Aniseed Seeds Alpha-glucosidase, alpha-amylase, HMGR
and pancreatic lipase inhibitory activity

Diabetic patients-reduced hyperglycemia,
reduced hyperlipidemia, improved

antioxidant status
[30–32]

Ocimum basillicum Basil Leaves

Alpha-glucosidase, alpha-amylase, aldose
reductase, pancreatic lipase inhibitory
activity, increases insulin-stimulated

glucose metabolism in adipocytes, increase
GLUT4 translocation

Alloxan/streptozotocin-induced diabetic
rats-reduced hyperglycemia, reduced
hyperlipidemia, improved antioxidant
status, increased liver glycogen content,

improved liver function

[27,33–42]

Laurus nobilis Bay leaves Leaves
Alpha-glucosidase inhibitory activity;
increases insulin-stimulated glucose

metabolism in adipocytes

Type 2 diabetic patients-reduced
hyperglycemia, reduced hyperlipidemia [27,43–45]

Piper nigrum Black pepper Fruit and leaves

Alpha-glucosidase, alpha-amylase and
aldose reductase inhibitory activity,
increased glucose consumption by

adipocytes, induced
transactivation of PPARA

Alloxan/streptozotocin-induced diabetic
rats-reduced hyperglycemia, reduced

hyperlipidemia, increased serum insulin
levels, improved antioxidant status,

improved liver function

[40,42,46–54]

Carum carvi Caraway Fruit/seeds Induced transactivation of PPARA

Alloxan/streptozotocin-induced diabetic
rats-reduced hyperglycemia, reduced

hyperlipidemia, increased serum insulin
levels, improved antioxidant status

[49,55–59]

Elettaria cardamomum Cardamom Seeds and leaves No significant studies identified

Alloxan-induced diabetic rats-reduced
hyperglycemia, reduced hyperlipidemia,

decreased plasma insulin levels, improved
liver function

[60–63]

Cinnamomum verum Cinnamon Bark

Alpha-glucosidase, alpha-amylase, aldose
reductase inhibitory activity, increased

insulin-stimulated glucose metabolism in
adipocytes, increased expression and
translocation of GLUT4 and GLUT1,

induced transactivation of
PPARA and PPARG

Alloxan/streptozotocin-induced diabetic
rats-reduced hyperglycemia, reduced

hyperlipidemia, increased plasma insulin
levels, improved liver function, increased

GLP1 levels, increased pyruvate kinase
activity, decreased PEPCK activity

[27,42,60,64–69]
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Table 1. Cont.

Plant Name Common Name Part Evaluated In Vitro Anti-Diabetic Effects In Vivo Anti-Diabetic Effects References

Syzygium aromaticum Clove Flower buds

Alpha-glucosidase, alpha-amylase, PEPCK
and G6Pase inhibitory activity, increased
insulin-stimulated glucose metabolism in

adipocytes, induced
transactivation of PPARG

Streptozotocin-induced diabetic
rats-reduced hyperglycemia, reduced
hyperlipidemia, improved antioxidant

status, improved liver function, reduced
expression of GLUT2, SGLT1,

alpha-amylase and alpha-glucosidase in
rat small intestine, increased glycogen
content of liver and muscles, increased

activity of hexokinase in liver and muscle

[27,68–79]

Cuminum cyminum Cumin Seeds

Alpha-glucosidase, alpha-amylase, aldose
reductase inhibitory activity, induced
transactivation of PPARG, stimulated

glucose uptake in myotubes

Streptozotocin-induced diabetic
rats-reduced hyperglycemia, reduced

hyperlipidemia, reduced/ increased serum
insulin levels depending on model,

improved antioxidant status, increased
liver and skeletal muscle content

[42,70,80–85]

Anethum graveolens Dill Aerial parts and seeds No significant studies identified

Alloxan/streptozotocin-induced diabetic
rats-reduced hyperglycemia,

reduced hyperlipidemia,
improved antioxidant status

[86–89]

Foeniculum vulgare Fennel Seeds and leaves
Alpha-glucosidase, alpha-amylase, aldose

reductase inhibitory activity, increased
glucose consumption by adipocytes

Alloxan/streptozotocin-induced diabetic
rats-reduced hyperglycemia, reduced

hyperlipidemia, increased serum insulin
levels, improved antioxidant status,

improved liver function, increased liver
glycogen content, increased liver and

kidney hexokinase activity

[40,42,90–95]

Trigonella
foenum-graecum Fenugreek Seeds

Alpha-glucosidase, alpha-amylase, aldose
reductase, pancreatic lipase inhibitory

activity, induced transactivation of PPARG,
PPARD and PPARA

Alloxan/streptozotocin-induced diabetic
rats-reduced hyperglycemia, reduced

hyperlipidemia, increased serum insulin
levels, improved antioxidant status,

improved liver function, increased liver,
muscle and kidney glycogen content,
reduced activity of intestinal maltase,
sucrase and lactase, intestinal lipase,

alpha-amylase, glycogen phosphorylase
and G6Pase, increased activity of glycogen
synthase, hexokinase, PPARG, PPARA and

glucose-6-phosphate dehydrogenase

[42,69,96–106]
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Table 1. Cont.

