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We use synchrotron X-ray micro-tomography to
investigate the displacement dynamics during three-
phase—oil, water and gas—flow in a hydrophobic
porous medium. We observe a distinct gas invasion
pattern, where gas progresses through the pore
space in the form of disconnected clusters mediated
by double and multiple displacement events. Gas
advances in a process we name three-phase Haines
jumps, during which gas re-arranges its configuration
in the pore space, retracting from some regions to
enable the rapid filling of multiple pores. The gas
retraction leads to a permanent disconnection of gas
ganglia, which do not reconnect as gas injection
proceeds. We observe, in situ, the direct displacement
of oil and water by gas as well as gas–oil–water double
displacement. The use of local in situ measurements
and an energy balance approach to determine fluid–
fluid contact angles alongside the quantification of
capillary pressures and pore occupancy indicate that
the wettability order is oil–gas–water from most to
least wetting. Furthermore, quantifying the evolution
of Minkowski functionals implied well-connected oil
and water, while the gas connectivity decreased as gas
was broken up into discrete clusters during injection.
This work can be used to design CO2 storage,
improved oil recovery and microfluidic devices.
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1. Introduction
Understanding the pore-scale physics governing the simultaneous flow of three fluid phases—
two immiscible liquids and a gas—inside porous structures is of great interest to many areas
of science and technology, including microfluidic devices [1], packed bed chemical reactors [2]
and catalysis [3]. In addition, the dynamics of multiphase flow at the micro-scale (pore scale)
regulate the movement of fluids in large, extensive natural porous systems, for instance during
carbon dioxide storage in geological reservoirs to prevent dangerous global warming [4–8], and
gas injection (GI) in oilfields as an enhanced oil recovery (EOR) method [9,10], as well as the
removal of non-aqueous phase liquid (NAPL) in soils [11].

The main objective of our work is to use fast synchrotron X-ray micro-tomography to
characterize the key physical processes that control the pore-scale dynamics during three-
phase flow in hydrophobic porous media, namely wettability order, spreading layers and
double/multiple displacement events [12]. For simplicity, throughout the paper, the term water-
wet will be used to refer to hydrophilic systems, while hydrophobic systems will be referred to as
oil-wet.

The wettability order is a principal characteristic of three-phase flow, which dictates the size
of the pores occupied by each fluid phase [12]. The most wetting phase tends to reside close to
the solid surface and in small pores; the most non-wetting phase preferentially fills the centres
of the large pores; and the intermediate-wet phase occupies medium-sized pores and/or forms
spreading layers sandwiched between the two other phases. The wettability order of a phase can
significantly impact its flow conductance; the larger the pores filled by a fluid phase the more
readily it flows in the pore space [13]. Furthermore, the existence of a phase in the centre of the
pores permits its trapping in the form of disconnected bubbles by the more wetting phases. It has
been shown that wettability order is a function of surface wettability and liquid–gas miscibility,
either immiscible or near-miscible conditions [12,14,15].

In a system containing oil, gas and water at immiscible gas–oil conditions, the wettability
order for water-wet media is water–oil–gas from most to least wetting, with oil spreading in
layers sandwiched between gas in the centres and water in the corners of the pore space [16,17].
For strongly oil-wet systems, at immiscible conditions, the wettability order is altered such that
oil becomes the most wetting phase, water the most non-wetting, while gas is intermediate-
wet; however, gas does not spread in layers at immiscible conditions [18]. In contrast, for
oil-wet systems, at near-miscible conditions, gas, the intermediate-wet phase, spreads in layers
surrounding water, the most non-wetting phase, in the centres of the pores [15]. Furthermore,
in water-wet systems, at near-miscible conditions, the strict wettability order breaks down as oil
and gas become neutrally wetting to the rock surface, which prevents the formation of oil layers;
water remains the most wetting phase in the pore space [14].

In a three-phase system, the formation of spreading layers maintains hydraulic connectivity
in the pore space, permitting flow at very low saturations [19,20]. This is particularly favourable
for oil recovery applications, where the injection of gas reconnects oil in the pore space, slowly
draining it through oil spreading layers [21].

Layer formation is thermodynamically regulated by the spreading coefficient (Cs) of each
fluid phase, which is derived from a force balance involving fluid–fluid interfacial tensions [12].
A phase (i) forms spreading layers in the pore space if its spreading coefficient is positive or close
to zero (Csi = σ jk − σ ij − σ ik, where σ is the interfacial tension and subscripts i, j and k denote
the three fluid phases) [22,23]. Øren et al. [16] visualized the formation of spreading oil layers
sandwiched between water and gas in a water-wet two-dimensional micromodel. Furthermore,
Alhosani et al. [15] observed the formation of gas spreading layers in an oil-wet carbonate rock
under near-miscible conditions. The spreading of a fluid phase can have a direct impact on contact
angles and fluid configurations with a major influence on flow properties [12].

Another unique feature of three-phase flow is double and multiple displacement events, which
can occur under capillary-dominated conditions [16,20,21,24]. Multiple displacements refers to
the displacement of one fluid phase by another, which in turn displaces another phase in the pore
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space, with any number of intermediate steps [24–26]. Previous micromodel studies have shown
the occurrence of double displacement events in systems with variable wettability [27–29]. In
a water-wet micromodel, at immiscible conditions, Keller et al. [19] observed the occurrence of
double drainage (gas displacing oil displacing water) and double imbibition (water displacing oil
displacing gas) events during GI and chase water re-injection, respectively. Notice that the direct
displacement of water by gas and gas by water is limited due to the formation of spreading of
oil layers sandwiched between gas and water, preventing their direct contact in the pore space
[28]. Multiple displacement events have also been observed in water-wet micromodels during
cycles of gas and water injection; this behaviour was captured using pore network modelling [25].
Furthermore, Sohrabi et al. [27] visualized double displacement events in an oil-wet micromodel
at immiscible conditions. They reported that the main double displacement event during GI
was gas–oil–water with a modest amount of water–oil–gas displacement during chase water re-
injection. The behaviour could also be reproduced using a pore-scale model that incorporated
multiple displacement events [26].

Most of the research work conducted to visualize the displacement dynamics during
multiphase flow has been on micromodels [11,30,31]. While two-dimensional micromodels are
useful for viewing pore-level events owing to their visual clarity, they do not capture the flow
behaviour of the fluids in three-dimensional porous media with complex structures, e.g. rocks and
soils. In this work, we use synchrotron X-ray micro-tomography to image three-phase (gas, water
and oil) displacement dynamics during GI in an oil-wet (hydrophobic) reservoir rock. Our ability
to visualize the movement of the fluids and characterize the interactions at their interfaces inside
the pore space will help provide an in-depth understanding of the physical processes involved.

The use of X-ray micro-tomography allows for the in situ three-dimensional imaging of the
rock pore space, and has been employed recently to study multiphase flow in porous media
[32–35]. Laboratory-based X-ray micro-tomography, also known as static imaging, allows for the
end-states of flooding experiments to be imaged. While static imaging enables the wettability
order and presence of spreading layers to be determined, double displacement events can only
be inferred from these results [14,17,18,36]. Scanziani et al. [17] performed three-phase flow
experiments in water-wet carbonates, with static imaging, and confirmed, in situ, the spreading
of oil layers and the anticipated wettability order: water–oil–gas from most to least wetting.
Alhosani et al. [14] observed, in the same rock–fluid system used by Scanziani et al. [17], that
oil layers diminish as gas–oil miscibility is approached (near-miscible conditions). The authors
also suggested that, at near-miscible conditions, gas can directly displace water in the pore space,
facilitating the occurrence of gas–water–oil double displacement events [14].

