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Abstract: Road traffic congestion has a large impact on travel. The accurate prediction of traffic
congestion has become a hot topic in intelligent transportation systems (ITS). Recently, a variety of
traffic congestion prediction methods have been proposed. However, most approaches focus on
floating car data, and the prediction accuracy is often unstable due to large fluctuations in floating
speed. Targeting these challenges, we propose a method of traffic congestion prediction based on bus
driving time (TCP-DT) using long short-term memory (LSTM) technology. Firstly, we collected a total
of 66,228 bus driving records from 50 buses for 66 working days in Guangzhou, China. Secondly, the
actual and standard bus driving times were calculated by processing the buses’ GPS trajectories and
bus station data. Congestion time is defined as the interval between actual and standard driving
time. Thirdly, congestion time prediction based on LSTM (T-LSTM) was adopted to predict future bus
congestion times. Finally, the congestion index and classification (CI-C) model was used to calculate
the congestion indices and classify the level of congestion into five categories according to three
classification methods. Our experimental results show that the T-LSTM model can effectively predict
the congestion time of six road sections at different time periods, and the average mean absolute
percentage error (MAPE) and root mean square error (RMSE) of prediction are 11.25% and 14.91 in
the morning peak, and 12.3% and 14.57 in the evening peak, respectively. The TCP-DT method can
effectively predict traffic congestion status and provide a driving route with the least congestion time
for vehicles.

Keywords: intelligent transportation systems; LSTM; road congestion prediction; GPS trajectory;
driving time

1. Introduction

With the rapid growth of urban vehicles, traffic congestion has become more serious, which not
only impacts people’s travel but also restricts the stable development of the urban economy [1–3].
According to statistics, the most influential Chinese cities suffer a daily economic loss of $1 billion
due to traffic congestion [4]. Therefore, traffic congestion has become one of the most urgent issues
in modern cities, especially recurrent congestion such as peak periods in the morning and evening.
Due to of the complexity of roads and the instability of traffic flow, it is a great challenge to obtain
current or future road traffic conditions in different road segments. Targeting the challenge, a variety of
traffic congestion prediction methods have been proposed [5–10]. However, it is still a great challenge
to accurately and steadily reflect road traffic conditions due to large fluctuations of traffic flow and
floating car speeds.
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In this paper, we propose a method of traffic congestion prediction based on bus driving time
(TCP-DT) to improve prediction accuracy during the peak periods of the working day. We chose
the driving time of buses between two bus stations to predict the traffic congestion level of the road
section, because the speed of buses is relatively stable compared with the floating speed of cars, and
their driving regularity is strong. The period from 11:00 to 13:00 in the off-peak period on a sunny day
is considered to be the non-congestion driving time. In the TCP-DT, (1) a map-matching method is
adopted to match the bus location with the bus station location, and then the driving times of different
road segments in the morning and evening peak periods are extracted; (2) the weather and labels
of congestion times are converted into one-hot code, which is aggregated into input data with the
historical congestion times, and the congestion time prediction based on the long short-term memory
(T-LSTM) model is used to train and predict future congestion times [11–13]; and (3) the congestion
index and classification (CI-C) model is adopted to calculate the traffic congestion index of different
road sections by using the predicted congestion time. Finally, we evaluate the performance of the
classification methods based on information entropy [14,15].

The main contributions of this paper include the following: (1) The TCP-DT is used to calculate
the vehicle congestion indices by classifying the driving times of buses on the designated road sections
during the morning and evening peak periods. (2) Six road segments, 50 buses, 66 working days,
and 66,228 bus driving time records are used to provide congestion evaluation and prediction in
Guangzhou, China.

The rest of the paper is structured as follows. Section 2 reviews related work regarding urban
traffic congestion prediction. The proposed method of congestion prediction, including the framework,
the T-LSTM model, and the CI-C model, are described in Section 3. Section 4 shows the experiment
results. Finally, the conclusion and analysis are presented in Section 5.