Plant Name Common Name Part Evaluated In Vitro Anti-Diabetic Effects In Vivo Anti-Diabetic Effects References

Zingiber officinale Ginger Root

Alpha-glucosidase, alpha-amylase, aldose
reductase, pancreatic lipase inhibitory
activity, increased GLUT4, increased

glucose consumption by adipose tissues

Alloxan/streptozotocin-induced diabetic
rats-reduced hyperglycemia, reduced

hyperlipidemia, increased serum insulin
levels, improved liver function, increased

activity of liver glucokinase,
phosphofructokinase, and pyruvate kinase

[65,101,107–112]

Humulus lupulus Hops Cones and leaves

Alpha-glucosidase, alpha-amylase, aldose
reductase, pancreatic lipase inhibitory
activity, induced PPARG and PPARA
transactivation; induced FXR activity

Streptozotocin-induced diabetic
rats-reduced hyperglycemia, reduced

hyperlipidemia, increased hepatic
glycogen content, reduced expression of
hepatic GLUT2 and hepatic acetyl-CoA

carboxylase, increased hepatic FAS
expression. Diabetic KK-Ay mice-reduced
hyperglycemia, reduced hyperlipidemia,

increased expression of acyl-CoA oxidase,
fatty acid translocase, lipoprotein lipase

and PPARA, reduced expression of
SRE-BP1, FAS, AceCS, SCD-1, ACL,

PEPCK, G6Pase, and FBP1.

[113–120]

Melissa officinalis Lemon balm Leaves

Alpha-glucosidase, alpha-amylase,
pancreatic lipase inhibitory activity,

induced activation of PPARA, PPARD, and
PPARG, increased glucose consumption

through adipocytes, increased expression
of SREBP1, FABP4, fatty acid transport

protein 4, CD36 molecule, PDK4, LXRA,
lipogenic stearoyl CoA desaturase

Alloxan/streptozotocin-induced diabetic
rats-reduced hyperglycemia, reduced

hyperlipidemia, increased serum
insulin levels

[40,101,121–125]

Cymbopogon citratus Lemongrass Leaves Alpha-glucosidase, alpha-amylase, aldose
reductase inhibitory activity

Poloxamer-47-induced type 2 diabetic
rats-reduced hyperglycemia, reduced

hyperlipidemia, reduced serum insulin
levels and insulin resistance, improved

antioxidant status, increased
GLP1 expression

[126–130]
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Table 1. Cont.

Plant Name Common Name Part Evaluated In Vitro Anti-Diabetic Effects In Vivo Anti-Diabetic Effects References

Glycyrrhiza glabra Liquorice Root

Alpha-glucosidase, alpha-amylase, aldose
reductase, PTP1B inhibitory activity,

induced PPARG activation, increased
insulin-stimulated glucose uptake by

adipocytes, stimulated glucose-mediated
insulin secretion from pancreatic islet cells,

increased the expression of
PDX-1 and GCK

Streptozotocin-induced diabetic
rats-reduced hyperglycemia, reduced
hyperlipidemia, increased/decreased

serum insulin levels depending on model,
improved antioxidant status, improved
liver function, increased liver glycogen
content, increased expression of PPARG

and GLUT4 in muscles

[64,131–143]

Origanum marjorana Marjoram Leaves
Alpha-glucosidase, aldose reductase,

DPP4, PTP1B inhibitory activity, induced
activation of PPARA and PPARG;

Streptozotocin-induced diabetic
rats-reduced hyperglycemia, reduced
hyperlipidemia, increased/ decreased

serum insulin levels depending on model,
improved liver function, increased liver

glycogen content, increased expression of
adiponectin, lipoprotein lipase and PPARG

in adipose tissue, decreased
expression of leptin

[84,144–149]

Myristica fragrans Nutmeg Seed

Alpha-glucosidase, alpha-amylase, PTP1B
inhibitory activity, induced PPARG and

PPARA activation, increased expression of
lipoprotein lipase, FAS, aP2, IRS2, CEBPA,
GLUT4, CD36, CPT-1, PDK4, and acyl-CoA

oxidase, stimulated phosphorylation of
AMPK in myoblasts, stimulated the release

of insulin from islet cells, increased
phosphorylation of insulin receptor in

myeloid cells

Alloxan/streptozotocin-induced diabetic
rats-reduced hyperglycemia, reduced

hyperlipidemia, reduced serum insulin
levels, increased expression of CD36,

CPT-1, PDK4, acyl-CoA oxidase,
lipoprotein lipase, glycerol kinase in

adipose tissue, increased expression of
CPT-1, LPL, ACO and CYP4A in the liver

[49,81,150–156]

Origanum vulgare Oregano Leaves

Alpha-glucosidase, alpha-amylase, aldose
reductase, DPP4, PTP1B inhibitory activity,
induced activation of PPARG and PPARD;

stimulated insulin-dependent glucose
uptake in adipocytes

Alloxan/streptozotocin-induced diabetic
rats-reduced hyperglycemia, reduced

hyperlipidemia, increased serum insulin
levels, increased liver and muscle glycogen

content, reduced pancreatic
alpha-amylase activity

[102,121,144,157–161]

Capsicum annuum Paprika Fruits Alpha-glucosidase, alpha-amylase
inhibitory activity

Alloxan-induced diabetic rats-reduced
hyperglycemia, reduced hyperlipidemia [162–164]
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Table 1. Cont.

Plant Name Common Name Part Evaluated In Vitro Anti-Diabetic Effects In Vivo Anti-Diabetic Effects References

Petroselinum crispum Parsley Leaves No significant studies identified

Streptozotocin-induced diabetic
rats-reduced hyperglycemia, reduced

hyperlipidemia, increased serum insulin
levels, improved antioxidant status,

improved liver function, increased liver
and muscle glycogen content, increased

liver pyruvate kinase activity

[165–169]

Rosmarinus officinalis Rosemary Leaves

Alpha-glucosidase, alpha-amylase,
pancreatic lipase, DPP4, PTP1B inhibitory

activity, induced activation of PPARG,
increased glucose consumption by

adipocytes, increased AMPK
phosphorylation in liver cells; decreased

expression of G6Pase and acetyl-CoA
carboxylase B, increased expression of
low-density lipoprotein receptor, SIRT1

and PPARG-coactivator 1, promoted
GLUT4 translocation

Alloxan/streptozotocin-induced diabetic
rats-reduced hyperglycemia, reduced

hyperlipidemia, increased serum insulin
levels, improved antioxidant status,

improved liver function, reduced intestinal
glucosidase activity, modulated activity of

hexokinase, pyruvate kinase, G6Pase,
FBP1, and glycogen metabolism

[40,64,68,101,144,161,
170–177]