Qin et al. [37] studied gas and water injection in weakly oil-wet rocks, where water was the
intermediate-wet phase. They demonstrated that water does not form spreading layers in the pore
space, and that gas was trapped by both oil and water during water injection. Furthermore, using
static imaging, Alhosani et al. [18] showed that in strongly oil-wet systems, at near-miscible and
immiscible conditions, the wettability order becomes oil–gas–water from most to least wetting,
preventing the trapping of gas by water in the pore centres. Nonetheless, although static imaging
provides useful information on the arrangement of fluids in the pore space, it cannot be used to
capture the displacement dynamics, which occur on a much shorter time scale than that required
for a single static scan (which can take several minutes or hours).

To directly visualize double displacement events and obtain information about the evolution
of the fluid arrangement in the pore space over time, fast synchrotron X-ray micro-tomography
can be used, which allows for pore-scale images to be acquired at approximately 1 min temporal
resolution [38–42]. The use of synchrotron X-ray imaging has provided valuable insights into
the pore-scale dynamics of two-phase flow [38,43–47]; however, very few studies have used
it to investigate the displacement events during three-phase flow [48,49]. Scanziani et al. [48]
were the first to use synchrotron imaging to study three-phase—water, oil and gas (nitrogen)—
displacement dynamics in a water-wet quarry limestone rock. The authors observed that gas
moves in a connected front surrounded by oil spreading layers during GI. Moreover, they
reported that during chase water re-injection, after GI, the dominant displacement event was
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water displacing oil displacing gas, which resulted in double capillary trapping—gas trapping
by oil layers and oil layer trapping by water wetting layers. This is favourable for gas storage
applications, where immobilization of the gas phase is desired.

Furthermore, Scanziani et al. [49] employed synchrotron imaging to investigate the
displacement dynamics in a rock with altered wettability, which displayed a mixed-wet behaviour
with oil–water contact angles both above and below 90°. The gas remained largely connected
during GI in the mixed-wet rock. The authors did not observe double displacement events during
GI and chase water re-injection; both gas and water directly displaced oil in the pore space. This
type of displacement can facilitate further oil recovery from petroleum reservoirs with limited
gas recycling. Nevertheless, to date, no three-phase flow synchrotron study has been performed
in an oil-wet (hydrophobic) porous medium. To place the work in a more general context, an
accurate characterization of three-phase flow in hydrophobic systems is important since many
natural and engineered surfaces are non-water-wet, or designed to be partially water-wet, from
deep oil reservoirs to butterfly wings, human skin, textiles, medical devices and fuel cells [50–55].

In this work, we use synchrotron X-ray imaging, with high spatial and temporal resolutions,
to investigate the pore-scale dynamics during immiscible GI in an oil-wet reservoir rock at
subsurface conditions (8 MPa and 60°C). This is the three-phase extension of an analysis of
two-phase displacement [47] using the apparatus and experimental methodology applied to a
quarry carbonate [49]. First, we characterize the fluid–fluid contact angles and pore occupancy
to confirm the hydrophobic nature of the rock surfaces and infer the wettability order of the
system. Then, we use fast imaging to examine, in situ, during GI, the evolution of (i) gas
connectivity; (ii) direct, double and multiple displacements, events; (iii) water connectivity and
trapping; and (iv) spreading layers. Finally, we quantify the change in Minkowski functionals—
fluid saturations, interfacial areas and curvatures—with time to provide a complete description
of the fluid topology in the pore space, i.e. fluid–fluid connectivity and trapping.

We observe that gas, the intermediate-wet phase, progresses through the pore space in the form
of disconnected clusters. This behaviour is attributed to the pore-scale events, made possible by
double and multiple displacements, that govern the gas movement in the porous medium, which
we name three-phase Haines jumps. As gas displaces either oil or water, it rapidly progresses to
fill several pores, which causes it to retract from regions further away to enable this fast filling.
This retraction leads to a permanent disconnection of gas ganglia, which fail to get reconnected
as GI proceeds. The disconnected gas ganglia reach a new position of capillary equilibrium in the
pore space and can only be displaced through double or multiple displacement events.

The significant new observation is that gas is able to progress through the pore space, under
capillary-dominated flow conditions, as disconnected ganglia. This is a process unique to three-
phase flow and distinct from ganglion dynamics in two-phase flow [56], where a disconnected
phase can advect through the pore space when viscous forces are significant.

2. Material and methods
All synchrotron X-ray imaging was performed using beamline I13-2 at the Diamond Light Source
science facility located at the Harwell Innovation Centre, Didcot, UK. The preparation of the
experimental materials and fluids as well as wettability alteration process were all conducted
in-house before transport to the synchrotron facility to dynamically image the three-phase
flow experiment. The methods and apparatus used (figure 1) are similar to those applied to
study two-phase waterflooding on the same sample [47] and three-phase flow on a quarry
carbonate [49].

(a) Experimental materials
(i) Porous medium properties

The porous medium selected for the three-phase flow study was a heterogeneous carbonate rock
extracted from a giant oil-producing reservoir in the Middle East. We only studied a single sample
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Figure 1. The flooding and imaging apparatus used to conduct the three-phase flow experiment in the oil-wet reservoir rock
at 8 MPa and 60°C. The rock was inserted in a flow cell placed in front of the synchrotron light source to image themovement of
water, oil and gas in the pore space. The three fluid phases were injected at a very low flow rate using syringe pumps to capture
the pore-scale displacement dynamics. (Online version in colour.)

because of constraints on experimental time at the synchrotron facility. The cylindrical sample was
3.85 mm in diameter and 13.8 mm in length. The mineralogical composition of the reservoir rock
consisted of mainly calcite (96.5% ± 1.9%) [57].

The total porosity (ratio of the volume of the void space to the total volume) was measured
using a helium porosimeter to be 26%. The total porosity is composed of macro- and micro-
porosities. The macro-porosity is defined as the porosity that is resolvable from the pore-scale
images, while the micro-porosity is the unresolvable porosity. The macro- and micro-porosities
accounted for 16% and 10%, respectively. The total pore volume (PV) of the sample corresponding
to the measured helium porosity was 0.0416 ml.

(ii) Fluid properties

The three fluids, two immiscible liquids and a gas, used in the experiment consisted of
deionized water, n-decane and nitrogen. To distinguish between the oil phase (n-decane) and
the water phase (deionized water) in the raw pore-scale images n-decane was doped with 15 wt%
1-iododecane (C10H21I), while deionized water was doped with 20 wt% potassium iodide (KI).
This provided a distinct X-ray attenuation for each phase in the pore-scale images, facilitating
accurate segmentation. The order of grey-scale values in the pore-scale images, from lowest
to highest (darkest to brightest), was gas–oil–water–rock; see figure 2. The thermophysical
properties of the three fluid phases are listed in table 1.
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Table 1. Densities, viscosities, interfacial tensions and spreading coefficients of the three fluid phases used in the three-
phase flow experiment conducted at 8 MPa and 60°C. The spreading coefficient of each phase, i, was calculated using
Csi = σ jk − σ ij − σ ik , whereσ is the interfacial tension and subscripts i, j and k denote the three fluid phases. The interfacial
tensions were measured using the pendant drop method under the experimental conditions (8 MPa and 60°C) [58]. Densities
weremeasured at 40°C and 7.6 MPa. The viscosity of n-decane is provided at ambient conditions [59], and ofwater and nitrogen
at 50°C and 10 MPa [60].

fluid composition (%wt) ρ (kg ·m−3) µ (mPa · s) σ (mN ·m−1) Cs (mN ·m−1)

water 0.80 H20+ 0.20 KI 1154.1 0.547 σ gw = 63.7 −104.6
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

oil 0.85 C10H22 + 0.15 C10H21I 715.2 1.088 σ ow = 52.1 +0.4
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

gas N2 83.9 0.018 σ go = 11.2 −22.8
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The interfacial tensions between the fluids, water (80 wt% H2O + 20 wt% KI), oil (85 wt%
C10H22 + 15 wt% C10H21I) and nitrogen were measured under the experimental conditions,
8 MPa and 60°C, using the pendant drop method. The apparatus for conducting the
interfacial tension measurements is described elsewhere [58]. Using the values in table 1, the
spreading coefficients of the three fluid phases were calculated to be Csw = −104.6 mN m−1,
Cso = +0.4 mN m−1 and Csg = −22.8 mN m−1. This indicates that it is only possible for oil to form
spreading layers in the pore space since its spreading coefficient is close to zero; water and gas do
not spread in layers. Gas, indeed, did not form layers in these experiments, unlike in near-miscible
systems, where the spreading coefficient is closer to zero and gas layers can be seen [15].

