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A a S T R A C T Recognition of nonlinearities in the neuronal encoding of repetitive 
spike trains has generated a number of models to explain this behavior. Here we 
develop the mathematics and a set of tests for two such models: the leaky integrator 
and the variable-y model. Both of these are nearly sufficient to explain the dynamic 
behavior of a number of repetitively firing, sensory neurons. Model parameters can 
be related to possible underlying basic mechanisms. Summed and nonsummed, 
spike-locked negative feedback are examined in conjunction with the models. 
Transfer functions are formulated to predict responses to steady state, steps, and 
sinusoidally varying stimuli in which output data are the times of spike-train events 
only. An electrical analog model for the leaky integrator is tested to verify predicted 
responses. Curve fitting and parameter variation techniques are explored for the 
purpose of extracting basic model parameters from spike train data. Sinusoidal 
analysis of  spike trains appear to be a very accurate method for determining spike- 
locked feedback parameters, and it is to a large extent a model independent 
method that may also be applied to neuronal responses. 

I N T R O D U C T I O N  

These  papers  are par t  o f  a series p resen ted  over  the past  several  years in which 
we have a t t e m p t e d  to develop a quant i ta t ive model  that  is sufficient to explain  
the observed repeti t ive f ir ing behavior  of  certain sensory neurons  (Purple  and  
Salasin, 1969; Poppele ,  1970b; Purple ,  1970; Rescigno et al., 1970; Poppe le  and  
Purple ,  1971; Poppe le  and  Chen,  1972; Fohlmeister ,  1973; Fohlmeis ter  et al., 
1974a, b, c, 1975). T h e  aim has been  to f ind a mathemat ica l  model  capable  of  
complete ly  descr ibing observed  behavior ,  part icularly the dynamic  behavior ,  
and  that  can also serve as a basis for  unde r s t and ing  under ly ing  mechanisms.  In  
addit ion,  we have sought  the simplest  model  (i.e. the one  with the least n u m b e r  
of  parameters )  that  is consistent with this aim. 

T h e  app roach  has been  to employ  methods  of  system identification that  are  
based on spike train analysis. T h e  advantages  of  the analysis are  that  it is 
relatively noninvasive,  allowing the system to opera te  normal ly ,  and  that  it gives 
in format ion  abou t  events occur r ing  at the t r igger  zone where  repeti t ive f i r ing is 
taking place. Much emphas is  is placed on the use o f  cyclic stimuli which are a 
natural  means  o f  exciting a system whose pa rame te r s  vary periodically.  In terac-  
tions between the periodicities in encode r  pa rame te r s  and  stimulus p roduce  
pat terns  o f  ou tpu t  pulses that  contain in format ion  about  the dynamic  p roper t i es  
of  encoder  pa r ame te r s  (Rescigno et al., 1970; Fohlmeis ter  et al., 1974a). 
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Repetitive firing may be defined as the occurrence of a train of action 
potentials in response to a constant current stimulus. Many sensory neurons are 
capable of firing repetitively at very low rates, a property not shared in general 
by the axon. It implies that some process, not described by Hodgkin-Huxley 
types of models for the action potential, delays the occurrence of a spike to 
prolong sufficiently the interspike interval. The search for a model adequate to 
describe this behavior began when Adrian (1928) showed how a time-varying 
threshold after a spike could account for a prolongation of the interspike 
interval. Indeed many models involving threshold and/or membrane impedance 
changes will qualitatively account for slow repetitive firing (e.g., Kernell, 1968; 
Kernell and Sj6holm, 1972, 1973; Katz, 1939; Michaelis and Chaplain, 1973). 
However, few of these models have been extensively tested quantitatively or 
under dynamic conditions. 

The study of encoder dynamics has been largely in terms of simplified models, 
beginning with the analysis of the integrate-and-fire model of Knight (1969). 
Although the steady-state input-output characteristics of this model are linear, 
as is often the case for sensory neurons, its response to cyclic inputs was shown to 
be quite different. By simply introducing a leak to the integrator, however, the 
dynamics of the model response become similar to those observed for sensory 
neurons (Stein and French, 1970; Poppele, 1970a; Knight, 1972). These dynam- 
ics have been described for the response to sinusoidal inputs in terms of Bode 
plots of gain and phase and they result from an entrainment interaction occur- 
ring between the pacemaker rhythm of the encoder and the frequency of the 
sinusoidal stimulus (Rescigno et al., 1970). The model parameter y [the relaxa- 
tion rate, which is equal to (RC) -1 of a leaky integrator analog] is uniquely 
defined by the Bode plot and the rate of firing of  the unmodulated encoder (f0). 

It was then shown that the "y" of sensory neurons is not a constant, as in the 
model, but is a variable which depends on the duration of the interspike interval, 
in such a manner that 

y ~ f 0 ,  
(Poppele and Chen, 1972). Furthermore, it was shown that there were at least 
two ways of determining the model y from pulse train analysis and the applica- 
tion of these two techniques to sensory neurons gives two different values. These 
experimental findings were reconciled with a third model, which is a further 
generalization of  the two described above. 

In this model y is a state variable that depends on time and membrane voltage 
(Fohlmeister, 1973). The variable-y model accounted both for the experimental 
observations outlined above, and for the observed ratio ~ / / Y e  - -  2 where ~/and Ye 
are the values of T obtained by the two measurement techniques (Fohlmeister et 
al., 1974a). In addition, the model makes at least two predictions that are 
supported by independent observations: (a) that membrane loading (corre- 
sponding to y in the model) is large at the beginning of the interspike interval 
after the spike, and then becomes small; and (b) that this parameter can be reset 
by hyperpolarization. 

Even though the correspondence between the variable-y model and sensory 
neuron behavior is very close, there are certain systematic discrepancies particu- 
larly for those neurons known to contain mechanisms that introduce spike- 
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locked feedback  to the encoding  process.  T h e  interact ion o f  p a c e m a k e r  activity 
and  feedback  has been  exp lo red  previously for  the l inear  in tegra tor  mode l  both  
by mathemat ica l  analysis (Knight ,  1969) and  analog simulat ion (Purple  and  
Salasin, 1969) and  it was shown that  the qualitative effect  is a decrease in low 
f requency  gain whose t ime constant  and  magn i tude  d e p e n d  on the p a r a m e t e r s  
of  the feedback (see also Barbi  et al., 1975, who consider  feedback  for  the leaky 
in tegra tor  model) .  Since this c o r r e s p o n d e d  qualitatively to a d iscrepancy ob- 
served between model  and  n e u r o n  we have p roceeded ,  general ly and  quanti ta-  
tively, to explore  the effects o f  encoder  feedback.  