Crocus sativus Saffron Flower

Stimulated glucose uptake by skeletal
muscle cells, increased phosphorylation of

AMPK, increased GLUT4 translocation,
induced activation of PPARA

Alloxan/streptozotocin-induced diabetic
rats-reduced hyperglycemia, reduced

hyperlipidemia, increased serum insulin
levels, improved antioxidant status

improved liver, kidney and pancreatic
B-cell function

[178–184]

Salvia officinalis Sage Leaves

Alpha-glucosidase, alpha-amylase
inhibitory activity, induced activation of
PPARG, stimulated insulin-dependent

glucose uptake in adipocytes

Alloxan/streptozotocin-induced diabetic
rats-reduced hyperglycemia, reduced

hyperlipidemia, increased serum insulin
levels, improved liver and kidney function,

increased GLUT4 expression

[62,102,121,185–188]

Illicium verum Star anise Fruits and seeds Alpha-glucosidase inhibitory activity Streptozotocin-induced diabetic
rats-improved oral glucose tolerance test [152]

Thymus vulgaris Thyme Aerial parts

Alpha-glucosidase inhibitory activity,
induced activation of PPAR, stimulated

glucose uptake by
adipocytes and myotubes

Alloxan/streptozotocin-induced diabetic
rats-reduced hyperglycemia, reduced
hyperlipidemia, improved antioxidant

status, improved liver
and kidney functions

[102,189–193]
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Table 1. Cont.

Plant Name Common Name Part Evaluated In Vitro Anti-Diabetic Effects In Vivo Anti-Diabetic Effects References

Curcuma longa Turmeric Roots

Alpha-glucosidase, alpha-amylase, aldose
reductase inhibitory activity, induced

activation of PPARG, stimulated insulin
secretion from pancreatic cells, stimulated

glucose uptake in muscle tissue

Alloxan/streptozotocin-induced diabetic
rats/ KK-Ay diabetic mice-reduced

hyperglycemia, reduced hyperlipidemia,
increased in serum insulin levels,

improved antioxidant status, improved
liver function, increased activity of

cholesterol-7a-hydroxylase and
hepatic HMGR

[67,80,194–206]

Achillea millefolium Yarrow Aerial parts

Alpha-glucosidase inhibitory activity,
increased expression of PPARG and

GLUT4, stimulated insulin secretion by
pancreatic cells

Alloxan/streptozotocin-induced diabetic
rats-reduced hyperglycemia, reduced

hyperlipidemia, increased serum insulin
levels, improved liver and

pancreas function

[207–209]

AceCS: acetyl-CoA synthetase 2; ACO: 1-aminocyclopropane-1-carboxylic acid oxidase; ACL: adenosine triphosphate citrate lyase; AMPK: 5’ adenosine monophosphate-activated protein
kinase; CD36: cluster of differentiation 36; CEBPA: CCAAT/enhancer-binding protein alpha; CPT1: carnitine palmitoyltransferase-I; CYP4a: cytochrome P450 4A; DPP4: dipeptidyl
peptidase 4; FABP4: fatty acid binding protein 4; FAS: fatty acid synthase; FBP1: fructose-1,6-bisphosphatase; FXR: farnesoid X receptor; G6Pase: glucose-6-phosphatase; GCK: glucokinase;
GLP1: glucagon-like peptide 1; GLUT1/2/4: glucose transporter type 1/2/4; HMGR: 3-hyroxy-3-methyl-glutaryl-CoA reductase; IRS2: insulin receptor substrate 2; LPL: lipoprotein lipase;
LXRA: liver X receptor alpha; PDX1: insulin promoter factor 1; PDK4: pyruvate dehydrogenase lipoamide kinase isozyme 4; PEPCK: phosphoenolpyruvate carboxykinase; PPARA/D/G:
peroxisome proliferator-activated receptor alpha/delta/gamma; PTP1B: protein tyrosine phosphatase non-receptor type 1; SCD: stearoyl-CoA desaturase; SGLT1: sodium-glucose
co-transporter-1; SIRT1: sirtuin 1; SREBP1: sterol regulatory element-binding protein 1.
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With the effect on serum insulin levels, the type of model used namely type 1 or type 2 diabetic
model plays a role. This is particularly seen with cumin, liquorice, and marjoram that can increase or
decrease serum insulin levels depending on the insulin status of the control diabetic rat model. Type 1
diabetes is associated with an insulin deficiency while in type 2 diabetes normal insulin or raised insulin
levels are observed with significant insulin resistance [1–3]. Type 2 diabetes, however, may eventually
progress to an insulin deficient state following pancreatic B-cell dysfunction as a result of exhaustive
insulin production and secretion [2]. The herbs and spices observed to raise the serum insulin levels
and have possible benefits in the treatment of insulin-deficient diabetes were black pepper, caraway,
fennel, fenugreek, ginger, lemon balm, oregano, parsley, rosemary, saffron, sage, turmeric, and yarrow.
Cardamom, cinnamon, dill, lemongrass, and nutmeg were found to decrease serum insulin levels and
may be beneficial in the treatment of hyperinsulinemia type diabetes.