2. Literature Review

In this section, an overview of traffic congestion prediction methods is presented. Yang [16]
regarded traffic congestion prediction as a binary classification problem, and comparable accuracy is
retained after reducing the dimensionality of input data by feature selection methods. The JamBayes
model with temporal traffic variables was proposed to predict traffic congestion by Horvitz et al. [17].
Kim and Wang [18] provided an analytic framework to predict traffic congestion based on Bayesian
network. A naive Bayes (NB) classifier model was proposed by Wang and Kim [19] to predict urban
congestion and traffic incidents using actual incidents and weather data. Gajewski and Rilett [20]
estimated link travelling time correlation and looked for heavier traffic congestion by a Bayesian-based
approach. Zhou et al. [21] proposed a method based on a least squares support vector machine (LS-SVM)
classification and a regression model to predict traffic conditions using floating car data. Ando et al. [22]
proposed a method to predict short-term traffic congestion through a pheromone mechanism and
a simulation based on real-world traffic data is used to evaluate the method performance. Han
and Shi [23] provided an online prediction method based on Random Forest (RF) to predict traffic
congestions by using the real-time data. Mishra et al. [24] proposed a traffic congestion prediction model
based on multiple symbol Hidden Markov Model by considering the contribution of each congestion
causing or reflecting factors, which could adapt to the road network. Kong et al. [25] proposed a
novel approach to estimate and predict the urban traffic congestion using floating car trajectory data.
Floating cars is used to probe urban real-time traffic flows, which is converted to congestion state
by a congestion state fuzzy division module. Gilmore and Abe [26] described an ATMS blackboard
architecture; the architecture includes the Hopfield neural network model and a backpropagation
model, which is used to control traffic signal light and predict urban traffic congestion respectively.
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Shi et al. [27] proposed an adaptive cubic surface traffic flow model considering time-varying and
space-varying information [28] to predict urban traffic status. An approach based on the multivariate
spatiotemporal autoregressive model was provided by Min and Wynter [29] to predict real-time traffic
conditions and find the regularity of traffic congestion changing with traffic flow. A hybrid learning
framework was provided to combine estimation results of freeway traffic density status from multiple
macroscopic traffic flow models by Li et al. [30]. Xu et al. [31] predicted traffic flow by a spatiotemporal
variable selection method based on a support vector regression (SVR) model. Tseng et al. [32] proposed
a SVM-based real-time highway traffic congestion prediction (SRHTCP) model to collect road data and
used fuzzy theory to evaluate the real-time traffic level considering road speed, road density, road
traffic volume, and rainfall on road sections.

Yoon et al. [33] estimated traffic conditions by using spatial and temporal speed information.
Kong et al. [34] presented a method based on a curve-fitting and vehicle-tracking mechanism to predict
traffic states through the spatiotemporal average velocity extracted from vehicles’ GPS. Jia et al. [35]
provided a smart traffic prediction system, which used the sliding windows to process real-time data
stream and make regression analysis by autoregressive integrated moving average model (SWARIMA)
to predict congestion trends considering speed, time, and location information. Feng et al. [36] used
GPS probe data to estimate arterial travel time states.

Helbing et al. [37] speculated on conditions and features of traffic congestion status and provided
empirical evidence to prove the existence of traffic state phases. Cohn introduced the TomTom
congestion index to identify areas of concern and alleviate bottlenecks [38], and to create an objective
benchmark to evaluate congestion levels [39].

The major limitation in the above-mentioned studies is that the GPS data of floating cars usually
have unstable speed and weak regularity, which often results in low prediction accuracy. Targeting
these issues, this paper introduces a peak traffic congestion prediction method based on bus driving
time to improve the prediction accuracy for morning and evening peak periods.

3. TCP-DT Method

In this section, we elaborate a traffic congestion prediction method based on bus driving time
to alleviate traffic pressure, which can predict future driving time by the T-LSTM model, and adopt
three classification methods to classify congestion levels of a specific road section by the TomTom
congestion index.

3.1. Framework

The TCP-DT method consists of two components, the T-LSTM prediction model and the CI-C
model, as shown in Figure 1.
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The first component mainly matches the bus trajectory data to the bus lines and obtains the 
arrival and departure times at different stations. Then, LSTM is used to predict future congestion 
times of buses in specific road sections during morning and evening peaks by combining weather 
and historical congestion times. The second component calculates the congestion index and classifies 
it into five categories using methods of geometric interval, equal interval, and natural break. Then, 
the information entropy of the three methods is calculated separately. Finally, the characteristics of 
the three classification methods are compared and discussed. 

3.2. T-LSTM Model 

3.2.1. Driving Time Speculation 

The purpose of this section is to obtain the driving times of buses from one station to another. 
The instantaneous locations of buses should be matched to the locations of bus lines according to the 
trajectory of the bus. The original GPS trajectory points of buses are low-frequency sampled. This 
paper adopts a map-matching method for low-frequency floating buses to restore their space-time 
trajectory [40]. Then, the bus trajectory is interpolated in a uniform speed space in seconds by the 
average speed interpolation algorithm. Finally, the nearest neighbor rule of spherical distance is 
adopted to match the arrival and departure times from the bus station. The spherical distance 
between the instantaneous location of a bus and the location of a bus station can be calculated by the 
following equations, as shown in Figure 2. 