In  this pape r ,  we presen t  a mathemat ica l  analysis o f  two kinds of  spike-locked 
feedback in the context  o f  the leaky in tegra tor  model .  With this mode l  the 
p rob lem can be t rea ted  mathemat ica l ly  in closed fo rm and  the results o f  that  
analysis also account  quanti tat ively for  the dynamic  behavior  o f  the variable-y 
model  with feedback  (which can be analyzed only by numer ica l  integrat ion) .  In  
addit ion,  we c o m p a r e  the results o f  the mathemat ica l  analysis with the dynamic  
behavior  of  an electrical analog o f  the  leaky in tegra tor .  This  allows us to 
de t e rmine  directly f rom Bode plot data  the magn i tude  o f  the pa r ame te r s  used in 
the analog.  T h u s ,  it is p roposed  that  spike train analysis can be used not  only to 
de t e rmine  the p resence  o f  encode r  feedback,  but  also to de t e rmine  the magni-  
tude  and  t ime course  o f  that  feedback.  

M A T E R I A L S  A N D  M E T H O D S  

Experiments were conducted on an electrical analog of the "leaky integrator" encoder 
(French and Stein, 1970). The essential functional elements consist of an RC impedance 
which integrates an applied current to produce an output voltage. As the voltage reaches 
a threshold level, a pulse is produced and the integrator is reset. Two types of  feedback 
were incorporated into the analog: summed and nonsummed feedback. In both cases an 
output pulse is inverted, shaped by a low pass filter, and added to the input current. In 
the case of nonsummed feedback the signal resets the integrator to a given minimum 
value while the summed feedback always changes the integrator value by a given amount. 
The basic difference is that summed feedback can accumulate from one interval to the 
next while nonsummed feedback cannot. 

The analog device is driven by a current source that can be modulated to produce step 
changes in current or sinusoidally modulated current at various modulation frequencies. 
Output pulses are timed, along with synchronization pulses from the current modulator 
by an on-line computer (IBM 1800 Data Acquisition and Control System, IBM Corp., 
White Plains, N. Y.). 

One object of the experiments is to provide a check on the mathematical analysis of the 
model which is based on a linearization of pulse train parameters using first order 
perturbation theory (Knight, 1969). In this context, the problem we face with the 
experimental data is to extract the modulation component from among the many carrier 
and side-band components present in the spectrum of a frequency-modulated pulse 
train. The problem has been discussed in previous work and there are, in fact, many ways 
to solve it (e.g., Matthews and Stein, 1969; Knox, 1970; Poppele and Bowman, 1970; 
Knight, 1972). One basic method is filtering, to isolate the modulation frequency. A 
second is averaging, to suppress carrier and side-band components that have a random 
phase with respect to the modulation (Bayly, 1968). The simplest application of these two 
processes is the cycle histogram technique of estimating the probability density of  impulse 
occurrence in a single cycle of modulation. Filtering is accomplished in this method by 
histogram binning; frequency components with periods shorter than two bin widths are 
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filtered out as are frequency components lower than the single cycle chosen for the 
averaging base. There  are two problems in using this technique. One is that it requires a 
large data sample. If  we use harmonic distortion as an index of how well the modulation 
component  is isolated, then we find that this measure depends on the length of the 
sample and on the depth of modulation (Knox, 1970). For small modulations of a regular 
pulse train (flff0 ~ 0.1, see glossary below), about 10,000 events must be averaged before a 
distortion of the order of 5% can be expected when five harmonics are computed. This is 
about a 10-fold improvement  over what can be expected with a noisy pulse train (Knox, 
1970), but it is still a rather large data sample. When larger modulation depths are used, 
the convergence is faster only if the pulse train is generated by a linear integrator 
(Knight, 1969). If  the leaky integrator is used, there is a phase-locking between modula- 
tion and carrier components so that these latter components can no longer be suppressed 
by averaging (Rescigno et al., 1970; see also Fig. 1). The analysis technique we use can 
overcome both of these problems. 1 

We use a b inning  technique similar to the cycle histogram, however, instead of merely 
adding a count to a bin when a pulse occurs, the interval since the last pulse is measured 
and that value is saved in a particular bin. The average interval for each bin is then 
calculated and its reciprocal, the average "instantaneous frequency" is plotted as the value 
for each bin (see Poppele and Bowman, 1970). Because frequency is determined by an 
exact measure of interval length, it takes very few data points to give the desired answer. 
Thus,  with 100-200 pulses we can determine the modulation component  with near zero 
harmonic distortion. For large modulations, however, where there is a large difference 
between maximum and minimum intervals, a phase distortion is introduced because of 
the nonlinear  relation between interval and frequency. In the example shown in Fig. 1, 
where the modulation 0elOc0) was about 0.35, the distortion due to this effect was about 6%, 
with resulting error in phase determination of the order of 1-2 ° . The technique has also 
another disadvantage in that it is extremely sensitive to noise. One extra pulse added to 
an otherwise smoothly modulated train can induce a large error in the estimate of the 
modulation component.  This is because that extra pulse can produce an extra-short 
interval, represented in the reciprocal by a very high instantaneous frequency, thereby 
distorting the average for some bin. If  one used the histogram technique that extra pulse 
would have the same weighting factor as all the other pulses in a particular bin and it 
would therefore not greatly disturb the value for that bin. 

Both of these problems (phase distortion and noise sensitivity) can be avoided by using 
relatively low modulation depths (<0.3) and by selecting data to avoid noise. In that 
domain the technique has the advantages of rapid analysis with short data samples and a 
relative insensitivity to phase locking (Fig. 1). The latter property results because the 
technique depends on filtering rather than averaging. The parameters of the filter are 
determined by the interspike interval so that frequency components with periods shorter 
than two interspike intervals are suppressed. Thus components occurring at the carrier 
frequency, such as those illustrated in Fig. 1, are removed by filtering. This is equivalent 
to choosing a bin width for the cycle histogram that is equal to the interspike interval. If 
that technique were used we would introduce another problem for modulation frequen- 
cies close to the pulse repetition rate of the pulse train, since there would be very few bins, 

1 It can be pointed out here that the most direct solution to this problem is to apply a Fourier analysis 
directly to the pulse train. In general, this requires that all data points be saved, which can require a 
large memory capacity and therefore become costly. With the histogram or binning techniques, it is 
only necessary to provide storage to accommodate the number of bins used since the binning can be 
done in real time. In addition the Fourier analysis based on equally spaced points over a cycle (e.g., 
Karmen and Boit, 1940) is in general faster than most Fourier analysis algorithms. Therefore, with 
the binning and the fast Fourier transform the entire analysis can be conveniently accomplished on 
line. 
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although a certain min imum number  of bins is required in order accurately to fit the 
modulation. We have found that at least 11 binned points are needed in the determina- 
tion of Fourier components to give the most accurate results. With five points, for 
example, there is a systematic underestimation of amplitude of the order of 6%. Little if 
any improvement  in accuracy is achieved if more than 11 points are used. Therefore,  with 
the exception of the analysis plotted in Fig. 1, all analyses in these papers were made from 
11-point determinations of the first 12 sine and cosine coefficients of the Fourier series 
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FIGURE 1. Methods of spike train analysis. Two model encoders, the linear 
integrator and the leaky integrator (RC = 37 ms) were driven at 16 pulses/s and 
modulated at 4 Hz to +5.3 pulses/s. Pulse train data were analyzed by cycle 
histogram binning (below) and average interval b inning  (above). 37 bins were used 
in each case. The interval plots have not been normalized for the zero-order hold 
(see McKean et al., 1970) but calculations of amplitude and phase have been. For 
the interval binning,  200 pulses were used in the analysis and the distortion did not 
improve with larger samples. In order to obtain the same value of distortion with 
cycle histogram analysis for the linear integrator, 6,000 pulses were required. With 
the leaky integrator,  the cycle histogram shows peaks corresponding to phase- 
locked carrier components which could not be suppressed by averaging. Even so, 
the Fourier analysis of this histogram gives accurate values of amplitude and phase. 
The theoretical phase for the leaky integrator at this modulation frequency is 12.6 ° 
and for the linear integrator it is 0 °. 