Some detailed studies exploring the in vivo anti-diabetic activity of some of the herbs and
spices can be seen in Table 1. This is true for cinnamon, clove, fenugreek, hops, liquorice, marjoram,
ginger, nutmeg, rosemary, and turmeric, where authors have evaluated the specific effects of these
extracts on the expression and activity of some anti-diabetic drug targets like phosphoenolpyruvate
carboxykinase (PEPCK), PPARA/G, glucose 6-phosphatase (G6Pase), glucose transporter type 4/2
(GLUT4/2), pyruvate kinase, alpha-amylase, alpha-glucosidase, SGLT1, hexokinase, lipoprotein lipase,
fatty acid synthase, and fructose-1,6-bisphosphatase (FBP1). For the majority of the herbs and spices
presented here, however, very little is known regarding their observed anti-diabetic activity.

The major in vitro studies have focused on the inhibitory activity of the herbs and spices on
alpha-glucosidase and alpha-amylase in particular yeast or rat intestinal alpha-glucosidase and porcine
pancreatic alpha-amylase (Table 1). Alpha-amylase is responsible for the digestion of dietary starch to
maltase that in turn is digested into glucose by intestinal alpha-glucosidase. Inhibition of these two
enzymes will delay carbohydrate digestion thus lowering the postprandial blood glucose level [223].
Majority of the herbs and spices were found to inhibit these two enzymes regulating carbohydrate
metabolism. However, varying levels of activity could be found for a single plant dependent on
extract preparation and assay conditions, with some studies showing a high level of inhibitory activity,
while no activity was observed in other studies. This has also been noted in a detailed review on the
alpha-glucosidase and alpha-amylase inhibitory activity of several medicinal plants [68]. The inhibitory
activity of some herbs and spices on other diabetic targets such as pancreatic lipase and aldose reductase
as well as transactivation of the PPARs was also observed.

For some herbs and spices, individual bioactive compounds have also been identified
and include piperine for black pepper [50,54], cinnamaldehyde and cinnamatannin B1 for
cinnamon [66], dehydrodieugenol, dehydrodieugenol B, oleanolic acid and maslinic acid for
clove [74,77], cuminaldehyde for cumin [82], diosmin, [6]-gingerol, carvacrol and thymol for
ginger [107,112], 3′-geranylchalconaringenin, xanthohumol, isohumulone and isocohumulone
for hops [114,117,118], citronellol for lemongrass [127], glycyrrhizin, 18b-glycyrrhetinic acid,
liquiritigenin, isoliquiritigenin, glabridin and licochlacone A for liquorice [131,133–135,137,138,143],
6-hydroxyapigenin for marjoram [145], macelignan, licarin B, tetrahydrofuroguaiacin B, nectandrin
B, nectandrin A and dihydroguaiaretic acid for nutmeg [149,151,153,154], rosmarinic acid and
salvianolic acid B for oregano [159], capsaicin for paprika [164], rosmarinic acid, carnosol, carnosic
acid, luteolin, 7-O-methylrosmanol, hispidulin, and cirsimaritin for rosemary [144], safranal and
crocin for saffron [180], and ar-turmerone, curcumin, demethoxycurcumin, bisdemethoxycurcumin,
and tumerin for turmeric [194,195,198]. Considering that herbs and spices are complex mixtures of
diverse compounds, it is likely that the anti-diabetic activity of a given plant is dependent on multiple
compounds regulating the activity of several anti-diabetic drug targets. This can be seen for clove,
ginger, hops, liquorice, nutmeg, rosemary, and turmeric, where more than one compound has been
identified as being the potential bioactive compound responsible for the observed anti-diabetic effects
of these plants.
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2.2. Inverse Virtual Screening with the DIA-DB Web Server

A compound library of over 2300 compounds from literature was generated for the herbs and spices
presented in this study and the compounds were subsequently screened with the DIA-DB webserver
(http://bio-hpc.eu/software/dia-db/). The DIA-DB webserver employs inverse virtual screening of
compounds with Autodock Vina against a given set of 18 protein targets associated with diabetes [224].
These targets were aldose reductase (AKR1B1), AMY2A, DPP4, FBP1, free fatty acid receptor 1 (FFAR1),
glucokinase (GCK), 11B-hydroxysteroid dehydrogenase type 1 (HSD11B1), insulin receptor (INSR),
MGAM, NR5A2, pyruvate dehydrogenase kinase isoform 2 (PDK2), PPARA, PPARD, PPARG, PTPN9,
liver glycogen phosphorylase (PYGL), RBP4, and retinoid X receptor alpha (RXRA). The major function
of each of the protein targets can be found in Table 3 and have been broadly divided into three categories
representing either their mode of action on insulin secretion and/or sensitivity, regulation of glucose
metabolism, or regulation of lipid metabolism. Although these protein targets have been broadly
divided into three major categories, their activity can be interconnected with one or more protein
targets found in a different category. This is observed from evidence in literature on the regulation of
GCK by NR5A2 and PPARG [225], GCK can act as a glucose sensor in pancreatic B-cells and stimulate
insulin secretion [226], regulation of PDK2 activity by PPARA and PPARD [227], FFAR1 regulation
by PPARG [228], HSD11B1 regulation by PPARG [229], and PPARG can promote insulin sensitivity
by enhancing the expression and translocation of the GLUT transporters responsible for glucose
uptake [229].

A cutoff docking score for each of the protein targets was set to distinguish potentially active
compounds from the inactive ones. The cutoff docking score was decided on by the average docking
score obtained for known and/or experimental drugs together with the crystallized ligand found
in the active site of a given protein target (Table S1). The cutoff docking scores set for each of the
protein targets can be found in Table 3 as well as the total number of compounds identified as potential
inhibitors for each of the targets. Of the library compounds submitted to the DIA-DB web server over
940 compounds were identified as potential anti-diabetic bioactive compounds. The herbs and spices
presented here were thus found to be very rich sources of anti-diabetic compounds. Over 200 potential
agonists/inhibitors were identified for protein targets AMY2A, DPP4, FBP1, MGAM, NR5A2, PPARA,
and RBP4.