Figure 1. Framework of the traffic congestion prediction based on bus driving time (TCP-DT) method.
LSTM, long short-term memory; CI-C, congestion index and classification.

The first component mainly matches the bus trajectory data to the bus lines and obtains the
arrival and departure times at different stations. Then, LSTM is used to predict future congestion
times of buses in specific road sections during morning and evening peaks by combining weather and
historical congestion times. The second component calculates the congestion index and classifies it
into five categories using methods of geometric interval, equal interval, and natural break. Then, the
information entropy of the three methods is calculated separately. Finally, the characteristics of the
three classification methods are compared and discussed.

3.2. T-LSTM Model

3.2.1. Driving Time Speculation

The purpose of this section is to obtain the driving times of buses from one station to another.
The instantaneous locations of buses should be matched to the locations of bus lines according to the
trajectory of the bus. The original GPS trajectory points of buses are low-frequency sampled. This
paper adopts a map-matching method for low-frequency floating buses to restore their space-time
trajectory [40]. Then, the bus trajectory is interpolated in a uniform speed space in seconds by the
average speed interpolation algorithm. Finally, the nearest neighbor rule of spherical distance is
adopted to match the arrival and departure times from the bus station. The spherical distance between
the instantaneous location of a bus and the location of a bus station can be calculated by the following
equations, as shown in Figure 2.
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Figure 2. Longitudinal division based on the benchmark of 0◦ longitude.

To adjust the longitude and latitude range from 0◦ to 180◦, first, assume that the latitude and
longitude of 2 points are (O1, A1) and (O2, A2), respectively. According to the benchmark of 0◦ longitude:

if O1 is east longitude:
MO1 = O1 (1)

if O1 is west longitude:
MO1 = −O1 (2)

if A1 is north latitude:
MA1 = 90−A1 (3)

if A1 is south latitude:
MA1 = 90 + A1 (4)

Then, the converted latitude and longitude are indicated as (MO1, MA1) and (MO2, MA2), respectively,
and the distance between 2 points can be obtained using trigonometric derivation by Equations (5)
and (6):

C = sin(MO1) × sin(MO2) × sin(MA1 −MA2) + cos(MO1) × cos(MO2) (5)

D = R× arccos(C) ×π÷ 180 (6)

In Equation (6), R represents the radius of the earth. Then, the arrival and departure times are captured.
Figure 3 shows the process of buses driving from one station to another. Driving time is

defined as the interval between departure time at one station and arrival time at the other station.
The time intervals of bus m1, m2, m3 . . .mk driving from station A to station B are denoted as
Tm1,A→B, Tm2,A→B, Tm3,A→B . . .Tmk,A→B, respectively. Similarly, the time intervals from station B to
station C are defined as Ti1,B→C, Ti2,B→C, Ti3,B→C . . .Tin,B→C. Then, driving time is defined as Ti→ j, and
the calculating equation is as follows:

Tb,i→ j = Tb, j − Tb,i (7)

In this equation, Tb,i indicates the departure time of bus b from station i, Tb, j denotes the arrival
time of bus b at station j, and b represents the label of the bus.
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Figure 3. Bus driving time diagram.

3.2.2. Calculating Congestion Time

There are many cars in the city and the speed of buses varies, thus it is difficult to obtain the
nonblocking driving times of buses in different road sections. Generally, fewer people are on the roads
from 11:00 to 13:00, therefore traffic congestion rarely occurs. In our method, we regard the average
driving time of 50 buses during the time range in a specific road section as the standard driving time of
this road section without traffic congestion, and the calculation equation is as follows:

Ts
i→ j =

N∑
b=1

Tb,i→ j

N
(8)

In this equation, Ts
i→ j indicates the standard driving time from station i to station j, and N denotes the

number of buses. The congestion time is the interval between the driving time during peak period and
standard driving time, as defined by Equation (9):

Tcon
i→ j = Tpeak

i→ j − Ts
i→ j (9)

where the congestion time from station i to j is denoted as Tcon
i→ j, and Tpeak

i→ j represents the driving time
from station j to i.