that best fits the 11 binned data points. The fundamental  component  is reported as 
amplitude (Ifll, imp/s) or as gain, defined here as: 

20 log10 JK ~ , 

and its phase with respect to the applied modulation is ~.~ The first five harmonics are 

2 In general we plot either a normalized gain for the purpose of matching the shapes of gain curves 
or else we plot only the output, expressed in db. Thus K has the dimensions of imp/s and its value is 1 
in the latter case, because the input is treated as an unknown for the purpose of curve fitting 
experimental data to theory. It is done this way because the input in the theoretical equations is 
proportional to, but not the same as the input used in the experiment, and we do not, in general, 
know the proportionality constant. 
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used to de termine  the harmonic distortion,  which is the root mean square ampl i tude  of  
these components  as a percent  of  the ampli tude of  the fundamental .  Results of  the 
analysis are plotted as Bode plots in which gain and phase are plotted as functions of  the 
logari thm of  the modulat ion frequency, to. 

Computat ions of  leaky integrator  behavior were made on the IBM 1800 directly from 
equations presented in the results. The  variable-- /model  presented in Results is def ined 
by the following pair of  coupled equations: 

~i = - y u  + s, 
= - B - /  + Du,  

(Fohlmeister,  1973) supplemented with a specific initial condition for - / a t  the beginning 
of  each interspike interval (symbols defined below). Calculations of  its behavior were 
computed  by numerical  integration with the Continuous Systems Modeling Program of  
IBM for the 1800. For details see Fohlmeister,  1973, and Fohlmeister et al., 1974a. 

The  symbols used for various functions and variables are largely drawn from previous 
work (Knight, 1972; Fohlmeister,  1973) and are given here in a glossary for convenient 
reference.  

~ymbols Units 

A volts 
B seconds -~ 
C farad 

D seconds-2-volt -1 
f0 impulse/second 
f l  impulse/second 

fm Hertz,  
g mho 
h volt/second 

H volt/second 
i0 ampere  
i~ ampere  
k volt/second 

R ohm 
so volt/second 
sl volt/second 
To second 
Tx second 

u volt 

y 

T 

Tf 

Tk 
to 

second -1 

radians or degrees 
radians 
second 
second 

second 
radian/second 

Meaning 

threshold 
rate constant in variable-y model 
integrator  capacitance (leaky integrator ,  also to- 

tal cell capacitance) 
constant in variable-y model 
mean rate of  output  pulses 
change in rate about f0 of  a sinusoidally modu- 

lated pulse train 
modulation frequency 
encoder  membrane  conductance 
magni tude of  drive reduction in t roduced by 

summed feedback 
instantaneous value of  summed feedback 
mean level of  input  current  
ampli tude of  sinusoidal current  
magni tude of  drive reduction by nonsummed 

feedback 
integrator  resistance 
mean level of  drive 
ampli tude of  sinusoidal drive 
interspike interval in the absence of  modulation 
per turbat ion of  interspike interval due to modu- 

lation 
voltage across RC integrator  also membrane  volt- 

age 
integrator  rate c o n s t a n t - a l s o  state variable in 

variable-y 
phase angle between input  and output  
arbitrary phase of  input  
time constant of  summed feedback 
time constant of  frequency decay following step 

stimulus 
time constant of  nonsummed feedback 
modulation frequency 
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Definitions 

s ffi i/C 
Y = I/RC (leaky in tegra tor  model)  
y = g/C (variable-y model)  
o, = 2wfm 

R E S U L T S  

T h e  results are p resen ted  in five parts .  T h e  first develops the leaky in tegra tor  as 
a mathemat ica l  mode l  which is the basis o f  the electrical ana log  whose proper t ies  
are described in parts  I I  and  I I I .  Part  IV deals with the sensitivity of  the analysis 
technique  as a means  o f  de t e rmin ing  model  pa ramete r s .  In  the final par t  we 
c o m p a r e  the results o f  the analysis with the behav ior  of  a more  realistic model  
for  neu rona l  repeti t ive f i r i n g - t h e  variable-y model .  

I. The Model 

T h e  leaky in tegra tor  has been  cons idered  as a model  for  a neu rona l  encoder  and  
some o f  its p roper t ies  have been presen ted  in recent  publications (Stein and  
French,  1970; Knight ,  1972; Poppe le  and  Chen ,  1972; Fohlmeis ter  et al., 1974a). 
In  this section, we will ex tend  those descript ions to include n o n s u m m e d  and 
s u m m e d  feedback (see Materials and  Methods) and  present  a mathemat ica l  
descript ion of  the steady state, t ransient ,  and  modula ted  behavior  o f  this device 
(see also Barbi  et al., 1975). 

STEADY STATE Steady-state opera t ion  o f  the encoder  is de f ined  as that  due  
to a constant  drive (denoted  by So) which evokes a train of  pulses with constant  
interval  To. This  behav ior  is expec ted  both in the absence and  in the presence  o f  
feedback (asymptotically in the case o f  s u m m e d  feedback).  I g n o r i n g  feedback  
for  the m o m e n t ,  however ,  we will consider  an encoder  subject to drive so that  
p roduces  a pulse when the t ime integral  o f  the drive reaches a threshold  voltage 
A. Because o f  the non-zero  encode r  conduc tance ,  there  are losses associated with 
the in tegra t ion process such that  the drive at t ime t is effectively d iminished at 
the later  t ime o f  in tegrat ion t '  to the amounts0"  e x p [ - ( t '  - i ' )y ] .  T o  arr ive at this 
par t icular  fo rm,  the magn i tude  o f  the loss is assumed to be p ropor t iona l  to the 
potential  u genera ted  by the drive,  and  the leak p a r a m e t e r  Y is in t roduced  as the 
proport ionali ty constant (Fohlmeister et al., 1974a). This  leads to the characteris- 
tic exponent ia l  charg ing  curve  o f  the constant  RC(= 1 /y) circuit whose voltage 
t ime course  u n d e r  constant  drive So = io/C is given by the equat ion 

1 du du 
i 0 = ~ . u + C ~  - or  s 0 = y u + 6 ,  t ~ - ~  -. (I.1) 

This  equat ion i n t e g r a t e s - b e t w e e n  the limits u = 0 (at t = 0) and  u = A (at t = 
To) -- to:  

A = s0 e-tT°-t)y dt. (I.2) 

T h e  integral  leads to the following steady-state relation a m o n g  A, To, and So: 

A = So (1 - e-T°Y). (I.3) 
Y 
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In the limit o f  the nonleaky in tegra tor ,  Y -'-> 0, this relation reduces  to: 

A = soTo. 

