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Abstract: Histone deacetylases (HDACs) are enzymes that can control transcription by modifying
chromatin conformation, molecular interactions between the DNA and the proteins as well as
the histone tail, through the catalysis of the acetyl functional sites removal of proteins from the
lysine residues. Also, HDACs have been implicated in the post transcriptional process through
the regulation of the proteins acetylation, and it has been found that HDAC inhibitors (HDACi)
constitute a promising class of pharmacological drugs to treat various chronic diseases, including
cancer. Indeed, it has been demonstrated that in several cancers, elevated HDAC enzyme activities
may be associated with aberrant proliferation, survival and metastasis. Hence, the discovery and
development of novel HDACi from natural products, which are known to affect the activation of
various oncogenic molecules, has attracted significant attention over the last decade. This review
will briefly emphasize the potential of natural products in modifying HDAC activity and thereby
attenuating initiation, progression and promotion of tumors.
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1. Introduction

Histone deacetylases (HDACs) refers to a family of enzymes that remove the acetyl function
from lysine amino acids in proteins and thus control many cellular and molecular processes. It has
been found that HDAC inhibitors (HDACi) constitute a rising class of pharmacological drugs for
the treatment of several chronic diseases, among which we can find cancer. Cancer is the second
most common cause of mortality worldwide. However, after a generally positive response to initial
therapy, many patients eventually develop recurrence as well as spread of the primary tumor, and it
has been shown that aberrant HDAC enzyme activity can regulate tumor cell proliferation, survival,
and metastasis. Several bioactive natural compounds have demonstrated their effects in treating
and preventing cancer. Indeed, natural products constitute an abundant source for the discovery
of anti-cancer drugs, and can modulate various important hallmarks of tumor cells. Almost 80% of
all drugs approved by the United States Food and Drug Administration (FDA) over the last four
decades for cancer’s treatment are either natural products or their derivatives. Hence, the discovery
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and development of novel HDACi from natural products has attracted significant attention over the
last decade [1–4]. So far, few HDACi have received the FDA’s approval for the treatment of various
cancers including, Vorinostat (SAHA, trade name; Zolinza®) [5], romidepsin (Istodax) [6], belinostat
(Beleodaq) and panobinostat (Farydak) [7]. This review will briefly summarize the potential of few
significant natural compounds in modifying HDAC activity, and thereby attenuating the initiation,
progression, and promotion of tumorigenesis.

Among the molecular processes that HDACs regulate is modification of histone tails by the
removal of the acetyl part from lysine amino acids, which will lead to the squeezing of the molecular
interactions between the histones that have positive charges and the DNA that have negative charges,
resulting into the opening of the chromatin structure to allow its binding to transcription factors to
facilitate the transcription process. Thereby, when the HDACs deacetylate the histones, it leads to
the strengthening of their interaction with DNA, and a closer chromatin structure, in addition to the
inhibition of gene transcription [8–12]. Thus, HDACs have a main function in modulating epigenetic
changes. HDACs can also control the post-translational acetylation of numerous non-histone proteins,
such as different signaling molecules which can promote protein integrity changes, protein/protein or
DNA interactions [13]. HDACs can also operate as regulators during post-translational modifications
since they deacetylate non-histone proteins including important transcription factors, such as E2F,
phosphoprotein p53, c-Myc, and nuclear factor-kappa B (NF-κB), Stat3, β-catenin etc, which can
regulate cellular homeostasis [14]. Moreover, once non-histone proteins are deacetylated by HDACs it
can result in their degradation by ubiquitination [15,16].

So far, it has been possible to identify and segregate 18 mammalian HDACs into four classes:
class I HDACs (HDACs 1, 2, 3, and 8), class II HDACs (subdivided into two subgroups: class IIa,
(HDACs 4, 5, 7, 9) and class IIb (HDACs 6 and 10), class III (sirtuin family: sirt1-sirt7), and class IV
(HDAC 11) [17]. The analysis of their structures showed that class I, II, and IV HDACs have a common
conserved domain for catalysis, with a similar catalytic core for acetyl-lysine hydrolysis that is Zn2+

-dependent, which led to the discovery and synthesis of new HDACi that occupy the catalytic core of
the zinc-binding site, while class III HDACs require a nicotinamide adenine dinucleotide to have a
catalytic activity; however, so far class III HDACs are not hindered by conventional HDACi [18–21].