3.2.3. Congestion Time Prediction

The aim of the T-LSTM model used in this research is to predict future congestion times of buses
on specific road sections, and the structure of this model is shown in Figure 4.

The input is composed of weather and historical data. Firstly, the peak period is divided into
morning and evening peaks; morning peak is from 07:00 to 09:00, and evening peak is from 17:30 to
19:30. Secondly, the weather is divided into rainy, sunny, and snowy, which is encoded into a 3-bit
one-hot code. Thirdly, the historical congestion times of buses in specific sections are divided into five
segments, which are converted into 5-bit one-hot codes. The values of congestion times are regarded
as labels. Finally, all features are aggregated to form the input data, which has dimensions of 1× 8.



Entropy 2019, 21, 709 7 of 18

Entropy 2019, 21, x FOR PEER REVIEW 7 of 18 

Entropy 2019, 21, x; doi: FOR PEER REVIEW www.mdpi.com/journal/entropy 

 
Figure 4. Structure of time prediction based on long short-term memory (T-LSTM) model. 

LTSM is adopted to predict future congestion times due to the advantage of processing and 
predicting events with long intervals and delays in time series, which generally includes forgetting 
gate, input gate and output gate and cell state. Figure 5 provides the structure of LSTM cell. (1) The 
effect of forgetting gate is to control whether the hidden cell state of the front layer is forgotten by a 
certain probability, which includes ten sigmoid function. (2) The input gate is responsible for 
processing the input of the current sequence position, which uses sigmoid and tanh activation 
function. (3) The aim of cell state is to preserve output information from the previous layer and add 
useful information of the current layer, Then, this information will be transferred to the next layer. 
(4) The function of the output gate is to output some important information and discard the 
unnecessary part, which includes ten sigmoid function. LSTM used in our method consists of 3 LSTM 
cells, and each cell contains 10 neurons. Finally, the k 1×  dimension output is obtained after 
inputting n 8×  dimension data. 

A number of customizations was conducted on the LSTM framework according to this 
application. We adopted a four-step tuning process for the LSTM customization: (1) we first set an 
acceptable target for predicting results (loss value); (2) based on the previous research experience 
[41], we preliminarily set our parameter values on the basis of predecessor’s prediction parameters 
and observe the changes of loss. According to the change trends, we preliminarily determine the 
range of each hyper-parameter; (3) in the process of LSTM adjustment, we adjust one hyper-
parameters at a time, and we observe the trend of loss (including train loss and validation loss) 
change; and (4) during the whole training process, if the change of train loss value and validation loss 
value showed a stabilized trend, we stop the adjustment and save the value of the hyper-parameter. 
Otherwise, we constantly adjust the value of the hyper-parameter, iterate and train until loss drops 
and finally stabilizes. 

 
Figure 5. Structure of LSTM Cell. 

3.3. CI-C Model 

3.3.1. Calculating TomTom Congestion Index 

In order to reflect the degree of traffic congestion, we introduce the TomTom congestion index 
(CI) as an indicator to measure congestion levels. This CI reflects the degree of deviation between 

Figure 4. Structure of time prediction based on long short-term memory (T-LSTM) model.

LTSM is adopted to predict future congestion times due to the advantage of processing and
predicting events with long intervals and delays in time series, which generally includes forgetting gate,
input gate and output gate and cell state. Figure 5 provides the structure of LSTM cell. (1) The effect of
forgetting gate is to control whether the hidden cell state of the front layer is forgotten by a certain
probability, which includes ten sigmoid function. (2) The input gate is responsible for processing the
input of the current sequence position, which uses sigmoid and tanh activation function. (3) The aim
of cell state is to preserve output information from the previous layer and add useful information of
the current layer, Then, this information will be transferred to the next layer. (4) The function of the
output gate is to output some important information and discard the unnecessary part, which includes
ten sigmoid function. LSTM used in our method consists of 3 LSTM cells, and each cell contains
10 neurons. Finally, the k× 1 dimension output is obtained after inputting n× 8 dimension data.

