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Purpose: Nitric oxide (NO) is capable of promoting either cell death or cell survival depending on cell type and
experimental conditions. In this study, the possible effects of NO on the viability of lens epithelial cells were investigated
in an explant model used previously to identify cellular changes associated with posterior capsule opacification following
cataract surgery.
Methods: Rat lens epithelial explants prepared from weanling rats were cultured in a serum-free medium for five days
with or without the addition of the nitric oxide synthase inhibitor, L-Nω-nitro-L-arginine methyl ester (L-NAME), using
the inactive enantiomer D-NAME as a control. Alternatively, explants were cultured for nine days with or without the
NO donor, sodium nitroprusside. Explants were assessed morphologically and immunohistochemically or by determining
DNA content.
Results: In the presence of L-NAME but not in controls, progressive rounding up and detachment of cells from the lens
capsule occurred, leading to extensive cell loss. Affected cells showed apoptosis-like cell-surface blebbing and nuclear
fragmentation. Conversely, inclusion of sodium nitroprusside suppressed the morphological changes and spontaneous cell
loss that occurred when sparsely covered explants were cultured for nine days, increased cell coverage fourfold during
that period, and prevented the expression of the transdifferentiation markers α-smooth muscle actin and fibronectin. In
addition, whereas L-NAME exacerbated cell loss induced by culturing with 50 pg/ml transforming growth factor-β2,
sodium nitroprusside offered protection.
Conclusions: This study points to a previously unidentified role for NO as an endogenously produced survival factor for
lens epithelial cells, raising the possibility of using NO deprivation as a means of removing residual lens cells following
cataract surgery and thereby preventing posterior capsule opacification.

Many cells have the capacity to synthesize nitric oxide
(NO), a readily diffusible, short-lived molecule that is
produced by the action of nitric oxide synthase (NOS) on L-
arginine. Two of three known cytoplasmic isoforms of NOS,
endothelial cell NOS (eNOS/NOS-1) and neuronal NOS
(nNOS/NOS-3), are expressed constitutively while the third,
inducible NOS (iNOS/NOS-2), is generally expressed in
response to immunological challenge or some other
pathophysiological stimulus [1,2]. Transient stimulation of
constitutive NOS activity results in relatively low levels of
NO production whereas iNOS activity can produce much
larger amounts of NO over several days [3,4]. A wide variety
of biological functions is served by controlled production of
NO, which can act both intracellularly as a second messenger
and extracellularly as a conveyor of information between
cells. However, excessive NO production can result in cellular
damage via various mechanisms, which include the formation
of highly reactive free radicals such as peroxynitrite [4].
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Normal ocular tissues including the retina, ciliary body,
iris, conjunctiva, and cornea express NOS [5,6], and NO is
normally present at a low concentration in the aqueous humor
that bathes the lens [7,8]. Although there is some evidence that
constitutive levels of NO production contribute in positive
ways to normal ocular function, overproduction of NO in
response to induction of iNOS is generally regarded as
deleterious. For example, induction of iNOS and abnormal
production of NO occur in uveitis, retinitis, and glaucoma [5,
6] and in certain animal models of cataract [9-11]. Moreover,
the concentration of NO in the aqueous humor is known to be
elevated in endotoxin-induced uveitis and traumatic cataract
[8,12] and to increase with age in senile cataract patients or
following cataract surgery in the rabbit [7,12,13]. A role for
NO in the etiology of cataract has been proposed because of
its ability to modify lens proteins and/or cause or exacerbate
oxidative damage to lens cells or predispose them to such
damage [6,14-17].

Lens cells themselves appear to express NOS. NADP-
diaphorase activity, which is indicative of NOS activity, has
been detected in the rat lens epithelium [18]. In addition, iNOS
has been detected at low levels in the normal rat lens by
western blot analysis and RT–PCR and shown to be
upregulated in the lenses of rats treated with selenite in vivo
[9]. iNOS mRNA is also upregulated in human lens epithelial
cells cultured with a combination of lipopolysaccharide and
interferon-γ [11,19]. Furthermore, it has been shown that
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opacification of the rat lens in selenite and hereditary cataract
models is accompanied by and apparently dependent upon the
induction of iNOS in the lens [9,10]. However, little is known
about the regulation and biological significance of the
synthesis of NO by lens cells under normal conditions.

