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Holmium-166 poly(L-lactic acid) microsphere
radioembolisation of the liver: technical
aspects studied in a large animal model

Abstract Objective: To assess the
accuracy of a scout dose of
holmium-166 poly(L-lactic acid)
microspheres (166Ho-PLLA-MS) in
predicting the distribution of a
treatment dose of 166Ho-PLLA-MS,
using single photon emission
tomography (SPECT). Methods: A
scout dose (60 mg) was injected into
the hepatic artery of five pigs and
SPECT acquired. Subsequently, a
‘treatment dose’ was administered
(540 mg) and SPECT, computed
tomography (CT) and magnetic
resonance imaging (MRI) of the total
dose performed. The two SPECT
images of each animal were
compared. To validate quantitative
SPECT an ex vivo liver was instilled
with 166Ho-PLLA-MS and SPECT

acquired. The liver was cut into slices
and planar images were acquired,
which were registered to the SPECT
image. Results: Qualitatively, the
scout dose and total dose images were
similar, except in one animal because
of catheter displacement. Quantitative
analysis, feasible in two animals,
tended to confirm this similarity
(r2=0.34); in the other animal the
relation was significantly better
(r2=0.66). The relation between the
SPECT and planar images acquired
from the ex vivo liver was strong
(r2=0.90). Conclusion: In the
porcine model a scout dose of
166Ho-PLLA-MS can accurately
predict the biodistribution of a
treatment dose. Quantitative 166Ho
SPECT was validated for clinical
application.
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Introduction

Intra-arterial radioembolisation with yttrium-90 micro-
spheres (90Y-MS), either resin-based or with a glass matrix,
is an increasingly applied treatment for patients with
unresectable liver malignancies [1, 2]. Efficacy of 90Y
radioembolisation relies on the difference in blood supply
between liver malignancies and the normal liver paren-
chyma, which is predominantly arterial and mainly portal,

respectively [3, 4]. This allows for the 90Y-MS, when
instilled into the hepatic artery, to target the tumours,
consequently delivering high tumour absorbed doses whilst
largely sparing the non-tumour-bearing liver tissue [1]. A
critical component is the pretreatment procedure which
consists of coeliac and superior mesenteric angiography
and selective coiling of arteries supplying non-target
organs such as the gastroduodenal artery and the right
gastric artery, to ensure that the dose of 90Y-MS is
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implanted exclusively into the liver. To assess whether the
coiling has been performed appropriately, technetium-99m
albumin macroaggregates (99mTc-MAA) are injected into
the hepatic artery. Subsequently, nuclear imaging is
performed to determine whether extrahepatic deposition
of the 90Y-MS should be expected and to calculate the lung-
shunt fraction [5–7]. The images are also used to predict the
intrahepatic distribution of the 90Y-MS or, more specifi-
cally, the tumour-to-normal tissue ratio [8–10]. The 99mTc-
MAA are thus deployed as full surrogates for the 90Y-MS.
However, there are indications that this assumption is not
justified as the reality is that the 99mTc-MAA image does
not in all cases accurately correspond with the post-90Y-MS
infusion bremsstrahlung image. This is caused by differ-
ences in resolution between these images and also due to
the overt differences in physical characteristics and in
numbers of particles infused between the 99mTc-MAA and
the 90Y-MS [11, 12] (Table 1). It has been demonstrated
clinically that the intrahepatic uptake pattern of 99mTc-
MAA is not a strong predictor of tumour response after 90Y
radioembolisation [13].