Class I and Class II are distinguishable by different characteristics, including their location
(nucleus for Class I, cytoplasm for Class II) after being phosphorylated by protein kinase C or D in
the nucleus and shuttled to the cytoplasm. For the tissue localization in which they are expressed,
Class I HDACs are ubiquitous, while the class II HDACs are synthesized specifically in particular
tissues [22,23].

1.1. HDAC’s Role in Cancer

1.1.1. Pro-Cancer Effects

Abnormal function of HDACs is related to main cancer key events. Enzymes linked with
epigenetic regulation are frequently dysregulated in human cancers especially through mutation
and abnormal expression [24]. In the case of the HDACs, several studies have indicated that there may
be a direct correlation between their overexpression and significant reduction in both the recovery and
survival of patients; also, when over expressed, poor patient prognosis can be predicted independent
of the cancer type and tumor stage in various malignancies such as in prostate [25], colorectal [26],
breast [27], lung [28,29], liver [30], and gastric cancers [31].

Interestingly it has been found that −402, −20, and +182 CDKN1A regions can display a
significantly increased acetylation status, and these levels were positively correlated in gastric
tumors [32]. Moreover, HDAC1 and 2 can also function to mitigate the response of the ATM pathway
to DNA damage [33]. In addition, modifications in histone acetylation are suggested to drive the
onset, proliferation, and metastasis of malignant tumors through the loss of monoacetylation and
trimethylation on histone H4 [34,35]. Moreover, it has been demonstrated that the expression of
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HDAC1, −5, and −7 can act as a molecular biomarker to differentiate between malignant versus
normal tissues [36].

1.1.2. Anti-Cancer Effects

However, several reports have also demonstrated that the overexpression of HDAC cannot
be always systematically attributed to a poor prognosis in cancer patients; indeed, in women with
estrogen receptor positive (ER-positive) breast cancer, a decrease in HDAC6 levels was associated
with a better prognosis [37]. Moreover, in cutaneous T cell lymphoma, an important clinical activity
of pan-HDACis was observed, a correlation between an over expressed HDAC6 and an improved
prognosis was noticed, while acetylated H4 was related with more aggressive lesions [38]. Overall,
the various cancer types and pathways altered by HDACis are briefly summarized in Table 1.

1.2. HDACis from Natural Products

A number of molecules derived from various medicinal plants have been reported to exhibit
significnat antitumoral activities by affecting the activation/expression of various oncogenic
molecules [2–4,39–53], including HDACs. Few such important natural compounds that can effectively
alter the HDAC activity are briefly discussed below and their chemical structures are shown in Figure 1.
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Table 1. Modulation of HDAC activity by selected natural products in tumor cells.

Cancer Types Pathways/Molecules Altered Concentration Range Tested IC50 References

Resveratrol

Prostate cancer (DU145) Akt↓, MTA1/HDAC I, II, IV complex↓, PTEN↑ 5–100 µM N.D. [54]

Hepatoma cancer (HepG2, Hep3B and HuH7) HDAC I, II, IV↓ 5–100 µM
32 µM (HepG2)

[55,56]200 µM (Hep3B)
29 µM (HuH7)

Resveratrol + pterostilbene Breast cancer (MDA-MB-157) ERα↑, acetyl-H3↑, acetyl-H3 lysine9↑, acetyl-H4↑,
HDAC↓, DNMT↓

15µM resveratrol + 5µM
pterostilbene N.D. [57]

Curcumin
HeLa cells PAX1 ↑

N.D. N.D. [58]SiHa cells UHRF1 ↓

Curcumin

B-non-Hodgkin lymphoma cell line HDAC I↓, HDAC III↓, Notch 1↓, IκBα↑, p300↓ 3.125–50 µM 25 µM [59]
RPD3 mutants of yeast cells HDAC↑, Mec1↓, Rad52↓, DSB repair↓ 50–200 µM N.D. [60]
Hepatocellular carcinoma HDAC I/II↑ NF-κB↓ N.D. [61]

desmoplastic cerebellar medulloblastoma /DAOY
tumor xenografts and Smo/Smo mice

HDAC VI↓ G2/M ↓ cleavage of caspase-3↑ tubulin
acetylation↑ 10–40 µM N.D. [62]

Curcumin + Trichostatin Breast cancer (SkBr3 and 435eB) HDAC I/II↓ pERK↓ pAkt↓ p21 and p27↑ p53↓ Cyclin
D1↓ cleavage of caspase-3↑ 10–20µM N.D. [63]