(b) Establishing hydrophobic wettability
The wettability of the rock surfaces was altered towards hydrophobic conditions using a process
known in the oil industry as ageing [61,62]. Ageing is a chemical process in which the solid
surfaces are exposed, at high temperatures and pressures, to crude oil components that can be
adsorbed by the rock surface, which reverts its wettability from water-wet to oil-wet. In this study,
the crude oil used to alter the wettability was obtained from the same reservoir as that from which
the rock was extracted. The composition of the crude oil is listed in electronic supplementary
material, table S1. It is believed that the original underground wettability of the reservoir rock is
oil-wet, and hence its wettability can easily be restored to oil-wet conditions.

First, the pressure and temperature of the system were raised to 10 MPa and 80°C to establish
the wettability alteration conditions. Then, the rock pore space was saturated with brine, the
aqueous phase from the same reservoir, which was then followed by the injection of 40 PV of
crude oil from the top and bottom of the sample with an increasing flow rate from 0.001 to
0.1 ml min−1. After that, 5 PV of fresh crude oil was injected in the rock at 0.05 ml min−1 each
day for a week. Finally, the rock was conserved in a crude oil bath at ambient pressure and 80°C
for three months before transporting it to the synchrotron facility to conduct the experiment.

(c) Experimental procedure
Subsequent to preparing the experimental materials and altering the surface wettability of
the porous medium towards hydrophobic conditions, the three-phase flow experiment was
performed at beamline I13-2. The flooding apparatus was set up at the synchrotron beamline
to image the flow of fluids in the rock pore space with high temporal (74 s) and spatial (3.5 µm)
resolutions.

(i) Apparatus

A high-pressure, high-temperature flooding apparatus was used to perform the three-phase flow
experiment at 8 MPa and 60°C. A schematic diagram of the experimental apparatus is shown in
figure 1. The apparatus consisted of the following parts.
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Table 2. Details of thefluid injections performedduring the three-phaseflowexperiment at 8 MPaand60°C. Pore volumes (PV)
injected correspond to the total porosity of the rock sample. WF and GI were stopped when no significant change in the fluid
configurations in the pore space had been observed for at least 15 min. Capillary numbers were calculated using Ca= µq/σ ,
whereσ is the interfacial tension,µ is the viscosity of the injected fluid and q is the Darcy velocity. Subscriptsw, g and o stand
for water, gas and oil phases, respectively. σ and µ are shown in table 1, while q is calculated by dividing the flow rate by the
cross-sectional area of the sample (11.34 mm2).

injection step flow rate (ml min−1) PV total time (min) capillary number

oil injection (OI) 0.1 20.0 8.32 —
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

water flooding (WF) 0.00015 0.69 92.1 Ca[wo]= 2.09× 10−9
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

gas injection (GI) 0.00015 0.24 32.2 Ca[go]= 3.64× 10−10
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Ca[gw]= 6.39× 10−11
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Pumps. High accuracy, low flow rate Teledyne ISCO pumps were used to regulate the flow of
the fluids through the rock sample.

Flow cell. A Hassler-type carbon fibre coreholder that is X-ray transparent was used to keep the
rock under confining pressure during the experiment.

Synchrotron light source. The carbon fibre coreholder was placed in front of a high photon
flux pink beam emitted by the synchrotron light source to image the rock and fluids during the
experiment. The X-ray beam had a peak photon energy of 15 keV and was filtered by placing a
1.3 mm pyrolytic carbon filter, a 3.2 mm aluminium filter and a 10 µm gold filter in the beamline.

Proportional integral derivative (PID) controller. A PID controller, connected to a flexible heater
wrapped around the flow cell, was used to elevate the temperature of the rock to the experimental
conditions. In addition, a thermocouple, placed next to the sample, was also connected to the PID
controller to maintain and regulate the temperature during the experiment.

PEEK spacer. An X-ray-transparent spacer made of polyetheretherketone (PEEK) was placed at
the inlet of the rock sample to detect the arrival of the fluids in order to start the dynamic X-ray
imaging.

(ii) Flow experiment

A series of fluid injections: (i) oil injection (OI), (ii) water flooding (WF), and (iii) GI, were
performed in the aged reservoir rock, during which the pore space was continuously imaged
to capture the dynamics of displacement. All injections were performed from the bottom of the
sample under capillary-dominated conditions; see table 2. Figure 2 shows two-dimensional raw
pore-scale images of a cross-section of the rock acquired after each injection step.

First, 20 PV of oil (doped n-decane) was injected into the sample at a flow rate of 0.1 ml min−1

to replace all of the crude oil used to alter the wettability of the sample; see figure 2a. The
temperature and pressure of the system were then raised to the experimental conditions (60°C
and 8 MPa), and a confining pressure of 10 MPa was applied. Water injection (WF) was then
started at a very low flow rate, 0.15 µl min−1, corresponding to a capillary number Ca[wo] of
2.09 × 10−9, defined by Ca = µq/σ , where σ is the interfacial tension, µ is the viscosity of the
displacing fluid and q is the Darcy velocity (table 1). Water was injected over a period of 92.1 min,
which corresponded to the injection of 0.69 PV of water; see figure 2b. GI was then performed
at the same flow rate for 32.2 min, corresponding to the injection of 0.24 PV of gas, with a gas–
water Ca[gw] = 6.39 × 10−11 and gas–oil Ca[go] = 3.64 × 10−10. WF and GI were stopped when no
significant change in the fluid configurations in the pore space had been observed for at least
15 min.

(iii) Synchrotron X-ray imaging

Static and dynamic scans were collected during the experiment with a voxel size of 3.5 µm. The
dynamic scans were acquired during the injection of fluids, whereas static scans were acquired
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(a)

OI

500 µm 500 µm 500 µm

WF GI

(b) (c)

Figure 2. Filtered raw two-dimensional pore-scale images of a cross-section of the rock acquired after: (a) oil injection (OI);
(b) water flooding (WF); and (c) gas injection (GI), with a voxel size of 3.5 µm. In (a), rock is the light phase and oil is the dark
phase. In (b) and (c), the order from darkest to brightest phase is oil–water–rock and gas–oil–water–rock, respectively.
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Figure 3. Three-dimensional images showing the location of the dynamic scans (1280× 1280× 1080 voxels) relative to
the static scans of the whole sample (1280× 1280× 3940 voxels). The spatial resolution of the images is 3.5µm. The
macro-porosities (φmacro) of the static and dynamic scans are 16% and 12%, respectively.

at the end of each injection. Dynamic imaging was performed at the middle of the sample, in
the vertical direction, while static imaging of the whole sample was performed. The location of
the dynamic scans relative to the static scans is shown in figure 3. The centre of the sample was
selected for dynamic imaging since it does not contain large vugs and mineral grains. The macro-
porosity is 16% in the static scans, as mentioned in §2a(i), and 12% in the dynamic scans.