In other cell types, NO has been shown to affect cell
viability in profound and often paradoxical ways. NO may
promote either cell death or cell survival in vivo and in vitro
depending upon experimental conditions and the tissue or cell
type involved. For example, it may either promote apoptosis
or protect against apoptosis induced by various means
including exposure to transforming growth factor-β (TGFβ)
or activation of the Fas pathway [4,20-25]. While progress has
been made in elucidating the diverse mechanisms involved in
determining cell fate in response to NO, the issues are complex
and not yet fully understood. Here, we report the effects of
NO on the viability of lens epithelial cells.

METHODS
Lens explants were prepared from 20-day-old to 21-day-old
Wistar rats as described previously [26,27]. The medium used
in all experiments (control medium) was serum-free medium
M199 supplemented with 0.1% BSA and antibiotics [28]. All
experimental procedures were in accordance with the ARVO
Statement on the Use of Animals in Ophthalmic and Vision
Research and approved by the Animal Ethics Committee,
University of Sydney (Sydney, Australia). HEPES at a final
concentration of 20 mM was added to the control medium
during initial pinning out of explants. After replacing the
HEPES-containing medium with 1 ml of the control medium,
explants were examined by phase contrast microscopy and
given a ‘cell coverage’ grade ranging from 0%–100%. This
was based on an estimate of the percentage of the total explant
surface covered by patches of attached, confluent cells [27,
29]. Cell coverage immediately after setting up the explants
was 57%±3% (mean±SEM). Explants were then assigned to
treatment groups matched with respect to initial cell coverage
and precultured for one day to ensure uniformly high coverage
in all treatment groups at the start of the experiment (day 0;
Figure 1). On day 0, the medium was replaced with control
medium or with medium containing 5 mM L-Nω-nitro-L-
arginine methyl ester (L-NAME), a widely used NOS
inhibitor, or its inactive enantiomer, D-NAME (both from
Sigma, St Louis, MO), readjusted to the control medium pH
with 0.5 M NaOH. Previous studies indicate that all NOS
isoforms would be inhibited at the concentration of L-NAME
used, especially given that lens epithelial cells express
esterases capable of converting L-NAME to the more potent
inhibitor Nω-nitro-L-arginine [30,31]. Explants were cultured
at 37 °C in 5% CO2/95% air for five days. Cell coverage and
morphological changes were monitored daily by phase
contrast microscopy. On day 5, explants were fixed as whole
mounts in 10% neutral buffered formalin, stained with

methylene blue-hematoxylin, and counterstained with
Hoechst dye (H33342; Sigma).

Experiments were also performed to test the effects of a
classical NO donor, sodium nitroprusside (SNP), on cell
survival. Explants with initial cell coverage of 20% or less
were used for these experiments because previous studies had
shown that sparsely covered explants were susceptible to
spontaneous cell loss during culture in the control medium
[27]. The explants were assigned to two matched groups and
precultured for 24 h as described above and then cultured for
nine days with or without the addition of SNP (Calbiochem,
La Jolla, CA) at a final concentration of 50 μM. The medium
was replaced on day 5 of culture with or without the addition
of SNP as appropriate, and explants were monitored daily by
phase contrast microscopy. At the end of the culture period,
representative explants were fixed as whole mounts in
Carnoy’s fixative (3:1 ethanol:acetic acid), and α-smooth
muscle actin (αSMA) and fibronectin were immunolocalized
by a double-labeling technique with Hoechst counterstaining
of nuclei [32].