(Knight, 1969, 1972). For purposes  of  this paper ,  threshold is assumed constant 
(see Discussion). 

fEEDBACK Inhibi tory  feedback is def ined  for  the present  as any effect  
which satisfies these two conditions: that  the effect  is initiated by an action 
potential  occur ing in a cell; and  that  the effect  subtracts f rom the st imulus to that  
cell. An electrogenic sodium p u m p  in the slowly adap t ing  stretch recep to r  of  the 
crayfish, and  self-inhibition in the L i m u l u s  eccentric cell are the mechanisms  for  
feedback that are studied exper imenta l ly  in the compan ion  p a p e r  (Fohlmeister  
et al., 1977). T h e  feedback sums f rom impulse  to impulse  and  declines almost  
exponentially with time (Stevens, 1964; Solokove and  Cooke,  1971). 

In addit ion to s u m m e d  feedback we treat  he re  also a possible channel  o f  
n o n s u m m e d  feedback that  could be a mechan i sm for  p roduc ing  an a f te rpo ten-  
tial for  the leaky integrator  which resembles that  o f  the sensory neurons .  For this 
channel  we denote  the initial reduct ion in st imulus af ter  an impulse  by the 
symbol k and  its relaxation t ime constant  by rk. T h e  drive following each pulse 
then becomes 

So - k e -t/Tk, (I .4) 

a funct ion of  t ime and o f  the t ime o f  occur rence  of  pulses. Any remain ing  
c o m p o n e n t  of  the effective reduct ion in drive at the end o f  an in terpulse  interval 
is eradicated by the following pulse which again reduces  the initial value of  the 
drive by the a m o u n t  k to follow Eq. (I.4) in the subsequent  interval.  T h e r e f o r e  
such feedback will not cont r ibute  to adapta t ion  af ter  the second pulse.  

S u m m e d  feedback,  in contrast ,  adds  any r ema in ing  c o m p o n e n t  o f  its feedback 
at the end  o f  an in terpulse  interval  to the pulse-initiated a m o u n t  h, which decays 
with a t ime constant r .  For the case o f  s u m m e d  feedback,  the te rm to be added  to 
So asymptotically takes the form:  

ao 

SO---> S O - h  ( E e-mT°/T)e-t/r ~ S o -  H ( t ) .  (1.5) 
\ m = 0  / 

T h e  infinite series is the s u m m e d  residual effect o f  the feedback f rom an infinite 
n u m b e r  of  previous pulses. 

T h e  steady-state integral  with both types o f  feedback becomes:  

f? .4 = [So - k e -tl"~ - h e -~°/~ e-t/ ']e -~r° - ¢~ dt. (I.6) 

So long as the in terpulse  per iod To is constant ,  the geometr ic  series in the 
s u m m e d  t e rm adds to (1 - e-r01") -1 and Eq. (I.6) integrates to 

h e-Tol¢ e-to~, k So 
A = (1 - e -r°~) " "  (e-ro/~ - e-ro~). (I.7) 

T 1 1 - e -r°t~ 1 
T - -  T - - -  

T TIe 
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In the limit o f  the nonleaky in tegrator  (y = 0) and summed  feedback only, this 
reduces to the result o f  Knight (1969): 

A = soTo - h.r. (I.8) 

TRANSIENT BEHAVIOR T h e  two types o f  feedback have d i f fe ren t  effects on 
the transient  behavior  o f  the encoder ,  such as that exhibited when a step change 
in driving cur ren t  is applied.  Since the effect  o f  n o n su m m ed  feedback is not 
carr ied over  f rom interval to interval, all intervals are identical for  any given So. 
Summed  feedback,  on the o ther  hand,  will induce adaptive behavior  due  to the 
accumulat ion o f  feedback.  Succeeding intervals will be identical only when the 
amoun t  o f  feedback added  by a pulse equals that r emoved  by the end o f  each 
interval. 

As will be described later 3 the accumulated feedback H(t)  in response to a step 
change in drive to So may be considered a differentiable funct ion o f  time, 
provided that H(t)  is def ined  as the average o f  the instantaneous amoun t  o f  
feedback over  the interval at time t. Thus  H(t) ,  which has the dimensions o f  h 
(and therefore  o f  the stimulus So), will enter  the charging equation o f  the leaky 
in tegrator  as 

i t  = - y u  + So - H ( t ) .  (I.9) 

Anticipating results to be presented  separately (see footnote  3) we are led to 
the following relation between steady-state f requency  and mean feedback: 

H(oo) = hcf(oo), (I.10) 

where the terms H(o0) andf(o0) r e fe r  to the instantaneous summed  feedback and 
the instantaneous f requency at long times (steady state) af ter  a step. Fur ther ,  if 
the f requency decay to f(00) is exponent ia l  with the t ime constant Cr (which is the 
case for  the leaky integrator ,  cf. Part III ,  analog-transient  behavior): 

f ( t)  = [J(O) - J(oo)] exp (-t/r~) + f(oo), (I. 11) 

then there  results the following relation among  ~'s, z, and h: 

[ rhA[f(oo)]~ ]-1 (I.12) 
= 1 + [so [-70 - / - / (0o) ]  

Thus ,  for  the leaky in tegrator  cris a funct ion o f  s0 for a given r and h and fu r t h e r  
r t  < r always. 

From the transient  response to a step stimulus one  may fu r the r  derive an 
expression for  h as a funct ion o f  an early interspike interval length Tt af ter  the 
step. I f  ¢ is much grea ter  than the sum of  the first few intervals, the summed  
feedback will not have decayed substantially by the time o f  the interval T~. U n d e r  
these conditions Eq. (I.6) with su m m ed  feedback only specializes to 

A "= de[so - lh] exp (t - T~)y, 

8j. F. Fohimeister. Manuscript in preparation. 
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which integrates to 

Rearranging leads to 
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So - lh 
A - -  (1 - e-r"v). (I.13) 

Y 

1 [  AT ] 
h = ~ -  e x p ( - ~ . T ) -  1 +s°  , (I.14) 

where l is the (small) integer o f  the n u m b e r  o f  the interval af ter  the change in 
drive f rom zero to So. Fur ther ,  if Y is small such that T~. y ----> 0, Eq. (I. 14) becomes 

1 A , 

unde r  this special condition.  In both cases (I. 14 and I. 15), d i f ferent  magni tudes  
o f  h for  a given r will result in d i f ferent  rates o f  adaptat ion.  