A number of customizations was conducted on the LSTM framework according to this application.
We adopted a four-step tuning process for the LSTM customization: (1) we first set an acceptable target
for predicting results (loss value); (2) based on the previous research experience [41], we preliminarily
set our parameter values on the basis of predecessor’s prediction parameters and observe the changes
of loss. According to the change trends, we preliminarily determine the range of each hyper-parameter;
(3) in the process of LSTM adjustment, we adjust one hyper-parameters at a time, and we observe
the trend of loss (including train loss and validation loss) change; and (4) during the whole training
process, if the change of train loss value and validation loss value showed a stabilized trend, we stop
the adjustment and save the value of the hyper-parameter. Otherwise, we constantly adjust the value
of the hyper-parameter, iterate and train until loss drops and finally stabilizes.
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3.3. CI-C Model

3.3.1. Calculating TomTom Congestion Index

In order to reflect the degree of traffic congestion, we introduce the TomTom congestion index
(CI) as an indicator to measure congestion levels. This CI reflects the degree of deviation between
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actual and standard driving times, which is widely used for traffic management in some cities in North
America and Europe. The calculation equation is as follows:

CIi→ j =
Tcon

i→ j

Ts
i→ j
× 100% (10)

where CIi→ j indicates congestion index from station i to station j.

3.3.2. Classification of Congestion Level

To better reflect the congestion of traffic road sections, we take the average congestion index of each
time segment during peak periods to measure the congestion status. Meanwhile, geometric interval,
equal interval, and natural break classification methods are used to divide traffic congestion into five
grades: better smooth, normal smooth, mild congestion, moderate congestion, and severe congestion.
For equal interval classification, the range of the congestion index is divided into five sub-ranges
of equal size. Natural breakpoint classification divides the range of the congestion index into five
sub-ranges by setting relatively different values as boundaries. Geometric interval classification creates
classification intervals based on group spacing with a geometric series to divide the range of the
congestion index into five classes.

3.3.3. Calculating Information Entropy

In this paper, to obtain the differences between the three classification methods, information
entropy is used to measure the amount of information of the methods. The calculation of information
entropy is shown in Equation (11):

Hc(x) = −
5∑

s=1

pc(s) log pc(s) (11)

In this equation, Hc(x) denotes the information entropy of c, which indicates a method of classification
used in our paper, s represents the label of congestion levels, and pc(s) delegates the probability that
the congestion level accounts for the proportion of all congestion level quantities. Equation (12) shows
the calculation method of the probability:

pc(s) =
Nc,s

Nc
(12)

In this expression, Nc indicates the number of classification method c, and Nc,s represents the number
of congestion level s in classification method c.

4. Experiment Results and Discussion

4.1. Data Predescription

The dataset used in our experiment covered 66 working days and 6 road sections from 25 March
to 29 June 2015 in Guangzhou, China, containing bus station, line vector, and bus trajectory data.

4.1.1. Bus Station and Line Vector Data

The open API of Baidu Maps provided access to collect the data, which included station ID, name,
latitude and longitude, and line label. The detailed geographic information was extracted from the
line vector data, which included nine stations and a total of 66,228 data records; these stations were
divided into six road sections, and the origin and destination stations are listed in Table 1.
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Table 1. Road sections used in the experiment.

Origin Destination Section Label

Luoshou south residence Shangjiao section 1
Shangjiao Wuzhou decoration city section 2

Wuzhou decoration city Longtan village section 3
Datang village Tianhe south section 4
Tianhe south Tianhe bus station section 5

Chuangde shoe factory West second village section 6

4.1.2. Bus Trajectory Data

GPS terminal devices are installed on buses to collect trajectory data, and a low-frequency data
sampling method was adopted with a sampling frequency of 60 HZ. The bus plate number, time of
data acquisition, instantaneous speed, direction, latitude, and longitude were recorded in the bus
trajectory information. Detailed descriptions of the data in the dataset are shown in Table 2.

Table 2. Summary of experimental data.

Data Type Description Feature

Station and line data Six road sections, total of 66,228 daily
records, covering 66 working days

Station name and bus line, ID, latitude,
and longitude

Bus trajectory data Low-frequency sampling every 60 s
Direction angle, time of data acquisition,
bus plate number, instantaneous latitude,

longitude, and speed

4.2. Data Preprocessing

After collecting the buses’ GPS trajectory data, the driving times for six road sections could be
deduced by speculating on arrival and departure times, then the congestion times of these road sections
could be obtained by comparing them to standard times.

Figure 6a shows the average driving times of buses in the six sections. Blue and orange bars in the
charts denote driving times during morning and evening peaks, and yellow bars indicate standard
driving times. As we can see from the height of the pillar, the driving times of all road sections in peak
periods are always longer than the standard driving times, which explains the occurrence of traffic
congestion during peak periods.