The dynamic images were 1280 × 1280 × 1080 voxels in size. During dynamic imaging of water
injection, a total of 76 tomograms were acquired, every 70 s, with 700 projections and 0.065 s
exposure time. On the other hand, 25 tomograms were acquired, every 74 s, during GI with 750
projections and 0.07 s exposure time. The high spatial and temporal resolution of synchrotron
imaging allowed for the pore-scale displacement dynamics to be captured during water and
GIs. The static scans of the whole sample were acquired after each injection (see electronic
supplementary material, figure S1) with 2000 projections and 0.15 s exposure time.
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(d) Image and data processing
(i) Image segmentation

All the tomograms acquired were reconstructed using a filtered back-projection algorithm [63,64]
obtaining grey-scale images of the pore space and the fluids within it, as shown in figure 2 and
electronic supplementary material, figure S1. However, to obtain quantitative information from
these images they must be segmented. Segmentation refers to the assignment of voxels to each
phase—water, oil, gas or rock—in the pore-scale image. The large static images were segmented
using the seeded watershed algorithm [65], while the dynamic images were segmented using
machine learning-based Weka segmentation [66,67].

Segmentation of the static images was performed in three steps. (i) The images acquired after
OI, WF and GI were filtered using a non-local means filter [68]. (ii) The filtered WF and GI images
were then subtracted from the filtered OI image to clearly distinguish the water and gas phases in
these images. (iii) The subtracted images were then filtered again with the non-local means filter
and segmented using the watershed algorithm. The same procedure was followed to segment
the dynamic WF and GI images; however, Weka was used instead of watershed since it provides
a more accurate characterization of flow properties near fluid–fluid contacts [57]. During Weka
segmentation the fast-random algorithm was selected alongside the mean and variance texture
filters. Weka segmentation is shown in electronic supplementary material, figure S2. Weka is very
CPU intensive, which explains why it was not applied to segment the large static images.

(ii) Data analysis

Contact angle measurements. The segmented three-dimensional pore-scale images can be used to
characterize the in situ geometric contact angles, θg, between the three fluid phases in the pore
space. We use the automatic code developed by AlRatrout et al. [69] to measure the oil–water,
gas–water and gas–oil contact angles. The geometric oil–water contact angle can be used to infer
the wettability of the surface [57]; rock surfaces can either be water-wet or oil-wet, defined by
the oil–water contact angle. Nonetheless, geometric contact angles are measured between relaxed
fluid interfaces, when fluids are at mechanical equilibrium, and may not be representative of the
actual contact angle value during displacement.

To complement the geometric contact angle measurements, we use an energy balance approach
to calculate fluid–fluid displacement contact angles, also known as three-phase thermodynamic
contact angles (θ t), between oil–water, gas–water and gas–oil [12]. Thermodynamic contact angles
have been proven to provide better estimates of displacement angles in two-phase flow than
geometric values [46,47,70]. Assuming no change in Helmholtz free energy between the two local
states of equilibrium and ignoring viscous dissipation, the three-phase thermodynamic contact
angles can be calculated using [71]

(�aws cos θt[ow] − �aow − φκow�Sw)σow = (�ags cos θt[go] + �ago − φκgo�Sg)σgo + �agwσgw, (2.1)

where a is the interfacial area per unit volume, θ t is the thermodynamic contact angle, φ is the
dynamic image-based macro-porosity, S is the saturation (the fraction of the macro-pore space
occupied by each phase) and κ is the total curvature of the fluid–fluid interface. Subscripts s, w, g
and o denote the solid, water, gas and oil phases, respectively, while � is the change between two
consecutive time steps.

The interfacial areas, curvatures and saturations were measured on the 25 dynamic pore-scale
images obtained during GI, and the values of θ t[ow] and θ t[go] that best fit equation (2.1) were
found using the least-squares approximation approach. The third contact angle, θ t[gw], was found
using the Bartell–Osterhof relationship for three phases in thermodynamic equilibrium [72,73],

σgw cos θgw = σgo cos θgo + σow cos θow. (2.2)

Saturation, specific interfacial area and curvature. The saturations of the three fluid phases, that is,
the ratio of the volume of a phase to the volume of the pore space, were computed on the static
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and dynamic images by dividing the number of voxels assigned to each phase by the total number
of voxels comprising the pore space in the segmented images. This only considered saturation in
macro-pore space (the resolvable pores in the image).

The specific interfacial area and curvature of the fluid–fluid interfaces were measured on the
segmented dynamic pore-scale images. First, a marching cubes algorithm was used to isolate
the gas–water, gas–oil and oil–water interfaces. The interfaces were then smoothed, to remove
voxelization artefacts, using unconstrained smoothing with a kernel size = 5 [74,75]. The specific
interfacial area is the area of these interfaces divided by the total volume—that is, the volume
of the rock and pore space combined. To obtain the fluid–fluid curvatures, a further step was
required where the smoothed interfaces were additionally modelled using a quadratic equation,
whose eigenvalues and eigenvectors correspond to the principal curvatures (κ1 and κ2) and their
directions, respectively.

In addition to facilitating the calculation of thermodynamic contact angles, obtaining
quantitative information on saturation, interfacial area and principal curvatures—these
properties are also known as Minkowski functionals—can provide a complete topological
description of the geometry of the fluids within the pore space [76–78]. This information can help
understand key physical characteristics of flow, such as fluid–fluid connectivity and trapping.
For instance, the product of the two principal curvatures of the fluid–fluid interface (κ1 × κ2),
also known as the Gaussian curvature, can be used as a measure of the connectedness of the
fluid phases in the pore space [78]. Furthermore, the sum of the two principal curvatures—the
total curvature (κ = κ1 + κ2)—can be linked to the capillary pressure (Pc) between the fluids [79],
which is the pressure needed for one phase to displace another in the pore space, using the
Young–Laplace equation

Pc,ij = σijκij. (2.3)

Pore occupancy, connectivity and thickness maps. Pore occupancy—the size of the pores occupied
by each fluid phase—was characterized using the maximal ball method [80,81], which relies on
the generalized pore network extraction code [82]. First, the size of the pores was determined by
fitting the largest inscribed spheres in their centres; the diameter of the sphere is the diameter
of the pore. The fluid phase that resides in the centre of the sphere—the centre of the pore—is
considered to occupy the pore. This allows us to quantitatively assess the relationship between the
pore size and the phase occupying it. We quantify the pore occupancy on the static images after
WF and GI.

The three-dimensional connectivity of each fluid phase was examined in the dynamic scans.
The voxels belonging to each phase were isolated and then the connectivity analysis was
performed. Each voxel in an individual object is assigned an identical value, thereby labelling
the disconnected clusters with distinct colours. The thickness maps of a phase, defined as the
diameter of the largest ball containing the voxel and entirely inscribed in the object, were
computed in three dimensions using the approach developed by Hildebrand & Rüegsegger [83].

3. Results and discussion
First, in §3a, we measure fluid–fluid contact angles to confirm that the ageing process altered
the wettability of the rock surfaces towards hydrophobic conditions. We use the geometric and
thermodynamic contact angle measurements alongside pore occupancy to identify the wettability
order of the system. Next, using static images of the whole sample, we show the end-state
saturations of oil, water and gas after each injection in §3b. In §3c, we analyse the GI dynamics
by examining the evolution of (i) gas connectivity; (ii) direct, double and multiple displacement
events; (iii) water connectivity and trapping; and (iv) oil layers. Finally, in §3d, we quantify the
change in Minkowski functionals—saturations, interfacial areas and curvatures—with time to
obtain a complete understanding of the fluid topology in the pore space.
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Figure 4. Probability density function of the in situ measured distribution of fluid–fluid contact angles at the end of (a)
waterflooding (WF) and (b) gas injection (GI). The contact angles were measured using the automated method developed by
AlRatrout et al. [69]. The angle was characterized through the denser phase: water in the case of oil and water and gas and
water, and oil in the case of gas and oil. (Online version in colour.)