SINUSOmAL MODULATION With the steady-state problem solved in closed 
form in Eq. (I.7) we now turn  to the more  general  ease where the steady-state 
drive is pe r tu rbed  by a sinusoid o f  angular  f requency co: 

s(t) = So + sl e ~'°t. (I.16) 

A per turbat ion  technique is employed  to derive the t ransfer  funct ion.  T h e  
derivation,  as well as definit ion o f  the notation which has appeared  previously 
(Barbi et al., 1975), is relegated to the Appendix .  4 T h e  t ransfer  function with 
one channel  each o f  summed  and nonsummed  feedback is given by 

=fo  joJ 1 - e °°'+~°°'o [M K • ]-1 
s, So flo + y 1 _S ~ L + e~,Otr ° ~e_ l / fo  , (1.17) 

where M and K are real and dimensionless,  and have the form 

e(V-L)/f o e(~-~)/Jo h - ry  k - zky 
M ~ 1 + - - .  + - - .  , (I.18) 

So (7",/ - 1) (1 - e -v~r0) So zky - 1 

K h (  1 ) e('-~)t° - 1 _  _ 
So e v ~  - 1 ,ry - ]- (1.19) 

T h e  ampli tude is given by 

~s~ _ f o  to [ F(T lfo) ],,2 (I.20) 
So t V(0) J 

F ( -  1/~'/0) .] ,,2 

K i + MiF( - 1/Tf0) + 2MK(cos to/fo - e-lt~t0)! 

i O u r  der ivat ion dif fers  chiefly by the  in t roduct ion  into the. equat ions  o f  mult iple  channe l s  o f  
feedback,  ei ther  s u m m e d  or  n o n s u m m e d ,  or  both .  
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whe re  

F(x) ~ e *x + 1 - 2e x cos ~/f0. (I.21) 

All f eedback  d e p e n d e n c e  in Eq. (I.20) is c o n t a i n e d  in the  final f a c t o r 3  In  the  
absence  o f  s u m m e d  feedback  K = 0, the  final fac tor  r educes  to M -~. T h u s  
n o n s u m m e d  f eedback  a lone  does  no t  al ter  the  oJ d e p e n d e n c e  o f  the  gain cu rve  
for  the  leaky i n t e g r a t o r  with a given Y a l t h o u g h  it does  resul t  in an  overal l  shift.  
In  the absence  o f  all f eedback  K = 0, M = 1; the final fac tor  r educes  to uni ty  
l ead ing  to the  no - f e e dba c k  gain cu rve  

f l  fo CO [F(]l/fo)]l'2 

(Fohlmeis te r  et al., 1974a, Eq. [1.1]). 
Since F is symmet r i c  abou t  ~0 = ~rfo, s u m m e d  feedback  con t r ibu tes  a f ac to r  to 

the  gain curve  which is symmet r i c  abou t  a value ha l fway be tween  ~0 = 0 a n d  co 
equal  to t he  s teady-state  f i r ing  (angular )  f r e q u e n c y  27rf0. In  add i t ion  fo r  positive 
h, r ,  a nd  y ,  the  f eedback  fac tor  always e n h a n c e s  the  gain in the  midd le  (to = ~rf0) 
relative to the  ends  (to = 0, 2rrf0). T h e  infini ty in the  gain curve  at ~0 = 21rf0 
however ,  con t inues  to d o m i n a t e  the  finite values o f  the  f eedback  fac tor  as 
dep ic ted  in the  f igures .  T h e  oJ = 0 limit o f  the  gain curve  is 

~s~ --~ f o .fo (e~/ro _ 1) 1 - e -'¢'r° 
,0--~0 So 3' K + M(1 - e -v-r°) " (I.22) 

T h e  phase  curve ,  de f ined  as 

is given by 

whe re  

lmOCl/sl) 
phase  = Arc t an  R e ( f l / s a ) '  

phase  = A r c t a n  w R e N  + o J . I m N  
to. R e N  - y" I m N '  

(1.23) 

(1.24) 

and  where  in t u r n  

R e N  = R e U . R e V  - I m U . l m V ,  

I m N  = R e U . I m V  + I m U . R e V ,  

( I .25a)  

(I .25b) 

R e U  = 1/2(1 - eY/t°)F(0), ( I .26a)  

I m U  = ( 1  - e y/t°) sin oJ/fo, ( I .26b)  

R e V  = M + K [cos ~o/fo - exp  ( -1 /~fo) ] /F( -1 /~ ' fo ) ,  ( I .26c)  

I m V  = K sin ( to / fo ) /F( -  1/~'fo). (1.26 d) 

5 F(x), unlike M and K, is strongly dependent upon omega. Hence Eq. (I.20) is not strictly formatted 
to separate the dependence on driving frequency from the dependence on fixed parameters, but 
instead only separates feedback effects for algebraic convenience. 
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T h e  variables M and K are those o f  Eq. (I.18) and (I.19). An impor tan t  conse- 
quence of  this phase curve is that in the absence o f  summed  feedback K = 0, the 
phase is identical to the no-feedback case (Eq. (I.2) o f  Fohlmeister et al., 1974a). 
Tha t  is to say that nonsummed  feedback alone has no effect  on the phase.  This is 
an impor tan t  point for  resolving an ambiguity about  the origin of  afterpotentials  
in repetitive spike trains (see part  V below). 

II.  Electrical Analog Behavior without Feedback 

In the following sections the behavior  of  the model ,  as expressed in Eq. (I.3) and 
(I.17) is compared  with the behavior  of  an electrical analog. T h e  analog is a 
particular member  of  the general  class described by the model  where the loss in 
the integrator  is due to an RC impedance  such that: 

1 
7 = RC (II.1) 

STEADY-STATE BEHAVIOR T h e  steady-state behavior  of  these encoders  is 
def ined by the relation between steady-state drive (So) and the resulting rate of  
ou tput  pulses (f0). From Eq. (I.3): 

i0 = - ' / / l n ( 1  - A %  (I,.2) 
$0  / 

where A is the threshold voltage (Knight,  1972, Eq. [5.5]). T h e r e f o r e ,  the effect  
of  the drive on the pulse rate depends  only on the leak so long as the threshold is 
constant.  Fu r the rmore ,  there  is a min imum effective drive: 

S t a i n  = '/A, (II.3) 

since smaller drives do not overcome the leak and the voltage fails to reach 
threshold.  T h e  relation expressed in Eq. (II.2) is nonl inear ,  but  it can be seen 
f rom Fig. 2 (solid lines), which is a plot of  Eq. (II.2) for  five d i f ferent  values of , / ,  
that f0 increases nearly linearly with so over  a range of  values. This has special 
significance for  the results which will be presented  below with sinusoidal modu-  
lations. In deriving the dynamic relation between drive and pulse rate,  it is 
assumed that the drive is given a small per turbat ion  about  a part icular  steady- 
state opera t ing point.  In general ,  the analysis works well for  input  excursions 
which remain within a small ne ighborhood  of  the opera t ing  point,  but of  itself 
the analysis has little predictive value for excursions which carry the solution 
away f rom that ne ighborhood.  However ,  the results presented below indicate 
that even responses to relatively large excursions are accurately predicted by the 
derived function (for an explanat ion of  this, see Modulated Behavior,  below, and 
Knight,  1972). 