Figure 6b illustrates the average congestion times and indices for six road sections during peak
periods. The congestion times of road section 2 are 11.2 s and 7.4 s, and the congestion indices are 9.8%
and 6.5%, respectively, for the two periods, which are the smallest of the six road sections, thus this
road section is relatively smooth. Road section 3 has the longest morning congestion time, 319.8 s, and
road section 4 has the longest evening congestion time, 308.4 s. The maximum congestion index of the
six road sections is 79.5% and 80.0%, respectively, for the two periods, indicating that the congestion
level is severe. In summary, traffic jams during the morning peak period on road section 3 and during
the evening peak period on road section 4 are the most serious, and traffic congestion during morning
and evening peak periods on road section 1 is the lightest.
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4.3. Prediction Results

4.3.1. Parameter Descriptions

We used 80% of the dataset to train the prediction model and the remaining 20% to test the
performance of the model. The detailed parameters are listed in Table 3.

Table 3. Detailed parameter settings of LSTM model.

Parameter Description Value

rnn_unit Number of hidden layer neurons 10
lstm_layers Number of hidden layers 3

learning_rate Learning rate in training process 0.0006
keep_prob Probability of retained neurons in dropout layer 0.5
batch_size Size of batch training 40
time_step Time step 30

4.3.2. Performance Indicators

In the process of testing, the mean absolute percentage error (MAPE) and root mean square error
(RMSE) are adopted as indicators to measure the performance of the prediction model [42]. The
calculations of MAPE and RMSE are shown as Equations (13) and (14), respectively:

MAPE =
1
K

K∑
j=1

∣∣∣th( j) − t̃h( j)
∣∣∣

th( j)
× 100% (13)

RMSE =

√√√√√√ K∑
j=1

∣∣∣th( j) − t̃h( j)
∣∣∣2

K
(14)

In these equations, th( j) denotes real bus driving time inferred from GPS trajectory, and t̃h( j)
represents the predicted bus running time using the proposed T-LSTM model.

MAPE and RMSE are often used to measure the difference between predicted and real values.
MAPE reflects the percentage of difference and real values, and smaller percentages represent higher
prediction accuracy. However, it is not enough to judge the difference only considering MAPE when
the difference is small. Therefore, RMSE is introduced to assist in measuring the difference.
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4.3.3. Prediction of Congestion Time

Prediction results of congestion times for six road sections are shown in Table 4, including morning
and evening peak periods. During the morning peak period, the lowest and highest MAPE are 8.0%
and 12.7%, respectively, which indicates that the prediction accuracy in section 3 is higher than in other
sections, and the accuracy in section 1 is the worst. Meanwhile, the lowest and highest RMSE are 3.05
and 35, respectively, which indicates that the difference in section 6 between prediction and reality is
the smallest, and the most obvious difference is in section 3. The average MAPE and RMSE are 11.25%
and 14.91, respectively. During the evening peak period, the lowest and highest MAPE are 9.7% and
15%, respectively, which indicates that the prediction result of section 5 is the best, and section 3 is the
worst. The lowest and highest RMSE are 2.9 and 44.5, respectively, which indicates that the maximum
difference is in section 4 and the smallest difference is in section 2. The average MAPE is 12.3% and
RMSE is 14.57 in the evening peak.

Table 4. Summary of prediction results.

Station Peak MAPE RMSE

section 1
Morning 12.7% 4.02
Evening 13.5% 3.84

section 2
Morning 11.5% 4.70
Evening 11.3% 2.90

section 3
Morning 8.0% 35.00
Evening 15% 13.67

section 4
Morning 12.6% 34.20
Evening 12.1% 44.50

section 5
Morning 10.8% 8.50
Evening 9.7% 11.50

section 6
Morning 11.9% 3.05
Evening 12.3% 11.06

To better illustrate the experimental results, we extracted 90 congestion times for each road section
to show the predicted results. Figure 7 depicts the predicted and real congestion times of the six road
sections during morning and evening peak periods. The red curve depicts the real congestion times of
buses in the six road sections, and the blue curve represents the predicted congestion times. From the
picture, we can see that the changing trend of the predicted value curve is very close to the real value
curve, which indicates that the predicted curve can reflect the change of real values perfectly.
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In summary, the T-LSTM model can accurately and steadily predict the congestion times of
morning and evening peak periods to provide information on road status in advance, and lays a
foundation for calculating congestion index and classifying congestion levels.