Post-administration visualisation of the 90Y-MS is thus
possible through bremsstrahlung single photon emission
computed tomography (SPECT) imaging, but the quality is
poor [14, 15]. To overcome this lack of adequate
visualisation, poly(L-lactic acid) microspheres loaded
with holmium-166 (166Ho-PLLA-MS) have been devel-
oped [16–19]. Like 90Y, 166Ho is a high-energy beta-
emitter, but it emits low-energy gamma photons as well
(Table 1), allowing for quantitative SPECT analysis and
consequently dosimetric analysis [20]. Because holmium
is also highly paramagnetic, the (intrahepatic) distribution
of the 166Ho-PLLA-MS can be assessed through magnetic
resonance imaging (MRI) as well [21, 22]. In addition, instead
of 99mTc-MAA, a small scout dose of 166Ho-PLLA-MS could
be utilised to predict the biodistribution of the treatment dose
of 166Ho-PLLA-MS.

In this article, the concept of a small scout dose of 166Ho-
PLLA-MS employed to predict the biodistribution of the
therapeutic dose of 166Ho-PLLA-MS is investigated in the
porcine model. The applicability of multimodal imaging

(gamma scintigraphy, X-ray computed tomography (CT)
and MRI) is also investigated. The accuracy of quantitative
166Ho SPECT analysis for heterogeneous distribution is
also validated.

Materials and methods

Animals

Five healthy female pigs (8–9 months old, weighing
70–75 kg) were acquired from the Animal Sciences Group,
Wageningen University and Research Centre, Lelystad, the
Netherlands. A 2-week acclimatisation period was allowed.
The experiments were conducted in agreement with the local
applicable Dutch law, “Wet op de dierproeven” (art. 9)
(1977), and the European Convention for the Protection of
Vertebrate Animals used for Experimental and Other
Scientific Purposes (1986), and approved by the ethics
committee for animal experimentation of the University
Medical Centre Utrecht, Utrecht, the Netherlands (DEC-
ABC-no. 2007.III.07.092).

Microsphere preparation

165Ho-PLLA-MS were prepared as previously described
[17] (scout dose 60mg; ‘treatment dose’ 540mg) and packed
in custom-made high-density polyethylene (HDPE) vials
(Fig. 1) and neutron activated in the nuclear reactor of the
Delft University of Technology (Delft, the Netherlands).
Upon delivery at the hospital, two incompletely predrilled
holes in the vial cover were perforated by needles (19 G×
50 mm), and the microspheres were suspended in 2 ml of
water for injection containing 2% Pluronic® F-68 (Sigma-
Aldrich Chemie B.V., Zwijndrecht, the Netherlands) and
10% absolute ethanol (Merck B.V., Amsterdam, the Nether-
lands). The cover of the vial was then removed and a tiny
amount of 166Ho-PLLA-MS (ca. 1 mg) was taken out for
quality control (by light microscopy) [23]. Next, a vial cover
fitted with a PTFE/silicone septum (Sigma-Aldrich Chemie

Table 1 Characteristics of the microparticles

SIR-Spheres
(SIRTeX Medical Ltd.)

TheraSphere
(MDS Nordion Inc.)

99mTc-MAA (Technescan®
LyoMAA, Mallinckrodt Medical Inc.)

166Ho-PLLA-MS
(UMC Utrecht)

Radionuclide 90Y 99mTc 166Ho
β−emission (MeV) 2.28 (100%) No β emission 1.77 (49%)

1.85 (50%)
γ emission (keV) No γ emission 141 keV (89%) 80.6 (6.7%)
Matrix material Resin Glass Aggregated human serum albumin PLLA
Density (g/ml) 1.6 [29] 3.2 [29] 1.1 [30] 1.4
Diameter (μm) 32±10 [29] 25±10 [29] 10–60 [11] 30±5
Administered number of particles 50,000,000 [7] 4,000,000 [7] 150,000 [11] 33,000,000
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B.V., Zwijndrecht, the Netherlands) was screwed on top of
the vial whichwas punctured by two needles (19G×50mm).
The amounts of radioactivity were measured in a dose
calibrator (VDC-404, Veenstra Instrumenten B.V., Joure, the
Netherlands). In order to prevent pile up and dead-time
effects in the gamma camera, both the scout dose and the
treatment dose consisted of 250 MBq 166Ho at the time of
injection.