In some experiments, recombinant TGFβ2 (R&D
Systems, Minneapolis, MN) was included in the medium on

Figure 1. Effect of the nitric oxide synthase inhibitor L-NAME on
cell coverage in lens epithelial explants. Explants, initially matched
for cell coverage, were cultured in the control medium (CON) or in
the control medium supplemented with L-NAME or with the
negative control D-NAME at a final concentration of 5 mM. Cell
coverage was assessed daily by phase contrast microscopy. Each
value represents the mean±SEM of data from 9 to 12 explants.
Explants cultured with L-NAME had significantly lower cell
coverage than the corresponding control and D-NAME-treated
explants on days 4 and 5 (p<0.001, Kruskal–Wallis test with Dunn’s
correction for multiple comparisons). NAME stands for Nω-nitro-L-
arginine methyl ester.
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day 0 with or without L-NAME or SNP and explants were
cultured for two days. The final concentration of TGFβ2 was
50 pg/ml, a concentration shown previously to induce rapid
loss of cells from rat lens epithelial explants [26,27]. In some
experiments, explants were lysed at the end of the culture
period and the DNA content was determined by the PicoGreen
method as described [33].

RESULTS
Over the first three days of culture, cell coverage was virtually
100% in explants cultured in the control medium or in the
medium containing L-NAME or D-NAME (Figure 1).
However, beyond three days of culture there was a dramatic
decrease in cell coverage in explants cultured with L-NAME
(Figure 1 and Figure 2B,E). In contrast, explants cultured in
the control medium or with D-NAME remained completely
covered with a monolayer of cells in cobblestone arrays
throughout the entire five-day culture period (Figure 1 and
Figure 2A,C,D,F).

The progressive denuding of the lens capsule that
occurred in the presence of L-NAME was accompanied by an
extensive loss of cells from the explant. Indeed, 2 of the 11

explants in the L-NAME-treated group were completely
devoid of cells by day 5 of culture. During culture, large
numbers of cells were observed rounding up, becoming highly
refractile, and detaching from the lens capsule. This process
was accompanied by cell-surface blebbing, especially at
cellular margins abutting denuded regions of capsule (Figure
3A). Nuclear fragmentation, of the type observed in cells
undergoing caspase-dependent apoptosis [34,35], was
observed in marginal cells in L-NAME-treated explants
(Figure 2E) but not in untreated controls or D-NAME-treated
explants (Figure 2D,F). The cell loss observed in L-NAME-
treated explants (Figure 3A) was comparable in some respects
to that observed in explants cultured with 50 pg/ml TGFβ2,
although cell loss induced by TGFβ began at an earlier stage
of culture and was accompanied by more extensive cell-
surface blebbing (see Figure 3A,B). In addition, the capsular
wrinkling characteristically induced by TGFβ (Figure 3B)
[26,27,32] was not apparent in L-NAME-treated explants
(Figure 2B and Figure 3A).

The above experiment suggested that suppressing NOS
activity had a negative effect on cell survival. In analogous
experiments designed to determine whether the addition of an
NO donor promoted cell survival, inclusion of SNP not only
promoted cell survival but also permitted the repopulation of
the denuded lens capsule. At the end of the culture period, all

Figure 2. Histology of lens epithelial explants cultured with the nitric oxide inhibitor L-NAME. Explants were cultured in the control medium
(A and D) or in the control medium supplemented with 5 mM L-NAME (B and E) or D-NAME (C and F). Representative explants were fixed
on day 5 of culture and stained with methylene blue-hematoxylin (A-C) and Hoechst dye (D-F). Explants cultured in the control medium
(A) or the control medium with D-NAME (C) were completely covered with a monolayer of closely packed cells in the cobblestone array
typical of the normal lens epithelium whereas in the L-NAME-treated explants (B) large regions of lens capsule were denuded of cells (denoted
by an asterisk). Nuclei in explants cultured in the control medium alone and the D-NAME-treated explants were relatively uniform in shape
and evenly stained with Hoechst dye (D and F) whereas nuclei in the L-NAME-treated explants (E) showed crescent-like staining with Hoechst
dye (arrow) or nuclear fragmentation (arrowheads). The bar represents 80 μm in A-C and 35 μm in D-F. NAME stands for Nω-nitro-L-arginine
methyl ester.
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SNP-treated explants were 50%–100% covered with
confluent cells in cobblestone arrays (Table 1; Figure 3D)
including an explant with very low initial cell coverage (<5%).
In contrast, most explants in the control group cultured
without SNP showed extensive and progressive cell loss over
the same period (Table 1; Figure 3C).