Curcumin + vorinostat/
panobinostat Hsp90 acetylation↑ EGFR↓ Raf-1↓ Akt↓ survivin↓ [64]

Curcumin + Trichostatin A Human hepatoma histone acetylation↓ HAT protein↓ ROS↑ [65]

EF24 + Entinostat or Salermide Human pancreatic cancer (BxPC-3) acetylation of histone H3 and H4↑ cells in G1 phase↑ [66]

Heliomycin Cervical cancer (HeLa) HDAC III↓ 29.8 µM [67]

Tetracenomycin D Cervical cancer (HeLa) HDAC II↓ 10.9 µM [67]

Nocardiopsis sp Cervical cancer (HeLa) HDAC↓ 5.9 µM [68]

Streptomyces sp Cervical cancer (HeLa) HDAC↓ 7.2 µM [68]

Halenaquinone

Lymphoblastic leukemia (Molt 4)
Oxidative Stress↑ Bax↑ PARP cleavage↑ caspase

activation↑ cytochrome c↑ HDAC↓
Topoisomerase I & II↓

0.18 µM [69]

Human chronic myelogenous leukemia (K562) p-Akt↓ NF-κB↓ HDAC↓ Bcl-2↓ hexokinase II↓ 0.48 µM [69]
Breast adenocarcinoma (MDA-MB-231) p-PTEN↓ p-GSK3β↓ p-PDK1↓ ROS↑ 8 µM [69]

Colon adenocarcinoma (DLD-1) 6.76 µM [69]

Aceroside VIII Colon cancer (HT29) HDAC VI ↓ [70]

Aceroside VIII + A452 Colon cancer (HT29) HDAC VI↓ acetylated α-tubulin↑ [70]

Bis (4-hydroxybenzyl)sulfide (1) Breast cancer (MDA-MB-231) HDACs↓ 1.45 µM [71]
Prostate cancer (PC3) HDACs↓ 7.86 µM [72]
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Table 1. Cont.

Cancer Types Pathways/Molecules Altered Concentration Range Tested IC50 References

Chalcones: Butein

Human

HDACs I, II, and IV↓ TNFα↓ NF-κB↓ 0–1000 µM 60 µM [72]

Philadelphia
chromosome

positive chronic myelogenous
leukemia

(K562)

Flavone Human myeloid leukemia HDAC↓ caspase↑ p16↑ p21↑ TRAIL↑ [73]

Abbreviations: pAkt: Phosphorylated Protein kinase B. Bcl-2: B-cell lymphoma 2. Bax: Bcl-2-associated X protein. c-Myc: proto-oncogene. DSBs: Double-Strand DNA Breaks. ERα: Estrogen
receptor-α acetyl-H3. EGFR: Epidermal Growth Factor. HAT protein: Histone acetyltransferase. DNMT: DNA methyltransferase. HDAC: Histone deacetylases. Hsp90: chaperone.IkB α:
Nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor alpha (I kappaB alpha). MTA1: Metastasis associated protein 1. Mec1: Serine/threonine-protein kinase.
NF-κB: transcription factor inhibitor. Notch 1: Notch homolog 1, translocation-associated (Drosophila). p300: Histone acetyltransferase. PAX1: Paired box gene1. PARP: Poly ADP ribose
polymerase. p27 & p21: Cyclin-dependent kinase inhibitor. pERK: phosphorylated Extracellular signal-regulated kinases. PTEN: Phosphatase and tensin homolog deleted on chromosome
10. Raf-1: proto-oncogene serine/threonine-protein kinase. ROS: Reactive oxygen species. STAT3: Signal transducer and activator of transcription 3. SIRT: Sirtuin. TNFα: Tumor necrosis
factor. TRAIL: TNF-related apoptosis-inducing ligand. UHRF1: Ubiquitin-like with PHD and RING Finger domains 1. ↑: Upregulation. ↓: Downregulation.
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1.2.1. Resveratrol (RVT)

Resveratrol (RVT), a natural, biologically active polyphenolic compound that has exhibited its
potential therapeutic application in the treatment of many diseases, including cancer [44,49,50,74–78].
The Nucleosome Remodeling and Deacetylase complex (NuRD) is one of the major chromatin
remodeling complexes described to date in human cells and has an important role in the regulation of
the transcriptional process. Metastasis associated protein 1 (MTA1) is a component of the NuRD that
can induce gene silencing and is often upregulated in several cancers [79]. Phosphatase and tensin
homolog deleted on chromosome 10 (PTEN), an anti-oncogenic gene, has been shown to be inactivated
by MTA1 in malignant tumor cells [80].