A summary of the inverse virtual screening results can be found in Table 2. Table S2 contains
the full list of bioactive compounds identified and their source plants. As can be seen for majority of
the herbs and spices, the number of compounds found to be potentially responsible for the observed
anti-diabetic activity accounted for 30%–50% of the total number of compounds submitted. More than
half of the compounds submitted for liquorice, hops, fennel, and rosemary were found to be potential
bioactive compounds with 73%, 61%, 54%, and 54%, respectively. This is also represented in the
literature, where a large volume of detailed studies on the anti-diabetic activity of these plants can
be found. Only a few (9%) of the 166 compounds submitted for paprika were found to be potential
bioactive compounds. This is also reflected in the literature on the anti-diabetic activity of paprika
(Capsicum annuum), where only a few studies were found and the activity noted was somewhat
moderate. Surprisingly, allspice and yarrow where only a few studies on their anti-diabetic activity
can be found, had a high percentage 49% of potential bioactive compounds that were identified.

http://bio-hpc.eu/software/dia-db/
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Table 2. Summary of DIA-DB inverse virtual screening results for various herbs and spices.

Plant Name Total Number of
Compounds Evaluated

Total Number of Potential
Anti-Diabetic Compounds

(% of Total)

Compounds with 3 or
More Targets

Allspice 84 41 (49%) 13
Aniseed 125 50 (40%) 23

Basil 214 58 (27%) 15
Bay leaves 179 69 (39%) 19

Black Pepper 183 84 (46%) 31
Caraway 185 43 (23%) 15

Cardamom 141 29 (21%) 2
Cinnamon 74 26 (35%) 18

Clove 147 59 (40%) 21
Cumin 146 38 (26%) 19

Dill 168 65 (39%) 27
Fennel 123 66 (54%) 42

Fenugreek 110 55 (50%) 47
Ginger 326 80 (25%) 8
Hops 98 60 (61%) 32

Lemon balm 118 53 (45%) 35
Lemongrass 132 55 (42%) 28

Liquorice 215 157 (73%) 135
Marjoram 103 31 (30%) 18
Nutmeg 96 25 (26%) 9
Oregano 177 71 (40%) 34
Paprika 166 15 (9%) 0
Parsley 78 28 (36%) 12

Rosemary 158 85 (54%) 43
Saffron 146 34 (23%) 21

Sage 162 80 (49%) 35
Star anise 69 27 (39%) 10

Thyme 204 78 (38%) 38
Turmeric 239 110 (46%) 29
Yarrow 148 72 (49%) 27

A relative low number of bioactive compounds were identified for ginger (25%). This was
unexpected as several detailed studies can be found for the anti-diabetic activity of this particular
plant. This indicates that the targets identified here can only partly explain the observed anti-diabetic
activity of ginger and that the effect of ginger on other anti-diabetic targets such as pancreatic
lipase, GLUT4, phosphofructokinase, and pyruvate kinase also account for the observed reduction in
hyperglycemia and hyperlipidemia. This is true for all the herbs and spices presented in this study,
as diabetes as a disease is a complex one involving multiple dysregulated processes across several organ
systems like the liver, muscles, adipose tissue, and pancreas [5,230]. This indicates that the regulation
of various protein targets is needed and that the effect on protein targets other than those presented
here may also play a role. This study, however, has provided new insights into the anti-diabetic activity
of ginger as well as identified new potential protein targets for the bioactive compounds of ginger.
Also, of note is that the bioactive compounds identified in this study were the gingerols and shogaols
that have been identified in the literature as the major bioactive compounds of ginger.
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Table 3. The major biological functions of the DIA-DB protein targets, the docking cutoff score, and the total number of potential inhibitors identified for each target.

Mode of Action Protein Target Function PDB Code
Average Docking
Score of Known
Drugs (kcal/mol)

Docking Cutoff
(kcal/mol)

Total Number of
Potential Inhibitors

Regulation of
insulin secretion and

sensitivity
DPP4

Degrades and inactivates glucagon-like
peptide-1 that stimulates insulin

secretion from pancreas [231]
4A5S −8.50 −9.00 260

FFAR1
Binding of free fatty acids to receptor

results in increased glucose-stimulated
insulin secretion [232]

4PHU −10.00 −10.50 6

HSD11B1

Coverts inactive glucocorticoid
precursors to active glucocorticoids;

glucocorticoids counteract the effects of
insulin [233]

4K1L −9.40 −10.00 114

INSR
Regulates glucose uptake as well as

glycogen, lipid, and protein
synthesis [231]

3EKN −8.60 −9.00 47

PTPN9 Dephosphorylates the insulin receptor,
thereby reducing insulin sensitivity [234] 4GE6 −7.80 −8.00 246

RBP4
Secreted as an adipokine that reduces

insulin signaling and promotes
gluconeogenesis [235]

2WR6 −7.40 −8.00 412

Regulation of
glucose metabolism AKR1B1

Catalyzes the reduction of glucose to
sorbitol in the polyol pathway, plays a

role in diabetic complications [236]
3G5E −9.95 −10.50 96

AMY2A
Hydrolyzes alpha-1,4-glycosidic bonds
of starch during digestion of starch to

glucose [237]
4GQR −7.60 −8.00 429

FBP1 Catalyzes the second last step in
gluconeogenesis [220] 2JJK −5.40 −6.00 210

GCK
Phosphorylates glucose to

glucose-6-phosphate for glycolysis or
glycogen synthesis [234]

3IMX −9.40 −10.00 18

MGAM Hydrolyzes 1,4-alpha bonds, the last step
in the digestion of starch to glucose [237] 3L4Y −6.50 −7.00 592

PDK2
Responsible for inactivating the

pyruvate dehydrogenase complex that is
involved in glucose oxidation [238]

4MPC −7.90 −8.00 190

PYGL
Catalyzes the first step of glycogenolysis

by the phosphorolysis of glycogen to
glucose-1-phosphate [239]

3DDS −8.10 −8.50 113
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Table 3. Cont.