Including SNP in the medium also suppressed the
capsular wrinkling and cell-surface blebbing typically
associated with cell detachment under these conditions (Table
1). In the control group, cells abutting the denuded lens
capsule were particularly prone to surface-blebbing and
detachment (Figure 3C) whereas corresponding cells in SNP-
treated explants generally remained bleb-free and extended
lamellipodia onto the lens capsule at cellular margins (not
shown). Furthermore, residual cells in explants that were
cultured in the control medium for nine days exhibited specific
reactivity for transdifferentiation markers, αSMA and

fibronectin (Figure 4A-C), a finding consistent with previous
studies [29,32], whereas reactivity for these markers was
negligible in corresponding explants cultured with SNP
(Figure 4D-F).

In experiments in which TGFβ2 was included in the
medium on day 0, L-NAME appeared to exacerbate TGFβ-
induced cell loss during the two days of culture (Table 2A)
whereas SNP again exhibited a positive effect on cell survival
(Table 2B). The latter was evidenced by the significantly
higher cell coverage and DNA content of explants cultured
with TGFβ plus SNP compared with those cultured with
TGFβ alone (Table 2B). However, the cell-surface blebbing
and capsular wrinkling that generally precede cell loss were
visible in at least some regions of all explants cultured with
TGFβ plus SNP by day 2 of culture, and all these explants
became virtually devoid of cells by day 6 (not shown).

Figure 3. Effects of L-NAME, TGFβ, and SNP on the morphology of lens epithelial explants. Explants were cultured for five days with the
NOS inhibitor L-NAME (A), for two days with 50 pg/ml TGFβ2 (B), or for nine days in the control medium (C) or control medium
supplemented with the NO donor SNP (D) and then photographed by phase contrast microscopy. In explants cultured with L-NAME (A),
large regions of smooth lens capsule were visible (denoted by an asterisk) between strands of cells and clusters of bright, detached cells, and
cells abutting the capsule showed cell-surface blebbing (arrowheads). In explants cultured with TGFβ for two days (B) and sparsely covered
explants cultured in control medium without SNP for nine days (C), progressive cell loss was accompanied by extensive cell-surface blebbing
(arrowheads), and exposed regions of the lens capsule (denoted by an asterisk) exhibited wrinkling (arrow). A corresponding explant cultured
with SNP (D) became well covered with a monolayer of cells in the cobblestone array typical of the normal lens epithelium. The bar represents
80 μm in A and 100 μm in B-D. NAME stands for Nω-nitro-L-arginine methyl ester; TGF stands for transforming growth factor; and SNP
stands for sodium nitroprusside.
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DISCUSSION
The results of this study demonstrate that suppressing NO
synthesis by including an NOS inhibitor led to an extensive
loss of cells from the lens capsule in initially well covered lens
epithelial explants and also exacerbated TGFβ-induced cell
loss. On the other hand, inclusion of an NO donor enhanced
cell survival in sparsely covered explants under conditions
that typically result in spontaneous loss of cells during
extended culture and also afforded partial protection against
TGFβ-induced cell loss. Therefore, the results point to a
previously unrecognized role for NO as a survival factor for
lens epithelial cells.

Detachment of cells from rat lens epithelial explants
cultured with TGFβ is preceded by changes typical of
apoptosis including DNA fragmentation, cell-surface
blebbing, nuclear pyknosis, and nuclear fragmentation [36,
37]. Cell-surface blebbing and nuclear fragmentation were
observed in well covered explants undergoing cell loss in
response to L-NAME. They were also observed in sparsely
covered, untreated explants undergoing spontaneous cell loss,
and in the latter case, these changes were suppressed by
including SNP in the medium. Therefore, it is likely that NO
was, at least in part, regulating lens epithelial cell survival in
these explants by influencing apoptotic pathways as is known
to occur for many other cell types [4,20,21,38].