Table 3. Measurements of the oil–water, gas–oil and gas–water mean geometric contact angles and thermodynamic contact
angles after gas injection (GI). The error in the geometric contact angle represents the standard deviation of the distribution,
while in the case of the thermodynamic contact angle it indicates the uncertainty in the measurements.

method θ ow θ go θ gw

geometric 101± 22° 70± 27° 87± 25°
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

thermodynamic 125± 10° 78± 10° 115± 10°
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(a) Wettability characterization
(i) Contact angles

The geometric fluid–fluid contact angles were measured at the end of WF and GI, in the same
location, on a subvolume of size 0.5 × 0.5 × 0.5 mm3. Figure 4 shows the in situ spatial distribution
of the effective oil–water, gas–water and gas–oil contact angles after WF and GI.

After WF, the mean geometric oil–water contact angle was 110 ± 20°, indicating that oil is more
wetting to the rock than water, and hence confirms that the ageing process rendered the rock
surfaces oil-wet (hydrophobic); see figure 4a.

Furthermore, figure 4b shows that the mean oil–water contact angle decreases to 101 ± 22°
after GI (table 3). In three-phase flow, double displacement mechanisms allow for both water to
displace oil and oil to displace water in the pore space. In the latter process, water is receding,
with a likely lower contact angle than the advancing angle during WF, because of contact angle
hysteresis. Therefore, the mean geometric contact angle decreases after GI, representing a position
of equilibrium after events where water is both invading and receding.

The mean geometric gas–oil contact angle is 70 ± 27° (figure 4b), once more indicating that
oil is more wetting to the surface than gas; therefore, it is the most wetting phase in the system.
The measured mean of the gas–water geometric contact angle distribution is 87 ± 27°, suggesting
that the rock surfaces are neutrally wetting to both gas and water. Hence, it is not possible to
determine a clear wettability order in the system using the geometric contact angle measurements
only, which record values on hinging contact lines rather than the angles during a displacement.

To characterize the fluid–fluid contact angles encountered during displacement, we use
equation (2.1) to find the gas–oil θ t[go] and oil–water θ t[ow] thermodynamic angles that best
fit the data using the least squares approach; see the electronic supplementary material. The



12

royalsocietypublishing.org/journal/rspa
Proc.R.Soc.A476:20200671

..........................................................

(b) during flow

52°

35 µm

25 µm 500 µm 25 µm

30 µm

119°
112°

109°

rock water oil gas

200 µm

(a) at rest

Figure 5. Two-dimensional rawpore-scale images,with a voxel size of 3.5 µm, showing (a) the contact angles formedbetween
gas andwaterwhen the fluids are at rest and (b) the gas–water contact angles during the displacement ofwater by gas. (Online
version in colour.)

thermodynamic contact angle calculations yield an oil–water angle of 125 ± 10° and a gas–oil
angle of 78 ± 10°; see table 3. The gas–water thermodynamic contact angle is determined using
equation (2.2) as 115 ± 10°. While the interpretations of the oil–water and gas–oil contact angles
in this analysis are broadly consistent with those of the geometric contact angle measurements,
the thermodynamic gas–water contact angle suggests that gas is, on average, more wetting to the
rock than water. This allows us to establish a clear wettability order in the system, one in which
oil is wetting to both water and gas, gas is non-wetting to oil and wetting to water, while water is
non-wetting to both oil and gas. This implies that water will tend to occupy the larger pores and
that the gas–water capillary pressure will be negative, as we will show later.

From table 3, we observe that the geometric contact angle tends to underestimate the
displacement contact angles. This is further illustrated in figure 5 by visually inspecting gas–
water contacts on static and dynamic raw pore-scale images. At rest, water forms contact angles
with gas that are both lower and larger than 90°, indicating that the rock surfaces are neutrally
wetting to gas and water. On the other hand, during the displacement of water by gas, we notice
that the gas–water contact angle is almost always larger than 90°, implying that gas is wetting
to water during flow (figure 5). Moreover, this behaviour was also seen in a recent modelling
study, where the use of the geometric contact angle was insufficient to match experiments of
WF in rocks with altered wettability; instead, a larger advancing contact angle was needed to
match the results [70]. This analysis identifies a clear limitation with the geometric contact angle
measurement and shows that it is not representative of displacement contact angles in systems
with altered wettability. In contrast, the gas–water thermodynamic contact angle measurement
(table 3) is in agreement with the angles observed during gas–water displacement (figure 5),
indicating that it is more representative of displacement angles than the direct geometric
measurement.
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Figure 6. Normalized bar charts showing the pore occupancy in the oil-wet rock, characterized on static images of the whole
sample, after (a) water flooding (WF) and (b) gas injection (GI). (Online version in colour.)

(ii) Pore occupancy

To further confirm the wettability order of the system, we quantified the pore occupancy on static
images of the whole sample after WF and GI (figure 6). As anticipated, during water injection in
an oil-wet system, water displaces oil from the larger-sized pores, confining it to smaller pores
(figure 6a). Furthermore, figure 6b shows that, after GI, water resides in the largest pores, oil the
smallest, while gas occupies pores of intermediate size. This confirms that the wettability order
of the system is oil–gas–water from most to least wetting. The wettability order inferred from
pore occupancy is in agreement with the interpretations of the thermodynamic contact angle
measurements. This wettability order has been previously observed in micromodels [29] and
laboratory X-ray imaging experiments with CO2 in the same reservoir rock [15], but not before
with nitrogen as the gas phase.

While in figure 6 there is a tendency for oil to reside in the smaller pores and water in the
larger ones, we do still observe gas and water occupancy in pores of all size: there is not a strict
segregation. We will discuss this further when we discuss the dynamics of gas invasion, but it is
important to note that gas does not have a strong preference for either larger or smaller pores.

(b) Fluid saturations
The saturations of oil, gas and water in the macro-pore space of the rock were measured on static
images of the whole sample after water and GI; see table 4 and electronic supplementary material,
figure S3. At initial conditions, the oil and water saturations were 99% and 1%, respectively,
measured in the macro-pore space; we presume that water is also initially present in the micro-
pores of the rock. After WF, only 48 ± 5% of the oil was recovered. This is ascribed to the oil-wet
nature of the rock, where water displaces oil in the centre of the pores only; oil remains connected
in thick wetting layers. GI displaces both oil and water out of the pore space; gas displaces 30 ± 5%
of the resident oil, while only 16 ± 5% of water is displaced out of the system. A high remaining
water saturation indicates that water gets trapped in the pore space of the rock. This is attributed
to (i) water being the most non-wetting phase, and hence it remains preferentially in the larger
pores (figure 6) and (ii) the preferential displacement of oil by gas in the smaller-sized pores. The
gas saturation reaches only 24 ± 5%, which is similar to saturation values observed on the same
reservoir rock previously during unsteady-state flooding [15].

(c) Three-phase flow dynamics
In this section, we examine the various pore-scale dynamics observed during GI in our oil-wet
rock, where the wettability order is oil–gas–water from most to least wetting. The two-phase
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Figure 7. A three-dimensional volume rendering of the fluid configurations in the section of the rock imaged dynamically
during (a) oil injection, (b) water flooding and (c) gas injection. Oil is shown in red, water in blue and gas in green. (Online
version in colour.)

