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Abstract: Stumbling during gait is commonly encountered in patients who suffer from mild to serious
walking problems, e.g., after stroke, in osteoarthritis, or amputees using a lower leg prosthesis.
Instead of self-reporting, an objective assessment of the number of stumbles in daily life would
inform clinicians more accurately and enable the evaluation of treatments that aim to achieve a safer
walking pattern. An easy-to-use wearable might fulfill this need. The goal of the present study was
to investigate whether a single inertial measurement unit (IMU) placed at the shank and machine
learning algorithms could be used to detect and classify stumbling events in a dataset comprising
of a wide variety of daily movements. Ten healthy test subjects were deliberately tripped by an
unexpected and unseen obstacle while walking on a treadmill. The subjects stumbled a total of
276 times, both using an elevating recovery strategy and a lowering recovery strategy. Subjects also
performed multiple Activities of Daily Living. During data processing, an event-defined window
segmentation technique was used to trace high peaks in acceleration that could potentially be
stumbles. In the reduced dataset, time windows were labelled with the aid of video annotation.
Subsequently, discriminative features were extracted and fed to train seven different types of machine
learning algorithms. Trained machine learning algorithms were validated using leave-one-subject-out
cross-validation. Support Vector Machine (SVM) algorithms were most successful, and could detect
and classify stumbles with 100% sensitivity, 100% specificity, and 96.7% accuracy in the independent
testing dataset. The SVM algorithms were implemented in a user-friendly, freely available, stumble
detection app named Stumblemeter. This work shows that stumble detection and classification based
on SVM is accurate and ready to apply in clinical practice.

Keywords: stumbling; detection; machine learning; inertial measurement unit; accelerometer; gyro-
scope; amputee; osseointegration

1. Introduction
1.1. Stumbling in Individuals with Impaired Gait

Among non-disabled older adults, tripping over an obstacle has consistently been
reported as the leading cause of falls [1–3], accounting for 33 [3] to 53 percent of all falls [2].
Fall risk is even increased in chronic disorders such as osteoarthritis [4], stroke [5], and
leg amputees [6]. During gait, an individual may be particularly susceptible to tripping
or stumbling at the instant when the swing foot reaches its peak forward velocity and,
simultaneously, the vertical distance between the swing foot and the ground reaches a
local minimum [7]. This point in the gait cycle has been referred to as the instant of
minimum toe clearance (MTC). Theory predicts that small MTC and larger toe clearance
variability increase the probability that the swing foot will contact an unseen obstacle,
initiating a stumble [8]. In the absence of compensatory strategies, the lack of ankle
dorsiflexion muscles for individuals with a prosthesis is expected to affect MTC, possibly
increasing the likelihood of stumbling over an obstacle [9]. Measuring the number of
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stumbles during daily life could be an effective way to identify older adults and impaired
individuals who are prone to fall. Fall risk is directly associated with stumbles [10,11].
Sgyrley et al. [12] found that the elderly who reported multiple near falls were more likely
to fall prospectively. For amputees, osseointegration is an innovative way to anchor the
prosthesis to the bone of the stump. Such a direct skeletal connection of the prosthesis is
claimed to provide superior walking stability over traditional prostheses [13,14]. However,
scientific evidence is required to support these claims. Screening for individual fall risk is
advocated for groups at risk (e.g., people with osteoarthrosis [4] or amputees), to indicate
and tailor fall-prevention interventions.

1.2. Automatic Stumble Detection for an Objective Evaluation of Fall Risk

Assessing the number of stumbles is often based on subjective self-reports [15]. Even
though these self-reports are a low-cost solution, they are not very accurate and reliable,
but seriously biased, due to denial and under- or overestimation of the true occurrence
of the stumbling events [14,16]. Therefore, accurate and reliable methods for objective
detection of stumbles are required. Automatic stumble detection would enable clinicians
to objectively assess patients who are at fall risk or monitor how an older individual’s fall
risk changes over time. Moreover, such a system could be used to evaluate the efficacy of
interventions that aim to promote walking safety. Furthermore, it can be used to monitor
patient progress during fall-prevention training programs. In addition to the number
of stumbles, also identification of the type of stumble recovery strategy used could be
important information to inform therapists. The body has two primary approaches to
recovering from stumbles [17,18]. In the elevating strategy, the obstructed foot is lifted
over the impeding object and swung quickly forward to take the weight. In the lowering
strategy, the obstructed foot is put onto the ground to take the body weight while the other
leg performs a quick recovery step.

1.3. Wearable Sensors and Machine Learning

In near fall detection research, the rapid development in sensor technology and
improvement of data-processing capabilities of devices has led to a shift from self-reports
to remote monitoring using wearable sensors and advanced detection algorithms, as it gives
the opportunity to potentially collect data outside the laboratory setting [19]. Especially the
combination of an accelerometer and a gyroscope, also known as an inertial measurement
unit (IMU), has become more popular, as the development of micro-electro-mechanical
systems (MEMS) technology has led to the low cost, low mass, and low energy consumption
of sensors.