Mode of Action Protein Target Function PDB Code
Average Docking
Score of Known
Drugs (kcal/mol)

Docking Cutoff
(kcal/mol)

Total Number of
Potential Inhibitors

Regulation of lipid
metabolism NR5A2

Regulates the expression of genes
involved in bile acid synthesis,

cholesterol synthesis, and
steroidogenesis [240]

4DOR −7.50 −8.00 362

PPARA

Regulates expression of genes involved
in lipid metabolism, in particular, the

oxidation of fatty acids as well as
lipoprotein assembly and lipid

transport [241]

3FEI −7.60 −8.00 271

PPARD Regulates expression of genes involved
in fatty acid catabolism [241] 3PEQ −9.30 −10.00 60

PPARG

Regulates expression of genes involved
in adipogenesis and lipid metabolism
particularly fatty acid transport, lipid

droplet formation, triacyglycerol
metabolism, as well as lipolysis of

triglycerides [241]

2FVJ −9.70 −10.00 75

RXRA Heterodimerizes with PPARs, thereby
initiating gene transcription [241] 1FM9 −9.95 −10.00 24

Aldose reductase (AKR1B1), dipeptidyl peptidase-4 (DPP4), free fatty acid receptor 1 (FFAR1), fructose-1,6-bisphosphatase (FBP1), glucokinase (GCK), hydroxysteroid 11-beta
dehydrogenase 1 (HSD11B1), insulin receptor (INSR), intestinal maltase-glucoamylase (MGAM), liver glycogen phosphorylase (PYGL), liver receptor homolog-1 (NR5A2), pancreatic
alpha-amylase (AMY2A), peroxisome proliferator-activated receptor alpha (PPARA), peroxisome proliferator-activated receptor delta (PPARD), peroxisome proliferator-activated receptor
gamma (PPARG), protein tyrosine phosphatase, non-receptor type 9 (PTPN9), pyruvate dehydrogenase kinase isoform 2 (PDK2), retinoid X receptor alpha (RXRA), and retinol binding
protein 4 (RBP4).
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Since diabetes is such a complex disease process, the need arises for multi-targeted compounds
rather than a “single target–single drug approach” [242–244]. This is also why plants such as the herbs
and spices presented here are attractive treatments for diabetes as multiple protein targets can be
regulated with more than one compound. In this study nearly half of the herbs and spices were found
to contain a large percentage of multi-protein-targeted compounds and included cinnamon, cumin,
fennel, fenugreek, lemon balm, lemongrass, liquorice, marjoram, oregano, rosemary, saffron, sage,
ad thyme.

The major anti-diabetic effects observed in the literature were a reduction in hyperglycemia,
reduction in hyperlipidemia, and regulation of insulin secretion. In Figure 1, the effects of the individual
herbs and spices on these three diabetes hallmarks dependent on the protein targets of the DIA-DB
webserver can be seen. All the herbs and spices were found to be potential regulators of 12 or more
of the protein targets with the exception of paprika and cardamom, whose compounds were only
found to be potential regulators of 5 and 9 targets, respectively. The reduction in hyperglycemia
can be attributed to regulation of the protein targets involved in glucose metabolism. Inhibition of
AMY2A and MGAM will delay carbohydrate digestion, thus lowering the postprandial blood glucose
level [223]. Inhibition of FBP1 and PYGL will inhibit endogenous glucose production by the liver
through the inhibition of gluconeogenesis and glycogenolysis, respectively, thereby reducing blood
glucose levels [220]. The PDKs are upregulated in diabetes and are responsible for inhibiting the
pyruvate dehydrogenase kinase complex that in turn is responsible for the conversion of pyruvate into
acetyl-CoA that then enters the Krebs cycle [245]. By inhibiting PDK2, the serum glucose levels can be
reduced through the inhibition of pyruvate availability for liver gluconeogenesis [246]. Activation of
GCK will also lead to a reduction in serum glucose levels by promoting glycogenesis and glycolysis
through the phosphorylation of glucose to glucose-6-phosphate [226].

The reduction in the observed hyperlipidemia can be attributed to regulation of the protein
targets NR5A2, the PPARs and RXRA that are involved in lipid metabolism. The PPARs play various
roles in lipid metabolism by regulating the genes involved in lipogenesis, triglyceride synthesis,
reverse cholesterol transport, lipolysis, and fatty acid oxidation. Stimulation of PPARG induces the
expression of cluster of differentiation 36 (CD36) that promotes the removal of oxidized LDL from
the blood by the macrophages [247]. PPARG also induces the expression of the liver X receptor (LXR)
that in turn induces the expression of the reverse cholesterol transporter ABCA1 which releases HDL
into the bloodstream, where the cholesterol is converted to bile salts in the liver and is subsequently
excreted. PPARG also promotes adipogenesis forming new adipocytes that are able to take up excess
lipids from the plasma while promoting apoptosis of lipid-saturated adipocytes [229]. PPARA in the
liver promotes fatty acid oxidation, increases fatty acid uptake by increasing the expression of fatty
acid transport protein and fatty acid translocase, increases apolipoprotein A-1 (ApoA-1, component of
HDL), decreases ApoC-2 (component of VLDL), and increases lipoprotein lipase (promotes breakdown
of triglycerides into fatty acids) [229].