Table 4. Water, oil and gas saturation in the macro-pore space of the rock after each flooding step. Saturations were measured
on the static images of the whole sample. The uncertainty in the measurements is±0.05.

injection sequence water saturation oil saturation gas saturation

oil injection (OI) 0.10 0.99 —
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

water flooding (WF) 0.48 0.52 —
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

gas injection (GI) 0.40 0.36 0.24
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

displacement dynamics encountered during WF will be briefly described to set the scene for the
discussion of GI dynamics. A complete description of WF dynamics is provided by Alhosani et al.
[47]. The pore-scale dynamics were investigated by imaging the rock section shown in figure 7,
with a high temporal resolution during WF and GI.

The main finding of this section is that gas moves through the pore space as disconnected
clusters through double and multiple displacements; this is a distinct dynamic not seen in two-
phase flow, where the injected phase needs to remain connected to progress through the porous
medium.

(i) Water flooding

During WF, the displacement of oil by water is all piston-like; see electronic supplementary
material, movie S1. Water advances as a connected front in an invasion percolation process,
where throats, the restrictions between pores, fill in order of size, with the largest available throats
filled first; displacement is predominantly size-controlled. This is attributed to the wide pore size
distribution of the heterogeneous rock selected. Furthermore, we observe drainage-associated
pore-filling dynamics including Haines jumps and snap-off events.

Figure 7b shows the fluid configurations in the oil-wet rock at the end of WF—water is shown
in blue and oil in red. As anticipated, there is a high remaining oil saturation owing to the strongly
oil-wet nature of the rock; not only does oil remain connected in thick wetting layers but also
many oil-filled pores have been completely bypassed by the incoming water front as a result of
inadequate water pressure to overcome the high oil–water capillary pressure. This is in contrast
with observations made in water-wet porous media, where water spontaneously imbibes through
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Figure 8. Three-dimensional maps of the gas connectivity in the pore space during GI shown at different time steps. Each
disconnected gas cluster is labelled with a different colour. The black arrow points towards the direction of flow. Sg is the gas
saturation in the imaged section, while t is time. (Online version in colour.)

wetting layers and corners of the pore space, trapping oil in the centres; no oil-filled pores were
bypassed [28]. The dynamics of WF stopped after the injection of 0.58 PV of water (78.1 min).

(ii) Gas injection

Invasion pattern and displacement events. We observe a distinct three-phase invasion pattern
during GI in the oil-wet pore space; see electronic supplementary material, movie S2. Gas, the
intermediate-wet phase, advances through the porous medium in disconnected clusters; gas is
not connected during GI. The connectivity of gas during GI is captured using dynamic imaging;
see figure 8—each colour represents a different gas cluster. This is different from the invasion
pattern observed during the two-phase WF in §3c(i).

In two-phase flow, when a non-wetting phase displaces the wetting phase, Haines jumps
are observed, which involve the rapid filling of multiple pores followed by retraction and
disconnection of the non-wetting phase and the phases come to a new position of equilibrium
[38,41]. However, as injection proceeds, the non-wetting phase gets reconnected in the pore space:
for capillary-dominated flow, the gas has to reconnect to progress further through the pore space.
Haines jumps have been seen during two-phase flow in both water-wet and oil-wet rocks [38,47].
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We observe a similar phenomenon during GI under three-phase conditions, namely the
filling of several pores by gas, accompanied by the retraction of gas from other regions,
leading to disconnection of gas ganglia in the pore space. Nevertheless, unlike two-phase
flow, the occurrence of this phenomenon in our three-phase system leads to a permanent gas
disconnection; gas does not reconnect as GI proceeds. The disconnected gas ganglia reach a new
position of equilibrium in the pore space; gas can only be further mobilized through double
and multiple displacement events. This pore-scale phenomenon, which we call a three-phase
Haines jump, controls the movement of gas in the pore space; gas displaces oil and water in a
sequence of three-phase Haines jumps. The other distinction from two-phase flow is that the gas
is intermediate-wet—it is non-wetting to oil but wetting to water.

This phenomenon, three-phase Haines jumps, has not been seen before during three-phase
flow in porous media. Previous three-phase synchrotron studies in water-wet and mixed-wet
rocks observed that gas progresses in a connected front, maintaining its connectivity in the pore
space [48,49]. In these experiments, the gas was either the most non-wetting phase or almost
neutrally wet with respect to water. However, a recent study conducted using static imaging, in
the same reservoir rock and under immiscible oil-wet conditions, observed that gas was highly
disconnected at the end of GI [18]. The authors attributed this to interface relaxation as gas tries to
reach a new position of capillary equilibrium in the pore space when GI is terminated; however,
using dynamic imaging we deduce that the origin of the poor connectivity is the advance of gas
through three-phase Haines jumps.

A similar behaviour to three-phase Haines jump was seen during GI in an oil-wet micromodel
[29] that was successfully modelled by considering multiple displacement events [26]. The
behaviour was attributed to water blocking. In some cases, the progress of the advancing gas
front was blocked if faced with a water-occupied throat (restriction in the pore space). However,
as the gas pressure built up, exceeding that of the gas–water capillary pressure, the throat would
momentarily open, allowing gas to escape towards the next oil-filled pore. As gas pressure
dropped, after displacement, the throat would again be filled by water, disconnecting the gas
phase.

Three types of displacement were observed during GI: (i) direct gas–oil displacement; (ii) direct
gas–water displacement; and (iii) gas–oil–water double and multiple displacements. Figure 9
shows images of the various displacement events occurring at different time steps—green
represents the displacement of oil by gas, blue is water by gas, while red is water by oil.
As discussed above, double and multiple displacements [24–26] are necessary to allow gas to
propagate in disconnected clusters: in particular, for gas to remain disconnected there must be
multiple displacement events of the form gas–oil–gas–water, where the second gas displacement
in the sequence involves a trapped cluster. We suspect that there is a thin oil layer surrounding
the gas phase during the direct gas–water displacement owing to the positive initial oil spreading
coefficient (+0.4 mN m−1; table 1); however, it is not visible at the given spatial resolution of the
experiment (3.5 µm).

Notice that gas directly displaces oil and water in the pore space, and there is no strong
preferential displacement of oil over water as seen in the carbonate rock study with a mixed-wet
behaviour [49], where gas only displaced oil in a piston-like displacement during GI; there was no
displacement of water by gas. Furthermore, this is different from water-wet systems, where gas
only initially displaces water until it comes into contact with oil, which spreads in layers between
gas and water, preventing their direct contact in the pore space [48].

Initially, direct, double and multiple displacement events occur close to the advancing gas
front; however, after gas breakthrough in the imaged rock section (11.3 min), the pore-scale
displacement dynamics continue to occur but at locations throughout the sample. The GI
dynamics stop after the injection of 0.18 PV of gas (19.8 min); the gas pressure is insufficient for
additional displacement.

To illustrate the displacement dynamics in more detail, figure 10 shows the rapid filling of
multiple pores during a gas-oil three-phase Haines jump, where gas displaces oil overall—this
displacement is marked by the black square in figure 9 at time = 10 min—and we have quantified
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Figure 9. Three-dimensional images of direct and multiple displacement events occurring at different time steps during gas
injection in the oil-wet rock. Displacement of oil by gas is shown in green, water by gas in blue and water by oil in red. The
black arrow points towards the direction of flow. Sg is the gas saturation in the imaged section, while t is time. (Online version
in colour.)

the specific interfacial area between gas and the other phases (water, oil and solid) before and
after its retraction from the narrower regions of the pore space. We notice, in figure 10b, that there
is a large increase in the gas saturation caused by the three-phase Haines jump at time = 10 min—
shown by the red square. Gas re-arranges itself in the pore space during the three-phase Haines
jump, flowing towards regions of low gas pressure to enable the rapid filling, which causes it
to retract from the high-pressure regions (throats), disconnecting the gas phase. This is shown
in figure 10c, where gas has a lower specific interfacial area with the other phases of 6.7 mm−1

at time = 10 min after the three-phase Haines jump compared to time = 8.78 min, where gas had
a specific interfacial area of 6.9 mm−1—gas-specific interfacial area is quantified in the region
marked with the black dashed line.