Actually, however,  there  is no completely l inear relation between f0 and drive 
except  in the limit where "/--~ 0. In this case: 

lim So = foA, (II.4) 
7 - ' - * 0  

which is also the asymptotic relation between f0 and drive for the leaky encoder  
as So ---* o0. T h e r e f o r e ,  the change in f0 for  a given change in so is always greater  
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for  the leaky case, than for the nonleaky case; moreover ,  the grea ter  the leak, the 
s teeper  this slope (see Fig. 2). It follows then that for  low modulat ion frequencies 
(<f0/4) the absolute gain o f  the leaky encoder  is likewise greater  for  larger  values 
of  y and smallest when y --* 0. 

The  behavior  o f  the electrical analog was compared  with the behavior  pre- 
dicted by Eq. (II.2). T h e  device has a threshold of  19.5 V, and the drive is 
de te rmined  by the input  cur ren t  and capacitance o f  the RC. T h e  RC was varied 
stepwise between 15 ms and 220 ms by changing capacitors. In the analog 
exper iments ,  we were not able to obtain stable pulse rates down to zero imp/s as 
suggested by the theoretical curves,  undoubted ly  due  to the very steep slope as so 
--'> stain where minute  changes in drive (as occur  due  to noise in the analog circuit) 

/ 
70 RC =,~o RC: . 0 1 5 Y  

, o  / 

50 p /  

Z 
/ o i -  ~ . o .  

.o -r,--- - 

• I I I I  I I I I I I 

400  6 0 0  1200 1600  2000 

VOLTS / S 

FIGURE 2. Steady-state behavior of the leaky integrator. Pulse frequency vs. drive 
(so) in volts/second for five different settings of the leaky integrator analog (open 
circles). Model calculations for the same parameters used in the analog are plotted 
with solid lines. See text for further explanation. 

represent  large variations in f0. In practice, there  is a min imum stable value off0 
for each RC setting. The  dashed line drawn th rough  these min imum stable 
values in Fig. 2 shows that the region o f  instability is larger  for  smaller values o f  
RC (larger y). 

Both Fig. 2 and Eq. (II.2) (cf. Knight,  1972, Eq. [5.5]) make evident  that all the 
response curves are simply d i f ferent  "magnifications" (with fixed point at the 
origin) of  a single "universal" curve.  

In summary ,  the steady-state behavior  shows that the leak of  an integrat ing 
encoder  is a major  factor in its pe r fo rmance .  By varying the leak, a very wide 
range of  steady-state behavior  can be obtained.  

MODULATED BEHAVIOR T h e  dynamic behavior  o f  the encoder  was deter-  
mined by applying a sinusoidal drive o f  the form: 

1 
so + s, cos (rot + ~o) = ~ [i0 + il cos (rot + ~o)], (II.5) 
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where a steady-state cur ren t  i0 is sinusoidally varied by il at fro = co/21rHz. T h e  
ou tpu t  funct ion genera ted  by this modulat ion is sinusoidal and to first o rde r  
equals 

f0 + f l  cos (cot + ~0'). (II.6) 

T h e  extract ion o f  the ou tpu t  funct ion f rom the pulse train data is discussed in 
Materials and Methods. 

Even with ra the r  large sinusoidal modulat ions,  the ou tpu t  function shows very 
little distortion f rom a perfect  sinusoid. Distortions are typically 1-4% at low 
modulat ion frequencies and somewhat  h igher  as fro ~ f0. Modulations can be 
increased to nearly 100% (where fl/fo = 0.5) without significant increases in 
distortion, and the result appeared  to hold for  all values of  RC (15-220 ms) 
tested. Per turbat ion theory is o f  no help in explaining why this is so. T h e  
per turbat ion  expansion will not  converge u n d e r  these conditions,  and hence 
does not  apply. A partial answer lies in the me thod  o f  analysis (binning), and in 
the phase-locking propert ies  of  the system in the presence of  noise (see Materials 
and Methods).  T h e  question that remains is why does the ou tpu t  ampli tude 
remain propor t ional  to ]s,] when ]s,] becomes relatively large. Here  the rest of  the 
answer may lie in the nearly linear f0 vs. So steady-state relationship.  However ,  
since no closed form expression exists when Is~] is large,  all neurona l  data for  
these papers  were taken with Is~[ ~ 0.I So where per turbat ion  theory applies. 

T h e  two gain and phase plots shown in Fig. 3 are a comparison between the 
behavior  o f  the analog (closed circles) and the behavior  predicted by Eq. (I.17) 
with M = 1 and K = 0 (solid lines). T h e  ou tpu t  funct ion in this case had a steady- 
state value o f  30.5 imp/s with an ampli tude o f  1.37 imp/s at I Hz. As the 
modulat ion f requency is varied below 1 Hz,  the phase shift is zero and the 
ampli tude is constant.  However ,  as co increases toward 2~rf0 the ampli tude and 
phase both increase, such that the ampli tude reaches a max imum in the neigh- 
borhood  o f  fro = f0 and then decreases as co is increased fur ther .  T h e  ampli tude 
passes th rough  a min imum and approaches  ano ther  maximum at 2f0. According 
to the model  equat ion,  this behavior  repeats  at each integer  multiple off0 since 
the denomina tor  te rm F(0) of  Eq. (I.20) equals zero whenever  co/f0 = 2arl, l = 1,2, 
3 . . . . .  leading to an infinite ou tpu t  ampli tude at these values of  fro. An infinite 
response of  the mathematical  model  at these modulat ion frequencies corre-  
sponds in the electrical analog to a nonsinusoidal  response.  In fact the analog 
becomes phase locked, and a single pulse occurs always in the same phase 
relative to the modulat ing sinusoid. Moreover ,  the analog may show this behav- 
ior for  a range of  modulat ion frequencies  in which f0 is de te rmined  by co (see 
Rescigno et al., 1971). 6 

Eq. (I.17) with M = 1 and K = 0 predicts: (a) that the ou tpu t  funct ion f l  is 
directly propor t ional  to the ampl i tude  o f  the drive s~ for any given co,f0, and T; 
(b) if the modulat ion f requency is expressed as the ratio co/fo, ra ther  than just  ~0, 
the ou tpu t  funct ion is de te rmined  by the ratiof0/T. Thus ,  so long as the ratiof0/T 

6 Cycle h i s togram plots o f  1:1 phase- locked encoder  behavior  show that  all events occur  in one bin 

(probabil i ty densi ty = 1) and  that  the probabil i ty  densi ty is zero e lsewhere .  Stein (1970) has  shown 
tha t  for conver t ing  the probabifity densi ty to ra te ,  a value of  1 cor responds  to 2f0 imp/s  r a the r  than  an 
infini te  rate.  
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(or f0 RC in the analog model)  is held constant ,  the ou tpu t  behavior  is invar iant  
with respect  to to/fo. In  the ana log  exper imen t s ,  doubl ing  the input  did indeed  
double  the ou tpu t .  Fig. 4 illustrates that  the ana log  behav ior  also agrees  with 
point  (b) above.  For  a given f0, decreas ing y p roduces  a flatter ampl i tude  
response  (na r rower  resonance  half-width) and  slower initial increase in phase  as 
the modula t ion  f requency  is increased (cf. Knight ,  1973 [Fig. 4], who also 
predic ted this na r rower  "half-width" effect).  Similarly, with a given y,  (RC = 45 
ms in the f igure) the same changes  are  observed  as f0 is increased.  