PPARD like PPARA promotes fatty acid oxidation through the upregulation of target gene carnitine
palmitoyltransferase A1 and decreases triglyceride levels through the downregulation of the target
protein angiopoietin-like 4 protein that is responsible for inhibiting the breakdown and clearance
of triglycerides [229,241]. Treatment with PPAR agonists will thus result in decreased cholesterol,
triglyceride, LDL, and VLDL levels, while increasing HDL levels. NR5A2 is highly expressed in the
liver and its targets are the bile-acid synthesizing enzymes cholesterol 7-alpha hydroxylase (CYP7A1)
and sterol 12-alpha hydroxylase (CYP8B1). Other targets genes include mediators of cholesterol uptake
and efflux, HDL formation, cholesterol exchange between lipoproteins, and fatty acid synthesis [225].
Treatment with agonists of NR5A2 would thus also result in reduced hyperlipidemia.
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compounds identified.

Figure 1. Protein-compound target networks identified for each herb and spice. The number below each protein target denotes the number of potential bioactive
compounds identified.
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The targeting of proteins PTPN9, DPP4, HSD11B1, RBP4, FFAR1, and INSR will promote insulin
secretion from the B-cells and improve insulin sensitivity. This in turn will also promote glucose
homeostasis and reduce hyperglycemia. PTPN9 disrupts the insulin signaling pathway and thus
treatment with inhibitors will result in insulin sensitization and improve glucose homeostasis [248].
Inhibition of DPP4 will increase the half-life of the incretin hormones, thereby increasing insulin secretion
and allowing time to normalize blood glucose levels [249]. Compounds capable of inhibiting HSD11B1
can inhibit glucose production by the liver and improve glucose-dependent insulin sensitivity [250].
Elevated levels of RBP4 are associated with insulin resistance where RBP4 acts as an adipokine
disrupting insulin signaling and decrease glucose uptake in the muscles [251,252]. RBP4 also promotes
glucose production by the liver thus increasing plasma glucose levels. Compounds that are thus
able to bind RBP4 may prevent its association with transthyretin, resulting in enhanced clearance of
the elevated serum RBP4 through the kidneys [252]. Treatment with FFAR1 agonists will stimulate
glucose-dependent insulin secretion from the pancreatic B-cells and in the gastrointestinal tract will
stimulate the release of the incretin hormones [253]. Activation of INSR by agonists will stimulate the
insulin signaling pathway, thereby improving insulin sensitivity and promoting glucose uptake by the
tissues [254].

Some individual bioactive compounds for the some of the herbs and spices have been identified
in previous studies. However, the results presented here indicate that the anti-diabetic effects of
these plants rather arise from several compounds regulating multiple protein targets whose biological
roles are interconnected. Extracts prepared from these herbs and spices can thus comprehensively
treat the multiple dysregulated processes associated with diabetes. The results presented in Figure 1
provide insights into the anti-diabetic activity of allspice, aniseed, basil, bay leaves, black pepper,
caraway, cardamom, dill, fennel, lemongrass, parsley, saffron, sage, star anise, thyme, and yarrow,
where anti-diabetic activity has been identified but studies evaluating their anti-diabetic mechanisms
of action are lacking. For herbs and spices like cinnamon, clove, cumin, fenugreek, ginger, liquorice,
marjoram, nutmeg, oregano, rosemary, and turmeric, the results present here provide new insights,
build-on and support their well-established anti-diabetic activity. For example, in vivo studies have
found that treatment with rosemary modulates the activity of GCK and FBP1. Although no agonists
for GCK were identified by the DIA-DB webserver, agonists for NR5A2 and PPARG that can regulate
the activity of GCK were identified [225]. This was also observed for fenugreek where 33 NR5A2 and 2
PPARG agonists were identified. For FBP1 inhibition by rosemary, 19 compounds were identified as
potential inhibitors and include several flavonoid glucosides like 6-hydroxyluteolin-7-O-glucoside,
Apigenin-7-O-glucoside, hispidulin-rutinoside, hesperidin and luteolin-7-O-glucoside, luteolin-7-O
glucuronide and luteolin-7-O-rutinoside. Treatment with rosemary has also been associated with
in vitro and in vivo alpha-glucosidase inhibitory activity and this study is in agreement as 61 compounds
were identified as possible inhibitors of MGAM. Hops compounds have been found to modulate
the expression of several proteins involved in lipogenesis, triglyceride synthesis, reverse cholesterol
transport, lipolysis, and fatty acid oxidation. The three PPARs have been shown to modulate the
expression of these target proteins and in this study 19 PPARA, 4 PPARD, and 1 PPARG agonists were
found and were predominantly the geranyl- and prenyl-tetrahydroxychalcones and the xanthohumols.
Similarly, and in agreement with the literature, for fenugreek, PPARA, and PPARG agonists were also
identified, as were PYGL, AMY2A, and MGAM inhibitors.

2.3. Hierarchical Clustering Analysis

Hierarchical clustering analysis of the bioactive compounds identified in each herb and spice
was performed using Tanimoto similarities to determine whether the bioactive compounds identified
showed some chemical similarity in structure [24–26]. The results of the clustering analysis are shown
in Table 4. No clustering was found for caraway, cardamom, cinnamon, marjoram, nutmeg, oregano,
and paprika. The number of chemically similar compounds within these herbs and spices may be
inadequate to create meaningful clusters. The two major chemical classes identified in the herbs



Molecules 2019, 24, 4030 20 of 42

and spices were the sesquiterpenoids and the flavonoids/flavonoid glycosides. The sesquiterpenoids
are one of the major types of compounds that can be found in the volatile oils of plant extracts
and have been found to have anti-diabetic activity [255]. The volatile oils of basil, bay leaves,
black pepper, clove, lemongrass, and turmeric were found to have anti-diabetic activity in vitro
and/or in vivo [35,40,43,48,70,129,130,202]. The flavonoids and flavonoid glycosides were a major
representative chemical class of the bioactive compounds found in aniseed, bay leaves, clove, cumin,
dill, fennel, fenugreek, lemon balm, lemongrass, liquorice, parsley, rosemary, saffron, sage, thyme,
and yarrow. Several studies can be found on the anti-diabetic activity of flavonoids and their
glycosides [14,256–260].
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Table 4. Hierarchical clustering analysis of the identified bioactive compounds of various herbs and spices.