Anaesthesia and analgesia

Premedication consisted of azaperone (4 mg/kg), ketamine
hydrochloride (10 mg/kg) and atropine (0.1 mg/10 kg)
intramuscular (IM). General anaesthesia was induced by
intravenous administration (IV) of propofol (2.5–3.5 mg/kg)
and maintained by propofol (8–9 mg/kg/h) or inhalation of
isoflurane (1.5–2.0%) in O2/air (1:1), in combination with
midazolam hydrochloride (0.2 mg/kg) IV. Perioperative
analgesia was provided by sufentanil (loading dose 5 μg/kg,
maintenance dose 10 μg/kg/h) IV.

Administration system

A custom-made administration system was used (Fig. 1)
that consisted of polyethylene tube lines equipped with
one-way valves (Medisize B.V., Hillegom, the Nether-
lands) preventing backflow of microspheres in the lines.
The lines were interconnected using a Y-connector (World
Precision Instruments Inc., Sarasota, FL, USA). The
system was connected to the catheter. To reduce the
radiation dose to personnel the vial containing the 166Ho-
PLLA-MS was placed in a high-density lead-glass vial
shield.

Angiography and microsphere administration
procedure

A right femoral artery puncture was made and an
Avanti® + sheath (7F, Cordis Europe N.V., Roden, the
Netherlands) was introduced. Under fluoroscopic guid-
ance, the common hepatic artery was catheterised and the
exact anatomy of its branches was mapped out. Standard
diagnostic 4F catheters and guide wires were used. The
scout dose and treatment dose of 166Ho-PLLA-MS were
flushed out of the vial and into the (straight tip) catheter,
positioned in the proper hepatic artery, by injecting
40–60 ml of a 50:50 mixture of saline and iodine contrast
agent into the vial, under fluoroscopy guidance, at a rate
of 0.5–1.0 ml/s.

Medical imaging protocols

For registration purposes, multimodal markers, filled
with 2 MBq 99mTc each, were attached to the skin just
cranially and caudally from the liver. In vivo planar
nuclear imaging and SPECT imaging were performed
directly after administration of the scout dose and after
administration of the treatment dose. The nuclear images
were acquired and the SPECT images reconstructed as
was previously described [20]. CT was performed after
the treatment dose was administered (tube voltage
120 kVp, current 400 mAs; Brilliance®, Philips Health-
care, Best, the Netherlands). After termination with
sodium pentobarbitone (100–200 mg/kg) IV, MRI was
performed, including T1, T2 and T2* protocols, using a
1.5-T clinical device (Achieva®, Philips Healthcare,
Best, the Netherlands), according to previously described
protocols [22].

Fig. 1 Schematic of the cus-
tom-made administration system
for clinical application, which
consists of the following
components: iodine contrast
agent (1), saline solution (2),
20-ml syringe (Luer-Lock) (3),
three-stopcock manifold (4),
one-way valve (5), inlet line (6),
administration vial containing
the 166Ho-PLLA-MS (7), outlet
line (8), flushing line (9),
Y-connector (10) and catheter
(11). Not shown in this diagram
is the lead-glass vial shield in
which the HDPE vial is placed
to limit the radiation dose to
which the personnel are exposed
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SPECT analysis

The distributions of the scout dose and of the ‘total dose’
(scout dose + treatment dose) were compared. After rigid
registration and downsampling to a 32×32×32 matrix
(18.9-mm voxel size), scatter plots were generated of
which regression analysis was done. The accuracy of
quantitative SPECT was assessed in a realistic model, by
comparing the distribution of a SPECT image with the
planar images of a pig’s liver, in which 166Ho-PLLA-MS
(600 mg, 250MBq at time of acquisition) had been injected
into the hepatic artery ex vivo. The liver was placed in a
metal box, in which five 16-mm-diameter tubes were also
placed. The box was filled with carboxymethyl cellulose
(CMC) (2.5%) and subsequently frozen at −20°C. Twenty-
four hours later the tubes were removed and the remaining
holes were filled with a 166Ho/CMC chloride solution as
radioactive markers. The box was again placed in the
freezer. After SPECT acquisition, the liver was cut into
eight 6-mm-thick slices with a floor-model band saw and
planar nuclear images were acquired of each slice. The
planar images were combined into a 3D volume, which was
registered to the SPECT image and resampled to the same
(isotropic) voxel size, after which scatter plot analysis was
performed. The markers were used for registration and
normalisation of the slices.