In prostate cancer, RVT has been demonstrated to lead to the promotion of acetylation on Lys125

and Lys128 of PTEN as well as its reactivation by inhibiting of the MTA1/HDAC complex, which results
in the inactivation of the PKB pathway. This suggests that the MTA1/HDAC complex regulates
negatively the PTEN, and thus promotes proliferation as well as metastasis of prostate cancer, and that
RVT can abrogate these key oncogenic hallmarks through the inhibition of MTA1 [54]. Another mode
of action of RVT has been described through its activation of the class III HDACs. The docking studies
clearly showed that RVT has a structure that could allow it to cause an inhibition of the function of
various HDACs.

In addition, in vitro analyses of global HDAC inhibition in human-derived hepatoblastoma cells
has demonstrated that RVT can abrogate the expression/activity of 11 HDACs ranging from class I, II,
and IV. In RVT treated hepatoma cell lines HepG2, Hep3B, and HuH7, an arrest of the proliferation
of all cell lines in a concentration dependent manner has been noted. Interestingly, RVT caused a
significant inhibition of HDACs, and hyperacetylation of the histones in HepG2 cells [55,56].

Interestingly, toxicity tests in primary human hepatocytes were positive as a good tolerance to RVT
has been shown, while in vivo chicken embryotoxicity assays have shown toxicity at higher doses [56].
Moreover, it has been reported that combinatorial treatment with RVT and pterostilbene can cause the
reactivation of ERα expression in ERα-negative MDA-MB-157 breast cancer cells, which is associated
with an enrichment of acetyl-H3, acetyl-H3lysine9 (H3K9), and acetyl-H4 active chromatin markers
in the ERα promoter region [57]. Panobinostat, an HDACi of the classes I, II, and IV Zn2+ catalytic
domains demonstrates important anti-tumorigenic activities, specifically in lymphoid malignancies,
ovarian cancer, and pancreatic cancer [81–83]. Sirtuin-1 (SIRT1), an NAD+ dependent class III HDAC,
functions by deacetylating histones but also non-histone proteins and has a key function in cell survival
and senescence but may not be modulated directly by HDACi, such as panobinostat. Once activated,
SIRT1 can abrogate proliferation and induce apoptosis of lymphoid cells associated with deacetylation
of STAT3 and NF-κB/p65, and repression of c-Myc protein levels. In malignant lymphoid cells,
it has been also reported that panobinostat in combination with RVT can significantly enhance the
pro-apoptotic effect of SIRT1 activators [84].

1.2.2. Curcumin

Curcumin (diferuloylmethane) is a biphenolic active compound present turmeric, which is well
known for its various pharmacological actions, against various chronic conditions including those in
cancer [85–91], and is well established as a DNA methyltransferase inhibitor, and thus regarded as a
DNA hypomethylating agent. It has been shown that curcumin can re-establishe the balance between
HAT and HDAC 1, 3, 4, 5, 8 activity to specifically modulate the process of tumorigenesis [92]. Paired
box gene1 (PAX1) has been characterized to be a tumor suppressor gene that is often hypermethylated
and deactivated in various cancer types. Ubiquitin-like with PHD and RING Finger domains 1 (UHRF1)
van function as a potent oncogene and may be hyperactivated in cancers [93,94]. The reactivation of
PAX1 by curcumin was observed in HeLa (the first immortal cell line cultured by scientists), SiHa (grade
II, human cervical tumor cell), and it has been suggested that the reactivation of PAX1 by curcumin
may be attributed to its effect on histone deacetylase primarily caused through the downregulation of
UHRF1, which may regulate both DNA methylation as well as histone acetylation [58].
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Treatment of lymphoblastic Raji cells with curcumin was shown to decrease the amount of HDAC
I and HDAC III through a proteasome-sensitive pathway. Those observations were combined with
the evidence that curcumin can prevent degradation of the nuclear factor of kappa light polypeptide
gene enhancer in B-cells inhibitor alpha (I κB α), an inhibitor of the pro-oncogenic NF-κB protein,
and can also inhibit nuclear translocation of the NF-κB /p65 subunit, as well as the expression of the
oncogenic Notch 1, and thus lead to the abrogation of cellular proliferation and tumor development [59].
Double-strand breaks (DSBs) are critical cytotoxic forms of DNA damage that can lead to genomic
instability and then to tumor formation, if not properly repaired. Curcumin has been found to sensitize
yeast cells to DNA-disrupting agents by the inhibition of Mec1 (ATR)-dependent pathway [60].