4.3.4. Classification of Congestion Levels

There are three steps for classifying congestion. Firstly, the congestion index is calculated using
times predicted by the T-LSTM model. Secondly, the average daily congestion indices of morning
and evening peaks are calculated. Thirdly, the congestion levels of morning and evening peaks are
classified into five grades by the three classification methods. In order to better present the distribution
of congestion levels in six sections, the proportion of each grade for the predicted 13 days is obtained,
shown in Figures 8–10.

Entropy 2019, 21, x FOR PEER REVIEW 12 of 18 

Entropy 2019, 21, x; doi: FOR PEER REVIEW www.mdpi.com/journal/entropy 

In summary, the T-LSTM model can accurately and steadily predict the congestion times of 
morning and evening peak periods to provide information on road status in advance, and lays a 
foundation for calculating congestion index and classifying congestion levels. 

4.3.4. Classification of Congestion Levels 

There are three steps for classifying congestion. Firstly, the congestion index is calculated using 
times predicted by the T-LSTM model. Secondly, the average daily congestion indices of morning 
and evening peaks are calculated. Thirdly, the congestion levels of morning and evening peaks are 
classified into five grades by the three classification methods. In order to better present the 
distribution of congestion levels in six sections, the proportion of each grade for the predicted 13 days 
is obtained, shown in Figures 8–10. 

 
(a) 

 
(b) 

Figure 8. Equal interval classification of predicted data: (a) morning peak, (b) evening peak. 

Figure 8 shows the proportion of five congestion grades for the six sections during peak periods 
by the equal interval classification. During the morning peak period, the proportion of better smooth 
is larger than other grades in road sections 1, 2, 4, 5 and 6, which account for 34%, 35%, 27%, 42%, 
and 38%, respectively. The proportion of moderate congestion is 35% in road Section 3, the largest of 
all grades. The congestion proportions of the six road sections are 39%, 39%, 73%, 58%, 35%, and 47%. 
Similar to the morning peak, the proportion of better smooth in sections 1, 2, and 3 during the evening 
peak period are smaller than the others, which are 50%, 42%, 38%, and severe congestion accounts 
for 31%, 46%, and 41% in the other sections. The congestion proportions are 31%, 50%, 19%, 54%, 
69%, and 61%. 

Figure 8. Equal interval classification of predicted data: (a) morning peak, (b) evening peak.

Figure 8 shows the proportion of five congestion grades for the six sections during peak periods
by the equal interval classification. During the morning peak period, the proportion of better smooth
is larger than other grades in road sections 1, 2, 4, 5 and 6, which account for 34%, 35%, 27%, 42%, and
38%, respectively. The proportion of moderate congestion is 35% in road section 3, the largest of all
grades. The congestion proportions of the six road sections are 39%, 39%, 73%, 58%, 35%, and 47%.
Similar to the morning peak, the proportion of better smooth in sections 1, 2, and 3 during the evening
peak period are smaller than the others, which are 50%, 42%, 38%, and severe congestion accounts for
31%, 46%, and 41% in the other sections. The congestion proportions are 31%, 50%, 19%, 54%, 69%,
and 61%.
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Figure 9 illustrates the proportions by using the natural breakpoint classification method. During
the morning peak period, normal smooth accounts for larger proportions in road sections 1, 2, and 4,
which are 27%, 32%, and 31%. Moderate congestion accounts for 31% in section 3, and better smooth
accounts for 31% in section 5, and both mild and moderate congestion account for 27% in section 6,
representing the largest proportions. The congestion proportions of the six sections are 58%, 53%, 66%,
61%, 46%, and 62%. During the evening peak period, the proportion of normal smooth of both sections
2 and 4 is 27%. Similarly, the proportion of severe congestion in both sections 1 and 5 is also 27%, and
mild congestion and moderate congestion both account for 28% in sections 3 and 6. The proportions of
congestion in the evening peak are 58%, 58%, 60%, 54%, 69%, and 62%.
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Figure 10 shows the result of geometric interval classification. The highest proportions are 24%,
24%, 24%, 31%, and 24% for sections 1, 2, 4, 5, and 6, respectively, indicating severe congestion, normal
smooth, mild congestion, better smooth, and severe congestion. Better smooth, mild congestion, and
moderate congestion each account for 23% in section 3. The proportions of congestion are 58%, 53%,
58%, 62%, 49%, and 62%. The largest proportions of these sections are 24%, 23%, 24%, 27%, 23%, and
24%, and the congestion proportions are 62%, 58%, 62%, 54%, 58%, and 61%.