However, if a stumble detection system is to be used in a real-world environment,
it is hard to distinguish peaks in acceleration and angular velocity that are caused by
stumbles from peaks that are caused by other movements, such as walking down the
stairs. Using a threshold-based algorithm leads to dilemma: if it is too low, the device will
also detect negative events (“false positive”), but if the threshold is too high, it will not
detect positive events (“false negative”). The threshold is also dependent on the subject-
to-subject variability [20]. Threshold-based algorithms cannot overcome this difficulty
and more advanced algorithms are required to separate stumbles from other movements.
Machine learning involves the development of algorithms that would enable computers to
learn complex patterns and make intelligent decisions based on these algorithms, without
explicitly being programmed to do so [21]. The development of advanced machine learning
algorithms offers the possibility to classify complex data. However, machine learning is
still a relatively new field in stumble and fall detection research. Different techniques have
been developed to automatically identify stumbles with varying degrees of success using
body-fixed sensors [15,22–28]. Sensitivities and specificities ranged from 75 to 100% and
90.1 to 100%, respectively. However, only one study by Aziz et al. [22] included activities
of daily living (ADLs) in their dataset. Activities of daily living should be added in the
dataset to check the accuracy of the developed stumble detection system and its ability to
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differentiate between stumbles and ADLs. Although Aziz et al. achieved 100% sensitivity
and 100% specificity, their system required five sensors. They achieved 92.0% sensitivity
and 99.2% specificity with a single sensor placed on the right thigh. No study aimed to
create a lower leg-based stumble detection system. A lower leg-based stumble detection
system could be of value to individuals with a prosthesis, as it offers the possibility to
attach the sensor to the prosthesis. Furthermore, no study aimed to create a system able to
classify the type of stumble (elevating strategy or lowering strategy).

The goal of the present study is to investigate whether a single IMU sensor placed on
the lower leg together with machine learning algorithms can be used to detect and classify
stumbling events, with high sensitivity and specificity, in a context of activities of daily life.

2. Materials and Methods
2.1. Participants, Experimental Setup, and Protocol

Ten healthy volunteers (9 young (25.4 ± 1.5 years) and 1 older (60 years)) participated
in the study. The study was approved by the TU Delft Human Research Ethical Com-
mittee (HREC-1304). All risks and precautions of the experiment were explained to the
participants, after which they read and signed the informed consent form.

To make the participants stumble unexpectedly, a stumbling device based on the design
by King et al. [29] was built. The device consists of a ramp-based obstacle delivery apparatus
that releases an obstacle onto a treadmill (see Figure 1). The obstacle was made out of
aluminum and weighted approximately 6 kg. The horizontal velocity at treadmill touchdown
could be modified by changing the point along the ramp where the obstacle is held by an
electromagnet. When the obstacle was released, it rolled down the ramped track, on a set of
flanged roller bearings mounted on shoulder bolts threaded into each corner of the obstacle,
and then slid onto the treadmill belt. Firm foam padding was attached to the front and bottom
of the obstacle to protect the subjects’ toes and the treadmill belt, respectively.

Figure 1. Stumbling device [29] mounted on a treadmill.

Participants were asked to walk steadily on a treadmill and manage the unexpected
tripping perturbations. To prevent subjects from hearing or seeing the obstacle being
deployed, each subject listened to music via earbuds, and a shield was placed directly above
the stumbling device, to occlude visual perception of the obstacle sliding on the treadmill
(see Figure 2). Participants wore a safety harness that was attached to the ceiling by a cord
and a stiff spring, to prevent them from falling. Participants were given several minutes to
walk on the treadmill before testing, to acclimate to the setup. During the stumbling trials,
the treadmill speed was changed after every three consecutive stumbles, ranging from 1 to
5 km/h, to elicit different gradations of stumbles and to prevent habituation. Changes in
treadmill speed were chosen randomly. Release of the obstacle on the treadmill happened
about once every minute. The legs of the participants were videotaped, to classify a trial
as either a successful stumbling trial or a mistrial. A trial was labelled as successful if
there was a clear impact of the swinging foot with the obstacle during the swing phase.
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Trials were labelled as unsuccessful if the subject stepped on or over the obstacle. For
each test subject, at least 20 successful stumbles were recorded. Stumbling trials were
divided into two classes based on the recovery strategy used: the elevating strategy or
the lowering strategy [30,31]. The experimenter ensured that about the same number of
elevating stumbles and lowering stumbles were evoked by manually timing the release of
the obstacle. The recovery strategy was determined by the trajectory of the perturbed foot
after impact:

- Elevating strategy: After impact with the obstacle, the perturbed foot lifts up and
over the obstacle, landing past the obstacle. This strategy is used when the foot is
perturbed in the early swing phase (5–50% of the entire swing phase).