The occurrence of a three-phase Haines jump during the displacement of water by gas
is shown in figure 11—this displacement event is shown by the black square in figure 9 at
time = 13.7 min. Again, we observe that multiple pores were filled during the displacement,
resulting in a large increase in the gas saturation at time = 13.7 min. Similarly, gas has retracted
from the high-pressure regions reducing its specific interfacial area with the other phases—in
the dashed box—from 14.8 mm−1 at time = 12.5 min to 13.9 mm−1 at time = 13.7 min. In this case,
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Figure 10. Three-dimensional images of the gas phase at different time steps illustrating the occurrence of a three-phase
Haines jump during the displacement of oil by gas in the oil-wet pore space. (a) and (b) show the difference in gas saturation
before and after the three-phase Haines jump. (c) The specific interfacial area between gas and the rest of the phases (water,
oil and solid) is lower in the high-pressure region, marked by the dashed line, after the three-phase Haines jump owing to gas
retraction. The black arrow points towards the direction of flow. (Online version in colour.)

gas retraction is more pronounced during the gas–water Haines jump (0.9 mm−1) than during
the gas–oil one (0.2 mm−1). Since neither gas nor water forms layers, all the displacements are
piston-like. However, gas is wetting to water, and so the initial advance is an imbibition process.

Water connectivity and trapping. Water, the most non-wetting, can become locally disconnected
in the pore space during GI. Since gas, intermediate-wet, does not form spreading layers because
of its large and negative spreading coefficient (Csg = −22.8 mN m−1; table 1), water is principally
trapped by oil, the most wetting phase, rather than gas. An illustration of this is shown in
electronic supplementary material, figure S4, where the incoming gas front only displaces some
of the resident water, disconnecting it from the main water body; the trapped water cluster is
surrounded by both oil and gas. Nevertheless, we observe that, in general, there is a single
connected cluster across the system that contains most of the water throughout GI (see electronic
supplementary material, figure S5) since gas, although more wetting than water, cannot trap
water by snap-off, which is the principal capillary trapping process, as it does not spread in layers
[31]. This is different from the oil-wet micromodel and laboratory micro-tomography studies,
where the injection of gas disconnected the water phase in the pore space [18,29]. However, in
this previous work [15], the gas was near-miscible with the oil, and could form spreading layers
to trap water by snap-off.

Oil layers. As mentioned in §2a(ii), the large and negative spreading coefficients of gas
and water (Csg = −22.8 mN m−1 and Csw = −104.6 mN m−1; table 1) prevent them from forming
spreading layers in the pore space. Oil not only spreads in layers sandwiched between gas and
water, Cso = 0.4 mN m−1 (table 1), but also exists in wetting layers close to the solid surface with
gas or water occupying the centre of the pore space. Owing to the lack of spreading water and
gas layers, oil is the only phase that is always hydraulically connected from the inlet to the outlet
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Figure 11. Three-dimensional images of thegasphase at different time steps illustrating theoccurrenceof a three-phaseHaines
jump during the displacement of water by gas in the oil-wet pore space. (a) and (b) show the difference in gas saturation before
and after the three-phase Haines jump. (c) The specific interfacial area between gas and the rest of the phases (water, oil and
solid) is lower in thehigh-pressure region,markedby thedashed line, after the three-phaseHaines jumpowing togas retraction.
The black arrow points towards the direction of flow. (Online version in colour.)

of the porous medium. This increases its connectivity in the pore space, allowing it to flow even
at very low oil saturations. This is in contrast with water-wet systems, where both oil and water
are connected in the pore space; water is hydraulically connected through wetting layers and oil
through spreading layers [16].

Electronic supplementary material, figure S6 shows three-dimensional thickness maps of oil
layers visualized at the end of WF and GI on a subset of size 1.4 × 1.4 × 1.4 mm3. The thickness
was defined as the diameter of the largest sphere (maximal ball) that could fit entirely within
the oil phase [83]. The average oil layer thicknesses after WF and GI were 17 µm and 14 µm,
respectively. As one would expect, there were fewer and thinner oil layers in the pore space
after GI owing to the efficient displacement of oil by gas and/or drainage of oil through wetting
layers. This is different from observations made on a mixed-wet system, where more oil layers
were observed after GI [49]: in these experiments, gas–oil–water double displacement allowed
oil to push water out of the pore space, increasing the thickness of wetting and spreading layers
and there was little direct displacement of water by gas. In our experiment, gas displaces water
directly, as well as oil, removing both phases out of the pore space.

(d) Minkowski functionals
To obtain a complete characterization of the dynamics of three-phase flow, we quantified the
evolution of the three-dimensional Minkowski functionals—saturations, interfacial areas and
curvatures—during GI. In figure 12, measured on the dynamic images, we plot fluid saturations,
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Figure 12. The evolution of Minkowski functionals—(a) saturation, (b) fluid–fluid specific interfacial area, (c) fluid–solid
specific interfacial area and (d) capillary pressure—during gas injection in the dynamically imaged section of the oil-wet rock.
The vertical dashed line represents the time of gas breakthrough in the imaged field of view. Error bars indicate uncertainty in
the measurement. (Online version in colour.)

fluid–fluid specific interfacial areas, fluid–solid specific interfacial areas and fluid–fluid capillary
pressures against time and the corresponding PV of gas injected.

Note that the fluid saturations depicted in figure 12a are measured on the dynamically imaged
section of the rock and are different from the saturations quantified on the whole sample in §3b.
At the start of GI, the gas saturation increases very slowly until time = 5 min, where gas displaces
oil and large amounts of water out of the dynamically imaged pore space. There is a slightly larger
drop in water saturation compared to oil saturation during GI. However, it is important to note
that the favoured displacement of water by gas over oil by gas is only seen in the dynamically
imaged section, as saturation measurements on the whole sample (§3b) show that GI recovers
30 ± 5% of the resident oil, while only 16 ± 5% of water is produced. Moreover, we observe that
the gas saturation further increases after gas breakthrough in the imaged section.

Figure 12b,c shows the evolution of fluid–fluid and fluid–solid specific interfacial areas,
respectively, with time. At the beginning of GI, at low gas saturations, the interfacial area between
gas and oil is very small. As the gas saturation increases, the gas–oil specific interfacial area
rises linearly with time since oil is wetting to gas in the pore space; oil wetting and spreading
layers surround gas in the centres of the intermediate-sized pores. However, the gas–oil specific
interfacial area remains smaller than that between oil–water since the gas saturation is much
lower than the water saturation. There is an abrupt increase in the gas–water interfacial area at
the start of GI, which then remains constant throughout the displacement. This is attributed to
spreading of oil layers sandwiched between gas and water, preventing their direct contact in the
pore space. Furthermore, the low gas saturation results in a very low gas–solid interfacial area in
the pore space. The oil–solid interfacial area is the highest owing to oil being the most wetting
phase; oil resides in thick wetting layers next to the solid surface.