Plant Number of Clusters Number of Compounds
in Major Clusters Representative Compounds (Cluster Centroids)

Allspice 6 20
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Table 4. Cont.

Plant Number of Clusters Number of Compounds
in Major Clusters Representative Compounds (Cluster Centroids)
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Table 4. Cont.

Plant Number of Clusters Number of Compounds
in Major Clusters Representative Compounds (Cluster Centroids)
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3. Materials and Methods

3.1. Literature Review

The literature review on the anti-diabetic activity of the herbs and spices was conducted with
Google Scholar [261] and ScienceDirect [262] using the following search terms: “common plant
name” such as fenugreek, liquorice or sage, and so forth or “scientific plant name” such as Trigonella
foenum-graecum, Glycyrrhiza glabra or Salvia officinalis, and so forth, together with “anti-diabetic” or
“diabetes” or “individual protein target” such as alpha-glucosidase, alpha-amylase or PPAR, and so
forth. To build the compound library for virtual screening, the search terms of “common plant
name” or “scientific plant name” together with “bioactive compounds”, “liquid chromatography”,
“mass-spectrometry”, “gas chromatography”, “phenolic compounds” or “essential oil”, were used.
The FooDB was also consulted [263].

3.2. Preparation of Compound Structures and Inverse Virtual Screening of Potential Anti-Diabetic Activity.

The SMILES notations of the compounds were obtained directly from PubChem [264]. When the
compound was not found in PubChem the two-dimensional structure of the compounds was created
with Advanced Chemistry Development (ACD)/ChemSketch freeware version 12.02, (Advanced
Chemistry Development, Inc., Toronto, ON, Canada) [265] and then converted to its representative
SMILES notation.

The SMILES notation of each compound was subsequently submitted to the DIA-DB webserver
that employs inverse virtual screening of compounds with Autodock Vina against a given set of 18
protein targets associated with diabetes [224]. These targets were AKR1B1, DPP4, FBP1, FFAR1, GCK,
HSD11B1, INSR, MGAM, PYGL, NR5A2, AMY2A, PPARA, PPARD, PPARG, PTPN9, PDK2, RXRA,
and RBP4.

A cutoff docking score based on the average docking score of a set of known and/or experimental
inhibitors was set to distinguish between potential active and inactive compounds (Table S1).
The predicted compound-target network was generated by Cytoscape version 3.4.0 (Cytoscape
Consortium, San Diego, CA, USA) [266] to explore the potential anti-diabetic mechanisms of action.

3.3. Hierarchical Clustering Analysis of the Bioactive Compounds

Hierarchical clustering analysis was performed for the bioactive compounds identified from
each herb and spice with Schrödinger Canvas Suite version 3.2.013 (Schrödinger, LLC, New York,
NY, USA) [267]. The molecular fingerprint was calculated from the two-dimensional structure of
the compounds in the form of extended connectivity fingerprint 4 (ECFP4). From these fingerprints,
hierarchical clustering analysis was performed using the metric of Tanimoto similarity and the Average
cluster linkage method that clusters according to the average distance between all inter-cluster pairs.

4. Conclusions

The herbs and spices presented here were found to be rich sources of compounds with potential
anti-diabetic activity through the use of the DIA-DB webserver. Over 900 compounds from the herb
and spices library were found to have potential anti-diabetic activity and the two major chemical
classes of bioactive compounds observed were the sesquiterpenoids and the flavonoids/ flavonoid
glycosides. For majority of the herbs and spices, between 15 (paprika) and 157 (liquorice) compounds
were identified as potential bioactive compounds versus the literature where the focus had been on
only one to six compounds for a given herb or spice. The major anti-diabetic effects found in the
literature for the herbs and spices were a reduction in hyperglycemia, reduction in hyperlipidemia,
and regulation of insulin secretion and while some detailed studies exploring the anti-diabetic
mechanisms of action of some of the herbs and spices could be found, for the majority presented here,
however, very little was known. We found that the biological functions of the DIA-DB diabetes drug
targets to be associated with glucose and lipid homeostasis as well as insulin secretion and sensitivity
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and that some of these targets were interconnected. Thus, through the regulation of these targets
by the herb and spices compounds, we could explain the observed in vivo anti-diabetic activity of
the herbs and spices. Collectively, the compounds of a particular herb or spice were observed to be
potential regulators of 12 or more of the DIA-DB diabetes drug targets and in several cases more
than one compound could potentially regulate a particular protein target, while in some cases one
compound could potentially regulate more than one protein target. Bay leaves, liquorice and thyme
were found to contain compounds that could potentially regulate all 18 protein targets followed by
black pepper, cumin, dill, hops and marjoram with 17 protein targets. It was found that through
this multi-compound-multi-target regulation of these specific diabetes targets that the major in vivo
anti-diabetic effects observed in literature for the herbs and spices could be explained. We provided
new insights in to the anti-diabetic mechanisms of action of allspice, aniseed, basil, bay leaves, black
pepper, caraway, cardamom, dill, fennel, lemongrass, parsley, saffron, sage, star anise, thyme, and
yarrow that was poorly characterized, while supporting and building onto the established anti-diabetic
mechanisms of cinnamon, clove, cumin, fenugreek, ginger, liquorice, marjoram, nutmeg, oregano,
rosemary, and turmeric. Extracts prepared from these herbs and spices can thus comprehensively treat
the multiple dysregulated and interconnected processes associated with diabetes.

Supplementary Materials: The following are available online, Table S1. Docking scores of known and experimental
drugs. Table S2. Protein targets and source plants of potential bioactive compounds found in herbs and spices.
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