- Lowering strategy: After impact with the obstacle, the perturbed foot lowers in front
of the obstacle, while the other foot performs a recovery step and lands past the
obstacle. This strategy is used when the foot is perturbed in the late swing phase
(40–75% of the entire swing).

Figure 2. Stumbling device and experimental setup.

One Ax6 inertial measurement unit (IMU) from Axivity, Newcastle upon Tyne, UK,
was used during this study. The IMU was placed on the tibia, 20 cm below the patella,
using sports tape for fixation to the skin. The sensor was set to record at 100 Hz, with
an accelerometer range of ±8 g and a gyroscope range of ±500 dps. The placement and
directions of the axes of the IMU are shown in Figure 3.

'EZ 

Figure 3. Placement and direction of the axes of the Ax6 sensor.

After the stumbling trials, the participants performed several Activities of Daily Living
(ADLs) that resemble common movements that are present in the daily life of individuals
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with a prosthesis. The inclusion of ADLs in the training dataset is necessary to properly
train the machine learning classification models and reduce the number of false positives
and false negatives when the system is used in the real world. Each ADL was explained
and demonstrated to the participants by the experimenter. The participants then performed
the ADLs themselves (see Table 1).

Table 1. Activities of Daily Living.

ADL Amount/Time Instructions

Walking straight 5 min 1, 2, 3, 4, and 5 km/h on a treadmill (1 min each)

Walking corner 10× Walk 90-degree and 180-degree corners

Come to a halt 10× Stand still after walking. Repeat 10 times.

Sitting and rising 10× Sit down on a chair and rise from a chair in different ways
and speeds. Repeat 10 times

Pick up object
from ground 10× Throw a small ball on the ground and then pick it up from

the ground in different ways and speeds. Repeat 10 times.

Walking upstairs
and downstairs 5× Walk up and downstairs in different ways and using

speeds. Repeat 5 times

2.2. Dataset and Software

Accelerometer and gyroscope data collected during the experiments were uploaded
to a computer via Omgui (Newcastle: Open Movement Newcastle University) version
V1.0.0.43., an open-source lightweight application. Omgui is used to set up and configure
the Axivity sensors, as well as to visualize the data.

The video recordings of the legs of the test subjects were synchronized with the IMU
sensor data via ELAN (Nijmegen: Max Planck Institute for Psycholinguistics) version 5.9.
In ELAN video recordings and IMU sensor data can be synchronized and played back.
To obtain the ground truth, the experimenter used this application to manually label the
different activities in MATLAB. Motions were labelled as ‘Stumble (Elevating)’, ‘Stumble
(Lowering)’, and ‘Other’. Mistrials were labeled as ‘Other’ and kept in the dataset. The
labelled activities (classes) from the video footage were treated as the ground truth, to train
the machine learning models.

MATLAB (Mathworks Inc., Natick, MA, USA) release R2020b version 9.9.0.1592791
was used for processing the data and developing the machine learning models.

2.3. Data Pre-Processing

The dataset required minimal pre-processing. Data from the IMU contains seven
columns. The first column contains the time as a serial date number. Columns 2 to 4 and
5 to 7 contain the accelerometer and gyroscope data in X, Y, and Z direction, respectively.
The logging frequency was set to 100 Hz, resulting in 100 data points per second. The serial
date numbers were converted to a datetime array using the MATLAB function datetime.
The resultant acceleration without gravity (g) and resultant angular velocity (deg/s) at
each time was calculated using Equations (1) and (2):

ar =
√

a2
x + a2

y + a2
z − 1 (1)

ωr =
√

ω2
x + ω2

y + ω2
z (2)

In total, 8 signals were used for machine learning; ax, ay, az, ar, ωx, ωy, ωz, and ωr.

2.4. Window Segmentation and Labelling

In machine learning problems where time series come into play, the data should be ade-
quately partitioned and labelled with the corresponding activity, to distinguish between the
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different classes. In human activity classification, several windowing techniques are used
to divide the sensor data into smaller time segments (or windows), also known as window
segmentation. Subsequently, feature extraction is applied to each window separately.