The congestion proportions of six road sections using three classification methods are summarized
in Table 5.

Table 5. Proportions of congestion.

Method Peak Section 1 Section 2 Section 3 Section 4 Section 5 Section 6

Equal
Interval

Morning 39% 39% 73% 58% 35% 47%
Evening 31% 50% 19% 54% 69% 61%

Natural
Breakpoint

Morning 58% 53% 66% 61% 46% 62%
Evening 58% 58% 60% 54% 69% 62%

Geometric
Interval

Morning 58% 53% 58% 62% 49% 62%
Evening 62% 58% 62% 54% 58% 61%

In summary, comparing the three classification methods, we can conclude that the geometric
interval classification method has the most uniform distribution and the equal interval classification
method has the worst distribution.
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4.3.5. Calculating Information Entropy

The results of the three classification methods in the previous section may not fully reflect
the magnitude of information. Therefore, the information entropy of the six sections by using
the three classification methods is calculated separately, as shown in Table 6. All the information
entropy by geometric interval classification is larger than with the other methods, and there is a big
difference compared with the equal interval method and a small difference compared with the natural
breakpoint method.

Table 6. Information entropy of six road sections.

Method Peak Section 1 Section 2 Section 3 Section 4 Section 5 Section 6

Equal
Interval

Morning 1.85 2.18 2.18 2.26 2.10 2.11
Evening 1.81 1.97 1.65 2.19 1.98 2.06

Natural
Breakpoint

Morning 2.28 2.26 2.22 2.19 2.24 2.21
Evening 2.23 2.28 2.28 2.30 2.28 2.28

Geometric
Interval

Morning 2.30 2.30 2.29 2.30 2.26 2.30
Evening 2.29 2.32 2.30 2.30 2.29 2.30

Table 7 shows the total information entropy of the three classification methods during the morning
and evening. From the table, the information entropy of the geometric interval method is larger
than the others, and the morning and evening information entropy is the largest. Conversely, the
equal interval method is the smallest for morning and evening information entropy, and the natural
breakpoint method has moderate information entropy.

Table 7. Total information entropy of three classification methods.

Peak Equal Interval Natural Breakpoint Geometric Interval

Morning 12.68 13.40 13.76
Evening 11.67 13.64 13.79

Total 24.35 27.04 27.55

To sum up, there are large differences in the classification results of the same data when comparing
the information entropy of the three classification methods, especially between equal interval and
geometric interval, and geometric has the largest information entropy in all sections. Therefore,
geometric interval performs better than the others in terms of information entropy.

4.4. Discussion

Based on the experimental results, the geometric interval method displayed more road status
information (larger information entropy) and a more balanced congestion distribution (Figures 6–8).
In other words, geometric interval classification generally outperformed equal interval and natural
breakpoint classification in terms of information entropy and distribution. However, the disadvantage
of the geometric interval method is that congestion grades usually cannot be divided according to
historical experience and the difference of each grade is maximized inconspicuously. Meanwhile,
the natural breakpoint method maximizes the difference of each grade, but the limitation is finding
the grade with the smallest variance by computing the variance of each grade, and the amount of
computation is enormous. Therefore, there is a trade-off between the geometric interval and natural
breakpoint methods.

In the future, we intend to extend our peak congestion prediction method by considering more
factors. Then, we plan to utilize our approach to optimize shortest-time planning for a variety of
transportation activities [43] in Guangzhou City, China, and to consider multiple factors and increase
the applicability of this method in our future work.
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5. Conclusions

In this paper, a peak traffic congestion prediction method based on bus driving time was used to
predict the peak traffic congestion in large-scale urban areas. A map-matching method was adopted
to match the bus trajectory data and bus sample points. Then, the bus driving time in different road
sections during peak periods was extracted, and an LSTM neural network was used to predict the
traffic congestion time. In order to improve the stability and reliability of prediction, the weather
was also taken into consideration. Our method extracts the driving time of different road sections
to measure the state of traffic congestion and divide the state of traffic into five grades using three
classification methods. By using data of 66 working days for six road sections and a total of 66,228 bus
driving records in Guangzhou City, our experimental results show that the average MAPE of morning
and evening peaks is 11.25% and 12.3%, and the average RMSE of morning and evening peaks is
14.91 and 14.57, respectively. However, the limitation of our current approach is that the congestion
prediction of the dedicated bus lane sections is invalidated. In future, we will combine bus and floating
car data to overcome the challenges posed by the dedicated bus lane.
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