Several growth factors and cytokines have been shown
previously to serve as survival factors for lens epithelial cells
and/or protect them from apoptosis induced by serum
starvation or exposure to agents such as TGFβ and
staurosporine. These include FGF [32,39-41], lens
epithelium-derived growth factor [42], transferrin [43],
insulin-like growth factor-1 [44], and growth arrest-specific
gene 6 [45]. It has also been reported previously by others that
culturing sparsely covered rat lens epithelial explants in

serum-free medium is associated with poor cell survival [46],
a finding consistent with the present study (Table 1 and Figure
3C) and a previous study in this laboratory [27]. The data of
Ishizaki et al. [45] indicated that lack of diffusible survival
factor(s) produced by the lens cells themselves contributed to
cell death when cell numbers were low. They also showed that
FGF-2 was ineffective as a substitute for this survival factor.
Furthermore, it has recently been reported that lens epithelial
cells are capable of producing unidentified diffusible factor(s)
that protect them against Fas-induced apoptosis provided that
they remain attached to the lens capsule or a collagen
substratum [47].

The finding of the present study that cell loss is largely
prevented in sparsely populated lens epithelial explants by
including a source of NO strongly suggests that cell death may
occur because of depletion of endogenously produced NO
when few lens epithelial cells are present. Moreover, because
lens epithelial cells express TGFβ and experience autocrine
TGFβ stimulation following wounding of the epithelium [48,
49], cell death that is initiated by NO deficiency in lens
epithelial explants may be linked with or augmented by
TGFβ-induced apoptosis. In lens epithelial cells, the latter
process is known to be associated with myofibroblastic/
fibroblastic transdifferentiation [50-52]. Thus, the finding that
spontaneous cell loss during long-term culture of sparsely
covered explants resulted in the induction of
transdifferentiation markers is consistent with the suggestion
that stimulation by endogenous TGFβ accompanies loss of
cells due to NO deprivation. Furthermore, transdifferentiation
as well as cell loss were suppressed by including an NO donor.

NO has been shown to have the potential to exert either
harmful or beneficial effects in other cellular systems via a
variety of mechanisms [4,20,21,53]. These include both pro-
apoptotic and anti-apoptotic effects. The outcome depends not

TABLE 1. EFFECT OF THE NITRIC OXIDE DONOR SNP ON CELL SURVIVAL AND MORPHOLOGY IN LENS EPITHELIAL EXPLANTS

Treatment Without SNP With SNP p-value
Day 0

Cell coverage (%) 26±6 30±4 NS
Number of explants 8 7

Day 9
Cobblestone arrays 1 7 0.001
Coverage 50% or more 2  7* <0.01
Capsular wrinkling 8 1 0.001
Blebbing and cell loss 7 0 0.001

Sparsely covered explants were cultured with or without addition of SNP on day 0 and at change of medium on day 5. Cell
coverage values are given as the mean±SEM. Other values indicate the number of explants exhibiting a particular feature. The
p-value represents the significance of the difference between explants cultured with or without SNP using Student’s t-test to
compare cell coverage values and Fisher’s exact test to compare ratios of explants exhibiting a particular feature in the two
groups. SNP stands for sodium nitroprusside, and NS stands for not significant. The term “cobblestone arrays” indicates that
confluent patches of cells exhibiting the cobblestone array typical of the normal lens epithelium were present. The term “blebbing
and cell loss” indicates that explants exhibited cell-surface blebbing and cell detachment. The asterisk indicates that mean cell
coverage in this group was 83%±8%.
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only on the concentration of NO to which the cells are exposed
but also on factors such as their capacity to deal with oxidative
stress and the relative abundance of other free radicals in their
environment. Generally, anti-apoptotic effects are observed at
relatively low concentrations of an NO donor (30–300 μM
SNP) whereas the induction of apoptosis requires higher
concentrations (1–4 mM SNP) [54-60], although exceptions
to this general rule have been noted (see reference [61], for
example). At high concentrations and under conditions that
lead to the generation of large amounts of peroxynitrate, NO
is cytotoxic and may induce cell death by necrosis if not by
apoptosis [38]. The paradoxical anti-apoptotic and pro-
apoptotic effects of NO at low and high concentrations,
respectively, can occur in the same cell type [54-57].