In our approach, an event-defined window segmentation method was used. The first
step in the event-defined window segmentation method is to find potential stumbles in
the dataset. As each stumble is characterized by peaks in acceleration, the findpeaks option
in MATLAB is used to locate peaks in the dataset. As both stumbles using an elevating
strategy and lowering strategy are characterized by high acceleration peaks in the forward
z direction, the findpeaks function in MATLAB was used to find peaks in this signal. To
reduce the number of peaks considered, a threshold value of 1.75 g was empirically chosen,
as this value was just low enough to capture all stumbling peaks, as well as some peaks
caused by other movements. Furthermore, the time interval in-between peaks was set to
4 s, ignoring the lower peaks within this range. This ensures that stumbles are not detected
multiple times, as the acceleration signal may cross the 1.75 g threshold multiple times
during a stumble. The findpeaks option returns the locations (indices) of the peaks. After the
locations of the peaks were found, these locations were used as the centers of the windows.
Time windows of 2560 milliseconds were created as this length is enough to fully capture a
stumble. For each location, 1270 milliseconds before the peak to 1280 milliseconds after the
peak was considered to form a time window (see Figure 4). As the sampling frequency of
the IMU was 100 Hz, each time window includes 256 data points for one signal. As there
are 8 signals, each window contains 8 × 256 = 2048 data points. The event-defined window
segmentation method reduces the computational time as only parts of the data that are
potential peaks are fed into the machine learning algorithms and the rest of the data, the
vast majority, is ignored for the rest of the process.

Figure 4. Event-defined window segmentation technique. Time windows were created around the
intersection points between the accelerations in the (forward) z-direction (blue) and the threshold
line (red).

Next, the time windows were labelled. During this study we evaluated two different
approaches to classify the data into three classes: Stumble (elevating), Stumble (lowering) and
Other. In the first approach, the three-class classification approach, we tested the capability
of the different machine learning algorithms to directly classify the data into the three
classes. We use dataset D1, where the data are grouped by the three classes, to evaluate this
approach (see Table 2). In our second approach, the double binary classification approach,
we tested the capability of the different algorithms to first classify the data into two classes:
Stumble and Other. Subsequently, all windows predicted as stumbles were classified as
either Elevating or Lowering using a second machine learning algorithm. We used datasets
D2 and D3 to test this approach (see Table 2).



Sensors 2021, 21, 6636 7 of 18

Table 2. Labelled datasets.

Dataset Classes
Amount of
Windows

(Validation)

Amount of
Windows

(Test)

(D1) Three-class classification
Stumble (elevating)
Stumble (lowering)

Other

132
114
329

12
18
77

(D2) Stumble detection Stumble
Other

246
329

30
77

(D3) Stumble type classification Elevating
Lowering

132
114

12
18

2.5. Feature Selection and Extraction

Feature selection is an important area in machine learning. It is the process of selecting
the relevant features to construct a model. The main idea behind feature selection is that
some features are redundant or irrelevant and can therefore be removed without much
information loss. Research has shown that it is an effective way to improve the learning
process and recognition accuracy and decreases the complexity and computational cost.
Some models are negatively affected by irrelevant features [32]. The main objective of
feature selection in supervised machine learning is to improve the classification accuracy
and reduce complexity [33,34].

In this study, both time domain and frequency domain features were tested and
selected. A Fast Fourier Transform was used to extract the frequency-domain features.
Initially, 42 different feature classes were tested for usability. For each time window, a
single feature class was extracted per IMU signal, creating 8-dimensional feature vectors
(1 feature class × 8 signals). These feature vectors were then fed into different machine
learning algorithms, to test the feature classes’ predictive power. Feature classes were only
selected if they were capable of achieving at least 70% sensitivity and specificity with a
machine learning algorithm, indicating there is a strong correlation with the output. A
total of 16 features classes passed the first selection round (see Table 3).

Table 3. Feature classes.

Nr Feature Class

1 Interquartile range
2 Kurtosis
3 Mean
4 Median
5 Mean absolute deviation
6 Maximum
7 Minimum
8 Peak-magnitude-to-RMS-ratio
9 Spectral entropy

10 Prominence
11 Root-mean-square level
12 Root-sum-of-squares level
13 Range
14 Skewness
15 Standard deviation
16 Sum of local maxima and minima

Next, for each time window, all 16 features classes were extracted for each of the 8 IMU
signals, creating 128-dimensional feature vectors (1 classes × 8 signals). This means that
for each time window there are 128 features that could describe the characteristics of that
window. An effective method to identify the most relevant features is sequential feature
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selection [35]. Sequential feature selection is a wrapper-type feature selection algorithm that
starts training using a subset of features and then adds or removes a feature using a selection
criterion. The selection criterion directly measures the change in model performance that
results from adding or removing a feature. The algorithm repeats training and improving
a model until its stopping criteria are satisfied. This method has two components:

• An objective function, called the criterion, in which the method seeks to minimize the
overall feasible feature subsets. For our classification problem, the misclassification
rate was set as the objective function.

• A sequential search algorithm, which adds or removes features from a candidate
subject while evaluating the criterion.

The method has two variants:

• Sequential forward selection (SFS), in which features are sequentially added to an empty
candidate set until the addition of further features does not decrease the criterion.

• Sequential backward selection (SBS), in which features are sequentially removed from a
full candidate set until the removal of further features increase the criterion.

SFS was chosen over SBS for feature selection as the computational cost is signifi-
cantly lower with SFS. For each model, features were selected using SFS with 30 objective
evaluations.