In  the l imiting case where  y -*  0, which is equivalent  to an electrical analog 
with a non-leaky integrator  (i.e. impedance  is C only), the to dependence  is lost 
and  the equat ion reduces  to a s imple propor t iona l i ty  between f and  s. In  this 
case, the ou tpu t  has a constant  ampl i tude  and  no phase  shift (Knight ,  1972). 

5 

. . . . . . . .  f , i , /45~ i 

014 1 2 4 10 2 0  40  100 
MODULATION FREQUENCY (Hz) 

FIGURE 3. A comparison between analog simulation and mathematical equation 
(I.17) for the dynamic behavior of the leaky integrator model without feedback. 
The data points were obtained from the electrical analog and the solid lines are 
calculated from Eq. 0.17). Model parameters were A = 19.5 V, RC = 10 ms,f0 = 
30.5 imp/s, and &/So = 0.00489 which were the same values used in solving the 
equation. 

I I I .  Analog Behavior with Feedback 

STEADY STATE BEHAVIOR T h e  steady state behav ior  with feedback can be 
de t e rmined  by solving Eq. (I.7) for  the drive as a funct ion off0:  

s° - 1 - e-YtSo 1 .[ A y + (  h(e-U% - e-ytS°) l )  + ~ - T k  (e-~/~kso- e-Yls~ t . ( I I I .1)  

y - ~ (1 - e -v~s°) Y - "r-k 

In  the limit as y --> 0, this becomes:  

which approaches  

lira so =)Co [A + h~ + krk(1 - e-l/~*to)], 
Y--*0 

( I I I .2)  

So = f o  (A + hr + krk), ( I I I .3)  
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for  ~'k'f0 "~ 1. I f  one  c o m p a r e s  these  equa t ions  with Eq. ( II .4) ,  one  can see tha t  
fo r  a given set o f  m a g n i t u d e  and  t ime cons tan t  p a r a m e t e r s ,  the asympto t i c  slope 
is always r e d u c e d  by feedback ,  and  it is r e d u c e d  by a g rea t e r  a m o u n t  with 
s u m m e d  than  with n o n s u m m e d  feedback .  T h e  curves  in Fig. 5 are  plots o f  Eq. 
( I I I .1)  fo r  n o n s u m m e d  feedback  (Fig. 5 A) and  for  s u m m e d  feedback  (Fig. 5 B). 
Bo th  families o f  curves  show the fo l lowing fea tures :  (a) m o r e  dr ive is r e q u i r e d  to 

15 
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~5 
Z 

o o  
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J° j 

. ~ ....~+/+ ,o~ 
o ~d~;"=~---"+: +-"-" 

- 4 5  a.  

J ~ ~ ~ ° ~  ' -90  
Q O 6 2 5 r r  0.Srr rr 2rr 4rr 

MODULATION FREQUENCY (ca/fo) 

FIGURE 4. Dynamic behavior of  the leaky integrator with different f0 and RC. 
Symbols are data points obtained from the electrical analog and solid lines are 
calculations of  gain and phase made from Eq. (I. 19). Gain values are normalized to 
0 db at 0.1 Hz and all values are plotted as a function of  normalized modulation 
frequency, ¢O0Co. 

(+)f0 = 36 imp/s, RC = 45 ms, 3'/]'0 = 0.62; 
(A)f0 = 17.5 imp/s, RC = 45 ms, 3'De0 = 1.27; 
(O)f0 = 30.5 imp/s, RC = 10 ms, 3"/fo = 3.28; 
(O)f0 = 13.8 imp/s, RC = 22 ms, 3'0c0 = 3.29; 
(A)f0 = 6.8 imp/s, RC = 45 ms, y0C0 = 3.27. 

The same plots were obtained when sl was doubled. Thus,  as predicted by Eq. 
(I.17), the dynamics (shape of  gain curve and phase) are independent ofs~ in these 
normalized plots. 

reach  a given fo as f eedback  is a d d e d ;  (b) fo r  small values o f  f eedback  t ime 
cons tan t  (7 '~ T, ~- = 25 ms is i l lustrated in Fig. 5), the  effects o f  n o n s u m m e d  and  
s u m m e d  feedback  are  similar; (c) c o m p a r e d  to the no - f eedback  case, f eedback  
p r o d u c e s  a r e d u c e d  ear ly  s lope and  lower  m i n i m u m  stable ra te  o f  pulse p r o d u c -  
t ion. 

For  bo th  types o f  f eedback  the  ef fec t  o f  va ry ing  separa te ly  the  m a g n i t u d e  and  
t ime cons tan t  has d i f f e r en t  effects on  the  s teady-state  behavior .  I n  bo th  cases, 
increas ing  the  t ime cons tants  a lone p r o d u c e s  lower  m i n i m u m  stable pulse rates.  
F u r t h e r ,  the  t ime cons tan t  o f  e i ther  type  can be m a n i p u l a t e d  to  obta in  a near ly  
l inear  re la t ion  be tween  f0 a nd  so (with stabler0 nea r  zero) ,  a l t h o u g h  n o n s u m m e d  
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feedback can achieve this with less reduct ion of  slope than can summed  feedback 
for any given magnitude k(=h). 

TRANSIENT BEHAVIOR In response to a step cur rent  the analog with 
summed  feedback produces  adaptive behavior with a pulse f requency declining 
exponentially to an asymptotic value f(oo). In deriving Eq. (I.12) this empirical 
observation was used as an under ly ing assumption, s 

Fig. 6 shows a plot o f  pulse f r e q u e n c y f  -f(o0) vs. time (wheref(oo) = 24 imp/s). 
In  the logarithmic plot the solid line is a linear regression fit to the data points 
and the dashed line is drawn according to the time constant,  ~'y, calculated f r o m  

80 

70 

60 

50 

4O 

E 3o 
I 

,~_o 20 

10 

/ n=o 

e~/ D=300 

/ o / , / o  / n=6oo 

/ / ~ o / Z ~ f  n=12oo 

/ 
• / /  

1400 1800 2200 

h = o  
/ 

h= 80 

h = 1 5 0  

/ 
/o, 

/ '/h:4oo 
l ° 

1400 1800 2200 

s o - v o l t s / s  

FIGURE 5. Steady-state behavior of the leaky integrator with feedback. Symbols 
are data points from the electrical analog and solid lines are calculations from Eq. 
(III.1). Model RC was 15 ms. A, Nonsummed feedback (left plot). (0) No feedback; 
(O) increasing values ofk with rk = 25 ms; k = 1,200 V/s and ~'k = 25 ms (O), 100 ms 
(A), and 400 ms (&). B, Summed feedback (right plot). (Q) No feedback; (O) in- 
creasing values ofh with r = 25 ms; (A) h = 250 V/s, and 7 = 100 ms; (&) h = 100 
V/s and r = 400 ms. 