Oxidative damage to the lens, especially the lens
epithelium, is thought to be a triggering factor in the etiology
of several forms of cataract, and NO is regarded as an agent
capable of contributing to such damage [6,14-17]. Consistent
with the latter suggestion, changes that are indicative of
oxidative stress and therefore potentially cataractogenic were
noted in a study in which rat lenses were exposed in vitro to
an NO donor at a high concentration (1 mM) [17]. However,
consistent with findings for other cellular systems cited above,

exposing explanted lens epithelial cells to an NO donor at a
low concentration (50 μM) in the present study promoted lens
epithelial cell survival. Furthermore, the low concentration of
SNP used in the present study also prevented fibroblastic
transdifferentiation, an early event in the etiology of certain
forms of cataract and the sight-threatening condition known
as posterior capsule opacification, a sequela of cataract
surgery [36,50,52,62].

It is not known whether a low level of stimulation by NO
is required in the eye in situ to maintain a healthy lens
epithelium and protect against cataractous transdifferentiation
under physiological or adverse conditions. However, NO is
known to be present in the lens environment under
physiological conditions. A low concentration of NO is
present in the aqueous that bathes the lens anterior.
Furthermore, the lens epithelium and neighboring ocular
tissues express NOS in situ and therefore represent potential
sources of NO ( [5,7-9,18] and see Introduction).

In the experiments reported here, the NOS activity
inhibited by L-NAME may have been baseline activity
associated with the lens epithelium in situ. However, some
damage to the lens epithelium inevitably occurs during the
preparation of explants such as those used in the present study,

Figure 4. Effect of the nitric oxide donor SNP on immunoreactivity for αSMA and fibronectin. Sparsely covered explants were cultured for
nine days in the control medium (A-C) or in the control medium containing SNP (D-J). αSMA (B and E) and fibronectin (C and F) were then
immunolocalized in fixed whole mounts of representative explants by a double-labeling technique with Hoechst counter-staining of nuclei (A
and D). Regions of the lens capsule that became denuded of cells during culture are indicated by an asterisk. The occasional small patches of
cells that remained in explants cultured in the control medium alone (A) expressed strong reactivity for αSMA (B) and fibronectin (C).
Reactivity for the latter was present throughout the explant including denuded regions of capsule where it was often present in fibrillar form
(C, arrowheads). The region indicated by the arrow in A is given at higher magnification in the inset to show the fragmentation of nuclei.
When SNP was included during culture (D), specific reactivity for αSMA (E) and fibronectin (F) was not detectable. The bar represents 50
μm in A-F and 20 μm in inset in A. SNP stands for sodium nitroprusside, and αSMA stands for α-smooth muscle actin.
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and it is not clear whether the rate of NO production was
influenced by such damage. Irrespective of this, the present
study has clearly identified a new role for NO as an
endogenously produced survival factor for lens cells with the
potential to play a role in maintaining the integrity of the lens
epithelium.

Human cataract surgery results in extensive damage to
the lens epithelium. Many lens epithelial cells are removed by
excision of the central anterior capsule and adhering lens
epithelium during this procedure. However, variable numbers
of lens epithelial cells remain in situ, attached to the annulus
of anterior lens capsule that is retained. These cells have the
potential to undergo fibroblastic transdifferentiation and
migrate posteriorly into the visual axis causing posterior
capsule opacification [49,62,63]. The present study raises the
possibility of inducing the lens epithelial cells that remain
after cataract surgery to die by restricting NO availability
through means such as inhibiting NOS production or activity
or sequestering NO. Thus, it offers a new perspective on
preventing posterior capsule opacification.
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