Cancer stem cells (CSCs) play an important part in the development of multi-resistant cancers
including hepatocellular carcinoma (HCC). Among the main oncogenic pathways deregulated in liver
CSCs, is that of NF-κB signaling. In HCC cells it has been shown that curcumin treatment led to a
selective CSC-depletion and suppressed tumorigenicity, which was combined with substantial NF-κB
inhibition. On the contrary, in curcumin-resistant cells, an augmentation in proliferation as well levels
of CSC markers was noted. Moreover, co-administration of the class I/II HDACi trichostatin can also
sensitize resistant cells to anti-neoplastic effects of curcumin [61].

In SkBr3 and 435eB cells treated with trichostatin A, addition of curcumin led to a more effective
inhibition of cell growth, accompanied by a decrease in cells viability, and ERK, as well as Akt
phosphorylation [63]. The combination treatment of curcumin with trichostatin A on SkBr3 cells led to
cell cycle arrest and an increase in cyclin-dependent kinase inhibitor p21 and p27 expression, which is
normally inactivated in most cancer [95]. There was also a decrease in cyclin D1 protein expression,
whose overexpression has been demonstrated to be related to the evolution and progression of
cancer [96]. Among the brain tumors, medulloblastoma is the most common one in children and young
adults. In an in vivo medulloblastoma xenograft, curcumin significantly increased survival. This was
associated with an induction of apoptosis and cell cycle arrest at the G2/M phase in medulloblastoma
cells, in combination with a reduction in HDAC4 IV expression and activity, and an increase in tubulin
acetylation [62]. Combined with the pan-HDACi, vorinostat and panobinostat, curcumin induced
hyperacetylation of Hsp90 chaperone accompanied with a substantial depletion of Hsp90 client
proteins (Akt, survivin, EGFR, and Raf-1), which caused both growth inhibition and apoptosis [64].

In human hepatoma cells, it has been reported that curcumin treatment can result in a potent
inhibition of histone acetylation. Curcumin treatment led to a similar inhibition of histone acetylation
in the absence or presence of trichostatin A. Also, the domain negative of p300 (a potent HAT protein)
could block the inhibitory effect of curcumin on histone acetylation, and curcumin exposure reduced
HAT activity. Furthermore, exposure of cells to low or high concentrations of curcumin reduced or
enhanced reactive oxygen species (ROS) generation, significantly [65]. In the human pancreatic BxPC-3
cell line, it was observed that the treatment of EF24 (EF), a novel synthetic curcumin analogue, in
conjunction with MS-275 (entinostat) or salermide (SAL) HDACi, can decrease the viability of BxPC-3
cells substantially. This effect was associated with an elevation in the acetylation of histone H3 and H4
as well as the number of cells in G1 phase, and a reduction in the ratio of cells in the G2/M phase [66].

1.2.3. Marine Products

Actinomycetes Strains

In a recent study, led by Abdelfattah, numerous actinomycetes strains were isolated from various
marine sponges collected from the Red Sea shore in Egypt to test the efficacy of their crude extracts as
potential HDACi in the HeLa cell line. It has been demonstrated that the crude extract from Streptomyces
sp. SP9 can exhibit a significant HDAC inhibitory activity. Heliomycin and tetracenomycin D the
principal compounds of Streptomyces sp. SP9 and showed HDAC inhibitory activities and according to
a computational docking study, the mechanisms by which tetracenomycin D may inhibit HDAC can
be by promoting binding interactions with HDAC2 and HDAC3 [67].
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Seidel C et al. isolated various Actinomycetes from 22 sediment samples along the Southern
Coast of India that yielded 186 strains out of which 10 strains exhibited moderate to strong inhibition.
The maximum inhibition (61%) was noted with strain VITKSM06 and the least (31%) with strain
VITSJT03. The treated HeLa cells also showed a modified morphology and condensed chromatin,
which may be attributed to HDAC inhibitory effects [68].

Marine Polycyclic Quinone-Type, Halenaquinone

In Molt 4 (lymphoblastic leukemia cells), K562 (chronic myelogenous leukemia cells),
MDA-MB-231 (breast cancer cells), and DLD-1 (colorectal carcinoma cancer cells) the evidences
have indicated that halenaquinone can induce apoptosis and inhibit proliferation, along with excessive
production of ROS. Moreover, halenaquinone was found to reduce the activity of HDACs and the
expression of the topoisomerase-IIα. Also the inhibition of the expression of the anti-apoptotic protein
p-Akt was observed, in addition to the inhibition of some other important anti-apoptotic proteins
including NF-κB, hexokinase II, and Bcl-2 upon halenaquinone treatment [69].