Results

Angiography and microsphere administration
procedure

Selective catheterisation of the hepatic artery was success-
fully performed in all five pigs. The 166Ho-PLLA-MS were
gradually flushed out of the administration vial in a
controlled manner. Y-connectors of a diameter matching
that of the tube lines were used which prevented lodging of
the 166Ho-PLLA-MS in the system. Measurements showed
that less than 1% of the radioactivity remained in the
administration systems used in any of these experiments.

SPECT analysis

Visual analysis of the SPECT images revealed that in all
animals the 166Ho-PLLA-MS had been deposited in the
liver exclusively. Qualitatively, the intrahepatic radioactiv-
ity distributions according to the respective scout dose and
‘total dose’ images of four out of five animals seemed
similar (Fig. 2a–h). This was not the case for the images of
the fifth animal, which was caused by unintended catheter
displacement between the administration of the scout dose
and the treatment dose (Fig. 2i,j). Rigid registration and
subsequent analysis of the SPECT images of the scout dose
and total dose was feasible in two out of five animals. In

one of these animals (the one in which the catheter was
displaced between administrations) the relation between
the scout dose distribution and total dose distribution was
rather poor (r2=0.34), whereas in the other animal the
relation was significantly better (r2=0.66) (Fig. 3).

Comparison by scatter plot analysis of planar nuclear
images of slices of the ex vivo pig liver, combined into a
3D volume, with the SPECT image revealed a strong
correlation between the SPECT and the planar images
(r2=0.90) (Fig. 4).

CT and MRI

Relatively high concentrations of 166Ho-PLLA-MS present
in hepatic arteries could be visualised by CT (Fig. 5a)
Holmium-based artefacts could be observed on the
T2*-weighted MR images (Fig. 5b). The distribution of
166Ho-PLLA-MS observed on the MR images was quite
similar to CT. A discrepancy was seen in liver regions
containing lower concentrations of 166Ho-PLLA-MS.
Relatively low concentrations still detectable by MRI
were absent on the CT images.

Discussion

The characteristics of 166Ho-PLLA-MS could enable the use
of a scout dose of 166Ho-PLLA-MS to predict the distribution
of the therapeutic dose of 166Ho-PLLA-MS. In this study, this
concept has been tested in a relatively anthropomorphic
animal model, namely the domestic pig. Five pigs were
successfully catheterised and a scout dose and a treatment
dose were injected into the hepatic artery. The use of the
dedicated neutron-activation/administration vial made pre-
treatment quality control of the 166Ho-PLLA-MS possible
and prevented the need to transfer radioactivity from a
neutron activation vial to an administration vial. The tube
lines in the systems supplied by the manufacturers of the
glass and resin microspheres are connected using standard
three-way stopcocks. It is reported that 90Y-MS tend to be
retained in and just before the stopcock [24]. Loosening up
the jammed microspheres requires tapping and/or gently
shaking of the stopcock. In the presently used system this
lodging of microspheres did not occur because, instead of
stopcocks, Y-connectors of a diameter matching that of the
tube lines were used. Administration of the 166Ho-PLLA-MS
suspended in a mixture of saline and iodine contrast agent
permitted immediate observation of stasis and/or backflow
and timely interruption of the procedure.