The two principal curvatures (κ1 and κ2) of the oil–water, gas–water and gas–oil interfaces
were quantified during the displacement (figure 13). The sum of the two curvatures—the total
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Figure 13. Probability distributions of the two principal curvatures, κ 1 and κ 2, at the (a–c) gas–oil interface, (d–f ) oil–water
interface and (g–i) gas–water interface plotted at different time steps during gas injection in the oil-wet porous medium. κ 1

is defined to be the larger curvature. (Online version in colour.)

curvature (κ)—was then calculated and substituted in the Young–Laplace equation (2.3), to obtain
the fluid–fluid capillary pressures during GI. The results are shown in figure 12d. The oil–water
capillary pressure remains approximately constant throughout the displacement with an average
value of −3.0 kPa. A negative capillary pressure between oil and water indicates that the macro-
pores are indeed oil-wet such that, on average, water bulges into oil with a higher pressure. The
measured gas–water capillary pressure decreases during the displacement, reaching a value of
−2.0 kPa at the end of GI. A negative gas–water capillary pressure indicates that gas is more
wetting to the rock surface than water. This confirms the reported wettability order of oil–gas–
water from most to least wetting in §3a. Moreover, once gas is injected, the capillary pressure
between gas and oil reaches a threshold value, after which it remains constant during the
displacement. The gas–oil capillary pressure is positive, since gas is less wetting than oil.

As mentioned previously, in section ‘Saturation, specific interfacial area and curvature’ , the
two principal curvatures of the fluid–fluid interface can be used to study the connectedness of the
fluid phases in the pore space. The fluid–fluid connectivity can be characterized by investigating
the product of the principal curvatures (κ1 × κ2), also known as the Gaussian curvature [78].
A negative Gaussian curvature is indicative of well-connected phases in the pore space, while a
positive value indicates that the two phases form trapped clusters.

Figure 13a–c shows that κ1 and κ2 of the gas–oil interface have opposite signs, resulting in
a very negative Gaussian curvature between gas and oil during GI. This indicates that oil is
well connected in the pore space when in contact with gas, in wetting and spreading layers.
Similarly, κ1 and κ2 of the oil–water interface have opposite signs (figure 13d–f ), indicating that
oil and water are well connected, especially that water remains highly connected in the larger
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pores surrounded by oil layers during GI (see section ‘Oil layers’ and electronic supplementary
material, figure S5).

Observations on the dynamic behaviour of κ1 and κ2 between gas and water are the most
interesting (figure 13g–i). There are two important points to make. (i) It is evident from the
distribution of κ1 and κ2 that the gas–water interface has a less negative Gaussian curvature than
the gas–oil and oil–water interfaces, implying that gas and water are less connected in the pore
space. This makes sense since neither water nor gas forms spreading layers because of their large
and negative spreading coefficients (Csg = −22.8 mN m−1 and Csw = −104.6 mN m−1; table 1); the
spreading of a fluid phase in layers enhances its connectivity in the pore space. Furthermore, as
illustrated in figures 8 and 9, the gas is disconnected throughout GI. (ii) We observe that, as GI
proceeds, κ1 gets smaller with time, consistent with there being more gas clusters as injection
proceeds (figure 8).

4. Conclusion and future work
We investigated the pore-scale dynamics of three-phase flow in a hydrophobic porous medium.
Synchrotron X-ray imaging, with high spatial and temporal resolutions (3.5 µm and 74 s), was
used to visualize the displacement of fluids inside the pore space during immiscible GI in an oil-
wet reservoir rock. Subsequent to altering the wettability of the rock surfaces, water was injected
into the oil-saturated pore space, which was then followed by GI. The use of a synchrotron light
source allowed us to characterize, in situ, wettability order, pore occupancy, fluid saturations,
connectivity, direct and double displacement events, and Minkowski functionals, which provided
insights into fluid–fluid connectivity and trapping.

Measurements of geometric and thermodynamic contact angles confirmed that the medium
was oil-wet (hydrophobic), with oil–water contact angles greater than 90°. The characterization
of geometric contact angles, measured locally, was insufficient to determine the wettability order
in the system as it indicated that gas and water are neutrally wetting to the rock surface. In
contrast, the estimation of thermodynamic contact angles, calculated during displacement using
energy balance, demonstrated that the wettability order is oil–gas–water from most to least
wetting. This was further supported by pore occupancy—where oil occupied the smallest pores,
gas the intermediate pores and water the largest pores—and capillary pressure measurements,
which displayed negative oil–water and gas–water pressures and a positive gas–oil pressure.
Overall, this analysis showed that geometric contact angles, measured on static interfaces, tend
to underestimate the contact angles encountered during displacement, but that using an energy
balance can correctly capture a representative wettability in three-phase flow.

We imaged the fluid configurations during GI, which illustrated that gas invades the porous
medium in the form of disconnected clusters; gas being the intermediate-wet phase is not
connected in the pore space. When gas displaced either oil or water, it rapidly filled multiple
pores, significantly increasing the gas saturation in the pore space. This rapid filling was
accompanied by retraction of gas from some of the further regions, which disconnected the
gas ganglia permanently in the pore space; the disconnected gas ganglia do not reconnect as
GI continued. We call this phenomenon a three-phase Haines jump. Unlike in two-phase flow,
the injected phase remained disconnected with displacement facilitated by double and multiple
displacements. This dynamics is unique to three-phase flow, and is distinct from ganglion
movement in two-phase flow, which only occurs under viscous-dominated flow conditions.

As gas invaded the pore space, it displaced oil and water in direct gas–water and gas–
oil displacements, as well as double and multiple gas–oil–water displacement. No evidence of
significant gas–water–oil double displacement was observed; as water is displaced by gas, water
follows the easiest path to escape the pore space, which is its own path since it resides in the largest
pores being the most non-wetting phase, and, therefore, does not displace oil. During GI, water
maintains its connectivity through the larger pores, while oil remains hydraulically connected
through wetting layers and spreading oil layers. Some water gets trapped in the porous medium
during GI.
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We quantified the Minkowski functionals—saturations, interfacial areas and curvatures—
during GI to provide a complete description of the topology of fluids in the pore space, fluid–fluid
connectivity and trapping. The oil–water specific interfacial area was the highest, while the gas–
water area was the lowest owing to the spreading of oil in layers sandwiched between gas and
water, and hence preventing their direct contact in the pore space. Quantification of the two
principal curvatures of the oil–water, gas–water and gas–oil interfaces provided details on the
connectivity of the phases. The results indicated that oil has a good connectivity with gas and
water in the pore space. This was attributed to the oil-wet nature of the rock, since oil is confined
in wetting layers close to the solid surface surrounding the gas and water phases in the centre of
the pores. The analysis further confirmed the poor connectivity of the gas, which is broken up into
discrete clusters as injection proceeds. This has significant implications for the design of safe gas
storage, improved oil recovery, contaminant removal in soils and three-phase flow in microfluidic
devices.

This work can be used to validate three-phase flow pore-scale network models and to
develop three-phase flow numerical simulators. Experiments on additional samples could test
the reproducibility of the results presented here. Future work should focus on quantifying the
relative permeability of the phases in oil-wet rocks by measuring the pressure drop across the
sample to confirm the low gas mobility anticipated as a result of gas advancing in disconnected
clusters. Furthermore, future work can study the dynamics of three-phase flow at near-miscible
gas–oil conditions in water-wet and oil-wet porous media. This will help to assess the impact of
(i) the absence of oil layers in water-wet systems and (ii) the formation of gas spreading layers
in oil-wet systems, on the pore-scale displacement events. The experimental and image analysis
methodology presented in this work can be used to design the flow and trapping of three fluid
phases in microfluidic devices, fuel cells, carbon storage and contaminant remediation in soils.
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