Other Products

Aceroside VIII: In HT29 human colon cancer cells, it has been demonstrated that Aceroside VIII,
a diarylheptanoid isolated from Betula platyphylla, can selectively inhibit HDAC6 catalytic activity;
and the combinatorial treatment of aceroside VIII with A452, a selective HDAC6 inhibitor, led to a
synergistic elevation in the levels of acetylated α-tubulin leading to apoptosis and growth inhibition of
the cancer cells [70].

bis(4-Hydroxybenzyl)sulfide: In the MDA-MB-231 breast tumor cell line, a sulfur containing
compound, bis(4-hydroxybenzyl)sulfide (1), isolated from the root extracts of Pleuropterus ciliinervis,
showed a potent inhibitory activity on the HDACs [71].

Chalcones: The HDAC inhibitory activity of various chalcones, natural phenols that form the
central core for a variety of important biological compounds including Leguminosae, has been evaluated.
It was demonstrated that isoliquiritigenin, butein, and homobutein caused an inhibition of both
TNFα-stimulated NF-κB activation and HDAC activity [72].

Feijoa acetonic extract: Feijoa acetonic extract has exhibited tumor-targeting activities on various
cancer cells. Flavone, its active component, was identified to induce apoptosis, in combination with a
caspase activation as well as p16, p21, and TRAIL overexpression in leukemia cells. These effects were
co-related to a higher histone and non-histone acetylation levels and by HDAC inhibition [73].

Romidepsin: The bicyclic peptide class-I selective HDACi romidepsin (Istodax) has been approved
by the FDA as second-line therapy for both the treatment of cutaneous T-cell lymphoma (TCL) and of
peripheral TCL. It acts as a prodrug, its disulfide bridge being reduced by glutathione upon entering
into the cells, thus allowing the free thiol groups to interact with Zn ions in the active domains of class
I HDACs. Romidepsin has been discovered during a program that aimed to evaluate the potential
of fermentation products for their possible antimicrobial and antitumor activities. It can be naturally
produced by Chromobacterium violaceum, is a large, motile, Gram-negative bacillus having a single polar
flagellum and, usually, one or two lateral flagella. Presently, the commercial supply of romidepsin is
being possibly generated by using a confidential fermentation process [97–101].

2. Conclusions

This review summarizes the anti-cancer actions of few important natural products against
HDACs (Table 1). Accumulating evidence supports the paradigm that histone hypoacetylation
and transcriptional dysfunction are involved in a number of cancer types. Several reports have
clarified several unknown molecular and cellular targets implicated in HDAC inhibition as well
as the mechanisms of action by which the anti-cancer activity can be achieved. These properties,
combined with the good tolerance shown by their limited toxicity, suggest that HDACis derived from
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natural products deserve further fundamental animal and clinical studies in order to be used as novel
therapeutics for the treatment of malignant tumors.
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Abbreviations

pAkt Phosphorylated Protein kinase B
Bax Bcl-2-associated X protein
c-Myc Proto-oncogene
DSBs Double-Strand DNA Breaks
ERα Estrogen receptor-α acetyl-H3.
EGFR Epidermal Growth Factor
HAT protein Histone acetyltransferase
HDAC Histone deacetylases
Hsp90 Chaperone
I κBα Nuclear factor of κ light polypeptide gene enhancer in B-cells inhibitor α (I κB α)
MTA1 Metastasis associated protein
Mec1 Serine/threonine-protein kinase
Notch 1 Notch homolog 1, translocation-associated (Drosophila)
PAX1 Paired box gene1
PARP Poly ADP ribose polymerase
p27 & p21 Cyclin-dependent kinase inhibitor
pERK phosphorylated Extracellular signal-regulated kinases
PTEN Phosphatase and tensin homolog deleted on chromosome 10
Raf-1 Proto-oncogene serine/threonine-protein kinase
ROS Reactive oxygen species. STAT3: Signal transducer and activator of transcription 3
SIRT Sirtuin
TNFα Tumor necrosis factor
TRAIL TNF-related apoptosis-inducing ligand
UHRF1 Ubiquitin-like with PHD and RING Finger domains 1.
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