Preclinical research has also been conducted by other
groups on the development of microspheres that mimic
90Y-MS better than the 99mTc-MAA, and which, like
166Ho-PLLA-MS, possess high quality imaging possibi-
lities. Recently proposed substitutes for the glass 90Y-MS
were iron-labelled glass-ceramic microspheres [12]. In Vx2
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Fig. 2 Planar nuclear images
(anterior view) of the pigs ac-
quired after administration into
the hepatic artery of the scout
dose of 166Ho-PLLA-MS
(60 mg, 250 MBq) (a, c, e, g, i),
and planar nuclear images
acquired from the total dose,
which constitutes the scout dose
and the subsequently
administered ‘treatment dose’ of
166Ho-PLLA-MS (540 mg,
250 MBq) (b, d, f, h, j)
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Fig. 3 Scatter plots obtained from the SPECT images of two pigs,
in which the distribution of the respective scout dose and total dose
were compared. In one animal the relation between the scout dose

and the total dose was quite good (a), whereas in the other animal
the relation between the scout dose and the total dose was rather
poor (b)

Fig. 4 Maximum intensity projections of the stacked planar nuclear
images acquired from an ex vivo pig liver (a) and of the SPECT
image of this liver (b). Quantification of the SPECT images using

hybrid scatter correction demonstrated that the radioactivity distri-
bution according to the SPECT images was highly similar to the
distribution based on the planar images (c)

Fig. 5 166Ho-PLLA-MS
visualised by CT maximum
intensity projection (a), and by
T2*-weighted MRI (8-mm slice)
(b). High concentrations are
indicated by circles

867



carcinoma-bearing rabbits, it was demonstrated that these
iron-labelled particles can be visualised in real time by
MRI. Resin microspheres labelled with fluorine-18 (18F)
allowing for positron emission tomography were proposed
to serve as surrogates for the resin 90Y-MS [25]. These 18F
microspheres may also enable accurate assessment of the
biodistribution of the treatment dose when co-injected with
the resin 90Y-MS. Regarding both the iron-labelled glass-
ceramic microspheres and the 18F resin microspheres,
extensive preclinical research is warranted before clinical
application will be allowed.

166Ho is a true multimodal agent, allowing for visual-
isation by gamma scintigraphy, MRI and CT. The sensi-
tivity of CT for holmium is relatively low; compared with
SPECT its sensitivity is 2–3 orders of magnitude lower, and
approximately 20 times lower than that of MRI [26]. It is
therefore expected that CT is too insensitive to allow
reliable biodistribution assessment of a scout dose of 60 mg
of 166Ho-PLLA-MS. MRI was able to detect 166Ho-PLLA-
MS at lower concentrations than CT, which was supported
by previously reported results [26, 27]. As MRI provides
detailed anatomic imaging as well, this technique is
thought to be especially useful in dynamic imaging of
166Ho-PLLA-MS accumulating in and around tumours,
and could provide real-time monitored (supra)selective
administration of 166Ho-PLLA-MS [28]. For its high
sensitivity SPECT is currently the best-suited imaging
technique for visualisation of both the scout dose and the
treatment dose of 166Ho-PLLA-MS. For safety and efficacy
purposes individualised dose calculation is required. To
this end pretreatment tumour and liver dosimetry is a
prerequisite. Dosimetry entails quantitative SPECT analy-

sis which was validated for a distinctly inhomogeneous
distribution of 166Ho-PLLA-MS in this study. The meth-
odology described in this paper is aimed at improving
clinical results of radioembolisation in patients with
unresectable liver tumours. Confirmation of the clinical
applicability of this concept has to be established in
upcoming patient studies.

Conclusions

In non-tumour-bearing pigs, a scout dose of 166Ho-PLLA-
MS can accurately predict the biodistribution of a treatment
dose of 166Ho-PLLA-MS, as assessed by qualitative and
quantitative SPECT. MRI can accurately visualise low
concentrations of 166Ho-PLLA-MS. Quantitative 166Ho
SPECT, necessary for dosimetric analysis, was validated in
a realistic model. The custom-made administration system
and neutron-activation/administration vial was tested as
well and found satisfactory for the neutron activation and
the administration of 166Ho-PLLA-MS.
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