Finally, we normalized the extracted features to rescale the data to a common scale.
Supervised machine learning algorithms learn the relationship between the input and
output and the unit, scale, and distribution of the input data may vary from feature to
feature. This will impact the classification accuracy of the models. In this work, the data
were normalized by scaling each input variable to a range of 0 to 1.

2.6. Machine Learning Algorithms

After the sensor data were properly processed and the features were extracted; the
next step is to feed these feature vectors to a machine learning algorithm. In this study,
seven types of machine learning algorithms were tested: Decision Tree [36], Discrimi-
nant Analysis [37], Logistic Regression [38], Naïve Bayes [39], Support Vector Machine
(SVM) [40], k-nearest neighbors (KNN) [39], and Ensemble Learning [41]. Each type of
machine learning algorithm has hyperparameters to select. For each type of machine
learning algorithm, the optimal set of hyperparameters was found for the three different
machine learning classification datasets, by using a Bayesian Optimization Algorithm with
40 iterations (see Appendix A for an overview of the Machine Learning algorithms that
were trained and evaluated, with their optimal hyperparameters).

2.7. Training, Validating, and Testing

To evaluate the different machine learning algorithms, the dataset was divided into
a training dataset, validation dataset, and testing dataset (see Figure 5). To determine
the optimal hyperparameters, leave-one-subject-out cross-validation (LOOCV) was used
together with Bayesian Optimization on the data from Subjects 1 to 9—the younger test
subjects. Like k-fold cross-validation, the data were partitioned into training data and
validation data. The validation dataset provides an evaluation of a model fit on the
training dataset while tuning the model’s hyperparameters [42]. With 9 subjects, the cross-
validation process iterated 9 times. For each iteration, the data of the left-out subject was
used as validation data and the data of the remaining subjects as training data. After the
9 iterations, the predicted labels of the validation data were compared with the true labels.
Trained models with the optimal hyperparameters, found using Bayesian Optimization,
were exported.
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Figure 5. Division of the dataset into a training dataset, validation dataset, and testing dataset.

The trained models were then evaluated with the testing data from the remaining
Subject 10—the older test subject. The testing dataset is a dataset used to provide an
unbiased evaluation of a final model fit on the training dataset [42]. This testing dataset
was not used for training. The predicted labels of the testing data were compared with the
true labels.

Next, the total performance for each model was calculated with different metrics. For
this study, the most important performance metrics to compute were sensitivity (also called
true positive rate, hit rate, or recall), specificity (also called true negative rate), and accuracy
(see Equations (3)–(5)). These metrics were calculated after training and validating with
LOOCV (validation scores), and after testing the exported models on the holdout data from
Subject 10 (test scores). It should be noted that the specificities were calculated over the
reduced dataset, containing just time windows with peaks that cross the threshold.

Sensitivity =
TP

TP + FN
(3)

Speci f icity =
TN

TN + FP
(4)

Accuracy =
TE + TL

Total stumbles
(5)

where TP represent the true positives (true stumbles), TN represents the true negatives
(true ADLs), FP represents the false positives (ADLs misidentified as stumbles), and FN
represents the false negatives (stumbles misidentified as ADLs). TE represent true elevating
stumbles and TL the true lowering stumbles.

3. Results

In total, 276 successful stumbles were captured by the IMU, of which 134 were stum-
bles that were recovered using the elevating strategy and 132 that were recovered using
the lowering strategy. Subject 10 stumbled 30 times and recovered from 5 perturbations
by jumping over the obstacle with both legs at the same time. These ‘hopping’ recoveries
were labelled as elevating, as the obstructed foot was lifted over the object directly after
the collision. No separate class was created for these ‘hopping’ stumbles as there was
simply not enough data to do so. The dataset of all subjects combined, including both the
stumbling data and ADLs, is approximately 11.5 h long.

In this chapter, all the different machine learning algorithms are validated using
leave-one-subject-out cross-validation and tested by using the exported models on the
holdout data from Subject 10. In Section 3.1, single machine learning algorithms were
used to separate three classes directly: Stumble (elevating), Stumble (lowering), and Other.
In Section 3.2, two machine learning algorithms were used in series, to first separate all
stumbles from all other peaks, and subsequently differentiate between the type of stumble
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recovery strategy. Sensitivity and specificity were computed to validate and evaluate the
model’s ability to separate the stumbles from the other data. Accuracy was computed to
evaluate the model’s ability to distinguish between stumbles where an elevating strategy
was used and stumbles where a lowering strategy was used.

3.1. Three-Class Classification Approach

Since we do not only want to separate stumbles from the other data, but also want to
distinguish between the type of stumble (elevating strategy/lowering strategy), there are
three classes in this machine learning classification problem. Intuitively, a single machine
learning model can be used to classify the data into the three classes (see Figure 6).

Figure 6. Single machine learning model to classify data into three classes.

Tables 4 and 5 show the results for this classification problem. We used dataset D1
to validate and evaluate this approach. The model predictions were compared with the
true labels. Sensitivities and specificities were calculated by taking both types of stumbles
together as the positive class and the ‘Other’ windows as the negative class. Accuracy
was calculated by the number of correctly classified stumbles (elevating as elevating
and lowering as lowering) divided by the number of detected stumbles. The highest
sensitivities, specificities, and accuracies where achieved with the SVM model during both
validation and testing.

Table 4. Results of the three-class classification approach (validation).

ML Model Sensitivity (%) Specificity (%) Accuracy (%)

SVM 98.4 99.4 98.5

Ensemble Learning 98.0 98.5 93.4

Discriminant Analysis 97.2 97.0 90.0

KNN 97.2 95.1 74.1

Naïve Bayes 91.1 95.4 75.4

Decision Tree 87.8 93.3 77.8

Table 5. Results of the three-class classification approach (testing).

ML Model Sensitivity (%) Specificity (%) Accuracy (%)

SVM 96.7 100 96.6

Ensemble Learning 93.3 98.7 92.9

Discriminant Analysis 93.3 97.4 89.3

KNN 90 93.5 88.9

Naïve Bayes 90 93.5 77.8

Decision Tree 83.3 94.8 72.0
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3.2. Double Binary Classification Approach

In our second approach, the machine learning classification problem was split into
two parts. First, a machine learning model was used to detect stumbles in the data. We
call this the stumble detection problem. Subsequently, a second machine learning model
was used to classify the stumbles as either a stumble where an elevating strategy was
used or a stumble where a lowering strategy was used. We will call this the stumble type
classification problem (see Figure 7).

Figure 7. Two binary machine learning models in series.

Tables 6 and 7 show the results for the stumble detection problem, validated and
evaluated with dataset D2. The model predictions were compared with the true labels. A
confusion matrix was created for each model and the sensitivities and specificities were
calculated for both validation and testing. The best results were achieved with the SVM
model, with a 100% sensitivity and 100% specificity in the testing dataset. Tables 8 and 9
show the results for the stumble-type classification problem, validated and evaluated
with dataset D3. The accuracy was defined as the amount of correct predictions over the
total amount of predictions. Again the SVM model outperformed other models, with an
accuracy of 96.7% in the testing dataset.

Table 6. Results of the stumble detection problem (validation).

ML Model 1 Sensitivity (%)
(Validation)

Specificity (%)
(Validation)

SVM 98.8 100

Discriminant Analysis 98.0 96.3

Ensemble Learner 97.6 98.2

Logistic Regression 97.6 94.8

KNN 96.3 92.4

Naïve Bayes 88.2 90.4

Decision Tree 88.0 93.6

Table 7. Results of the stumble detection problem (testing).

ML Model 1 Sensitivity
(Testing)

Specificity (%)
(Testing)

SVM 100 100

Discriminant Analysis 96.7 97.4

Ensemble Learner 96.7 97.4

Logistic Regression 90.0 93.5

KNN 90.0 92.2

Naïve Bayes 86.7 89.6

Decision Tree 83.3 88.3
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Table 8. Results of the stumble-type classification problem (validation).

ML Model 2 Accuracy (%)
(Validation)

SVM 95.5

Ensemble Learner 91.9

Discriminant Analysis 87.0

KNN 86.6

Logistic Regression 85.4

Naïve Bayes 84.2

Decision Tree 81.3

Table 9. Results of the stumble-type classification problem (testing).

ML Model 2 Accuracy (%)
(Testing)

SVM 96.7

Ensemble Learner 93.3

Discriminant Analysis 83.3

KNN 80.0

Logistic Regression 80.0

Naïve Bayes 76.7

Decision Tree 73.3

3.3. Final Model

For our final model, we look at the results of the previous two paragraphs. As precise
detection of the stumbles is prioritized over accurate stumble-type classification, the main
demand for the final model is its ability to detect as many stumbles as possible with keeping
the number of false positives as low as possible. For both validation and testing, the highest
sensitivity and specificity were achieved with the double binary classification approach. For
both the stumble detection problem and the stumble-type classification problem, the best
results were achieved with SVM. For stumble detection, SVM achieved 100% sensitivity
and 100% specificity in the testing dataset. For the stumble-type classification, the SVM
was able to classify the stumble recovery type with 96.7% accuracy in the testing dataset.
Therefore, for our final model we used these two SVM models in series. Table 10 shows the
selected features using SFS and the selected hyperparameters using Bayesian Optimization
for both models.

3.4. Stumblemeter App

To make the programming work of this study accessible for clinicians, an application
named Stumblemeter was created (see Supplementary Materials). After uploading the .cwa
file containing the IMU data, the application automatically performs all the steps required
for machine learning classification (see Figure 8 for the interface of the Stumblemeter app).
The application displays the number of stumbles in the form of a histogram. In the text
area, the total amount of stumbles during a measurement is displayed, as well as the times
when a stumble occurred. Depending on the physical activity of an individual with a
prosthesis, the computation time for a 7-day measurement is about 3 min.
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Table 10. Final models: features and hyperparameters.

ML Model Type Features Kernel Function Box Constraint Level Kernel Scale

ML model 1
(stumble vs.

other)
SVM

Median ax
Maximum ax
Minimum az
Minimum ωy

Spectral entropy ωz
Peak-magnitude-to-RMS

ratio ωz
Peak-magnitude-to-RMS

ratio ωr

Linear 976.7 7.5492

ML model 2
(elevating vs.

lowering)
SVM

Interquartile range ar
Kurtosis ax

Mean ax
Mean ωx

Maximum ωz
Minimum ωr
Skewness ωr

Linear 0.0001 0.0293

Figure 8. Interface of the Stumblemeter app. The number of stumbles per day is displayed on the left
in the form of a histogram. The total number of stumbles, the duration of the measurement, and the
individual stumbling times are displayed on the right.

4. Discussion
4.1. Recap

During this study, seven types of machine learning algorithms were trained, validated,
and tested. For each type, optimized hyperparameters were found using Bayesian Opti-
mization. All the models were first validated using leave-one-subject-out cross-validation,
and then exported. The exported models were then tested on the testing dataset, which
included the data from the older test subject. We found that using two binary SVM models
in series produced better results that using a single SVM to directly classify the data into
three classes. Therefore, these two SVMs were used in the final model. Even though the
subjects performed a multitude of different ADLs, no other movements were recognized as
a stumble in both the validation dataset and the testing dataset.
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4.2. Internal Validity

The data were split into a training dataset, validation dataset, and testing dataset. The
validation dataset is a sample of data held back from training the model that is used to give
an estimate of the model skill while tuning the model’s hyperparameters. The validation
dataset is different from the test dataset, which is also held back from the training of the
model, but is instead used to give an unbiased estimate of the skill of the final tuned model
when comparing or selecting between final models [42].

For each type of machine learning algorithm, Bayesian Optimization was used during
leave-one-subject-out cross-validation with data from nine subjects to find the optimal
set of hyperparameters. Models were trained with Bayesian Optimization to minimize
the error function defined with respect to the training dataset. The performance of the
models was compared by evaluating the error function using an independent validation
dataset, which provided an evaluation of a model fit on the training dataset while tuning
the model’s hyperparameters, and the models having the smallest error with respect to the
validation dataset were selected. Since this procedure can itself lead to some overfitting to
the validation dataset, the performance of the selected models was confirmed by measuring
its performance on a third independent test dataset, containing the data from Subject 10.
Testing with the unseen data provided an unbiased evaluation of the final model fit of
the training dataset [42]. The predicted labels were compared with the true labels and the
sensitivity, specificity, and accuracy of the models were calculated to evaluate the models.
By using this method, it is certain that the testing data could not have influenced the
training of the models.

4.3. Comparison with Previous Studies

In previous near-fall detection research, only two studies achieved 100% specificity.
Aziz et al. [22] did include multiple ADLs in their dataset. However, the way they recreated
stumbles is questionable, as they had their participants act out a stumble on a mattress
after watching a video. It remains unclear whether their system would be able to accurately
detect a real-world stumble. Moreover, their setup is too impractical for clinical use: it
consists of five sensors of which one was placed on the head. The other study that achieved
100% specificity, by Choi et al. [23], added just three ADLs in their dataset—standing,
walking, and lying down—and did not include activities with high acceleration peaks.
Such a limited dataset lacks realistic representation of real-life activity, which could result
in an overestimation of the practical performance. Two sensors were used, which are less
attractive for practical use than our single-sensor system.

All in all, we expect that the Stumblemeter presented in this study will outperform
previously reported systems. Importantly, the machine learning algorithm was trained and
tested with naturally occurring stumbles in a dataset that contains a representative number
of ADLs. For clinical feasibility, it is important that the single sensor can be attached to the
shank in an unobtrusive way and can be worn for a longer period of time, e.g., a week.

This study also aimed to create an algorithm that is able to determine the type of
stumble, whether an elevating recovery strategy was used or a lowering recovery strategy.
A second model was used to classify the detected stumbles into the two classes. This model
was trained, validated, and tested, separately. We found that an optimized SVM was able to
distinguish between the two types of strategies with 96.7% accuracy in the testing dataset.

In terms of computational cost, we cannot compare our system with other systems [15,22–28]
as they did not give any specifications on that matter. However, it is evident that the
event-defined window segmentation technique that was introduced ensures that the com-
putational cost is considerably lower than when the full dataset has to be processed. We
made use of the fact that all stumbles are paired with high peaks in acceleration. By using
a threshold, the vast majority of irrelevant data (95.5% in our dataset) is eliminated at an
early stage. As a result, a limited amount of time-window features have to be extracted
and fed into the machine learning models. In this study, 682 high-peak time windows that
were created, of which 276 (40.5%) were stumbles and 406 (59.5%) were non stumbles. The
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estimated computational time for a week-long measurement is 3 min at most, depending
on the user activity.

4.4. Practical Application in Clinical Research

The Stumblemeter has been validated and tested in healthy people. Strictly spoken,
this will not guarantee that it will work as well in the target population: individuals
with walking difficulties, e.g., those walking with a prosthesis. The system would have
to be tested separately for the different pathologies. Nonetheless, it is expected that
the Stumblemeter will work as desired during clinical research, e.g., in the amputee
population. Shirota et al. [43] showed that transfemoral amputees generally exhibited
typical able-bodied recovery strategies (elevating and lowering) when recovering from
stumbles on both the sound and prosthesis sides. They found that throughout the swing
phase, amputees used similar recovery strategies to able-bodied subjects for perturbations
that occurred at similar time points in the gait cycle. However, two out of eight amputees
in their study used a novel hopping strategy when tripped using a tether on the prosthesis
side in early to mid-swing. This strategy was also found in the older test subject in our
study. Such recoveries were labelled as elevating, as the obstructed foot was lifted over
the object directly after the collision. These ‘hopping’ stumbles were classified as elevating
stumbles and were all detected correctly. Therefore, it is expected that our system is able to
detect such stumbles, even though it is not specifically trained to classify this particular
recovery type. Follow-up research on individuals with prosthetic legs should be conducted
to validate this expectation.

5. Conclusions

This work shows that stumble detection and classification based on an IMU and
SVM is extremely accurate and ready to apply in clinical practice. Our proposed system
consists of just one small IMU sensor, which can easily be integrated into the pylon of a
prosthesis or attached to the shank, leaving no burden for the users. Out of the 30 evoked
stumbles from an independent experiment, the optimized SVM model was able to detect
all of them (100% sensitivity). Moreover, our models did not give any false-positive
predictions (100% specificity), even though the dataset comprised of a wide variety of
daily movements. Moreover, this is the first study aiming to classify the type of stumble
recovery strategy, which it did with 96.7% accuracy. The user-friendly Stumblemeter app
makes it quite straightforward for clinicians to analyze the data. The introduction of the
Stumblemeter enables clinicians to objectively assess fall risk in older adults, amputees,
and other individuals with gait impairments, outside a laboratory or clinical setting.

Supplementary Materials: The following are available online at https://doi.org/10.4121/14473269:
Stumblemeter app and MATLAB code.
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Appendix A

Table A1. Decision Tree: optimized hyperparameters for each dataset.

ML Model Maximum Number
of Splits Split Criterion Surrogate Decision

Splits

Decision Tree (D1) 59 Maximum deviance
reduction Off

Decision Tree (D2) 38 Gini’s diversity index Off

Decision Tree (D3) 19 Gini’s diversity index Off

Table A2. Discriminant Analysis: optimal hyperparameters for each dataset.

ML Model Discriminant Type

Discriminant Analysis (D1) Linear

Discriminant Analysis (D2) Linear

Discriminant Analysis (D3) Linear

Table A3. Logistic Regression.

ML Model

Logistic Regression (D2)

Logistic Regression (D2)
Note 1: Logistic Regression can only be used for binary classification problems. Note 2: Hyperparameter
optimization does not apply to Logistic Regression as there are no hyperparameters to alter.

Table A4. Naïve Bayes: optimized hyperparameters for each dataset.

ML Model Distribution Type Kernel Type Support

Naïve Bayes (D1) Kernel Gaussian Unbounded

Naïve Bayes (D2) Kernel Triangle Unbounded

Naïve Bayes (D3) Kernel Gaussian Unbounded

Table A5. Support Vector Machine: optimized hyperparameters for each dataset.

ML Model Kernel Function Box Constraint Level Kernel Scale

SVM (D1) Linear 0.0010 0.0025

SVM (D2) Linear 976.7 7.5492

SVM (D3) Linear 0.0001 0.0293

Table A6. K-Nearest Neighbors: optimized hyperparameters for each dataset.

ML Model Number of
Neighbors Distance Metric Distance Weight

KNN (D1) 1 Cosine Squared inverse

KNN (D2) 5 Spearman Squared inverse

KNN (D3) 1 Correlation Inverse
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Table A7. Ensemble Learner: optimized hyperparameters for each dataset.

ML Model Ensemble
Method Learner Type Max Number

of Splits
Number of

Learners Learning Rate Subspace
Dimension

Ensemble
Learner (D1) Bag Decision Tree 320 12 - 53

Ensemble
Learner (D2) GentleBoost Decision Tree 5 485 0.001864 38

Ensemble
Learner (D3) Bag Decision Tree 182 27 - 35
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