Eq. (I. 12) with the model  parameters .  The  model parameters  used were y = 66.7 
s -1, A = 19.5 V, 7" = 2.5 s, and h/H(oo) = 0.015. The  data indicate a value for ~'t o f  
0.778 s to be compared  with the calculated rf = 0.746 s. The  agreement  is well 
within the errors  o f  estimating ~ and h/H(oo) which were de termined directly 
f rom measurements  made f rom the oscilloscope face. However ,  they could also 
have been estimated f rom the first three intervals after the step by using Eq. 
(I.12) and (I.14) with the measured value off(o0). With these equations we obtain 
h/H(oo) = 0.016 and from the measured rs of  0.778 s we obtain I- = 2.85 s. 

Using Eq. (I.14) to determine h implies taking a small difference between the 
two large numbers  in brackets. This invariably leads to the possibility o f  large 
errors in the determinat ion o f  the value o f  h. There fo re  the value so de termined  
was cross-checked with that resulting f rom the use o f  Eq. (I.10). 
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Thus  it is possible, f r o m  the response  to a step input ,  to obtain the pa r ame te r s  
of  the s u m m e d  feedback leading to the adapta t ion  af ter  the onset  o f  that  input .  
It  only requires  that  we know A and ~/. T h e  threshold  voltage (A) can be 
de t e rmined  for  a n e u r o n  by m e a s u r e m e n t  or  est imate and  the applicable value 
of  T f rom the modula ted  behavior  (see Fohlmeis ter  et al., 1974a, and below). 

M O D U L A T E D  B E H A V I O R  W I T H  F E E D B A C K  N o n s u m m e d  feedback alone,  
while it alters steady-state behavior ,  decreases only the ampl i tude  of  the dynamic  
response  un i fo rmly  at all modula t ion  frequencies ,  and  it does not affect  phase.  
This  behavior  has been discussed in connect ion with the model  af ter  Eq. (I.19) 
(cf. also Discussion). 
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FIGURE 6. Transient behavior of the leaky integrator with summed feedback. 
Symbols are data points obtained from the leaky integrator analog with RC = 15 
ms, h/H(oo) = 0.015, ~" = 2.5 s, and f0 =f(:~) = 24 imp/s. The frequence If(t) -f(0o)] = 
[(intervals) -1 -f(o0)] is plotted vs. time in the upper plot, and log (f(t) -f(o0)) vs. 
time in the lower plot. The solid line is computed by linear regression fit to data 
points in the lower plot and replotted in the upper plot. The dashed line is 
calculated from Eq. (I.12) by using the parameters of the analog. 

Summed Feedback Alters Both Amplitude and Phase of the Encoder Response 

At very low frequencies  of  modula t ion ,  s u m m e d  feedback decreases the 
response  ampl i tude ;  it has less ef fec t  at modu la t i on  f requencies  n e a r  fo/2 
where  the gain with s u m m e d  feedback may ei ther  increase or  decrease relative 
to the no feedback gain. S u m m e d  feedback again decreases the response  in the 
ne ighborhood  o f f 0  and  its multiples (see Fig. 7). T h e  effect  on  phase  is also 
conf ined to modula t ion  frequencies  near  zero,  f0, and  its multiples with zero 
phase  shift at hal f -odd in teger  multiples off0.  T h e  effects o f  s u m m e d  feedback 
are the result  o f  f r equency -dependen t  alterations in t roduced  by the feedback  
t e rm  in Eq. (I.17). Since this t e rm is a multiplicative factor  to the equat ion  
without  feedback,  the two te rms  will simply add  in plots on a log scale. Like- 
wise, the phase  contr ibut ion of  feedback  will add  to the phase  without  feed- 
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back .  T h e  s u m m a t i o n  p r o p e r t y  o f  t he  ga in  is c l ea r ly  seen  in Fig .  9 (below),  
w h e r e  t he  f e e d b a c k  t e r m  is p l o t t e d  as a d o t t e d  l ine  a n d  the  e q u a t i o n  w i t h o u t  
f e e d b a c k  is tlae th in  sol id  l ine .  T h e  h e a v y  sol id  l ine ,  which  r e p r e s e n t s  t he  re -  
s p o n s e  o f  t h e  e n c o d e r  wi th  f e e d b a c k ,  is a lso  t he  s u m  o f  t he  o t h e r  two c u r v e s  
m i n u s  a c o n s t a n t  (2.1 dB)  wh ich  is t he  r e d u c t i o n  in e f fec t ive  d r i v e  c a u s e d  by  the  
f e e d b a c k .  
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FIGuR~ 7. Dynamic behavior  of  leaky integrator  with summed feedback. Plots of  
feedback term in Eq. (I.17) for various parameters  RC, y, and h with f0 = 20 imp/s. 
A, RC = 15 ms, z = 100 ms, and h = 20 V/s (top curve in gain and low frequency 
phase), 40 V/s, 80 V/s, and 160 V/s (bottom curves). B, RC = 15 ms,h  .~- = 10 V with 
r = 1.0 s (top curve in gain and lowest frequency peak in phase), 500 ms, 200 ms, 100 
ms, and 50 ms (bottom gain curve and highest frequency peak in phase). C, r = 100 
ms, h = 40 V/s, RC = 45 ms (top curve in gain and low frequency phase), 15 ms, 10 
ms, and 7.5 ms (bottom curves). D, Same as B with a logari thmic frequency scale. 

T h e  e f fec t  o f  t he  h, ~-, a n d  y p a r a m e t e r s  on  the  e n c o d e r  b e h a v i o r  is s u m m a -  
r i zed  in  Fig .  7. Pa r t s  A - C  a r e  p l o t t e d  on  a l i n e a r  f r e q u e n c y  scale to e m p h a s i z e  
tha t  b o t h  t he  a m p l i t u d e  a n d  p h a s e  o f  t he  f e e d b a c k  c o m p o n e n t  a r e  s y m m e t r i c a l ,  
a b o u t  f0/2  (10 H z  in this  case) .  Al l  t h r e e  fac to rs  a f f ec t  t h e  m a g n i t u d e  o f  t he  
f e e d b a c k ,  whi le  on ly  ~" has  a s ign i f i can t  e f fec t  o n  t h e  f r e q u e n c y  r e s p o n s e .  
I n c r e a s i n g  a n y  o f  t he se  p a r a m e t e r s  i n c r e a s e s  t he  r a t i o  b e t w e e n  m a x i m u m  a n d  
m i n i m u m  o f  t h e  f e e d b a c k  fac to r .  H o w e v e r ,  y a l o n e  (C) r e d u c e s  b o t h  m a x i m u m  
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and min imum more  than is achieved by increasing h alone (A). The  effect o f t  on 
the frequency response is shown in Fig. 7 B and also in Fig. 7 D, which is a plot of  
the same parameters  on log frequency coordinates.  The  latter plot emphasizes 
the low-frequency cut-off  feature of  summed  feedback, and shows how the cut- 
of f  varies with r .  

When both summed  and n o n s u m m e d  feedback are included together ,  it can 
be seen f rom Eq. (I.17), (I.18), and (I.19) that the n o n s u m m e d  part  does enter  
into terms that affect dynamics. This is illustrated in Fig. 8. The  solid curves are 
gain and phase with summed  feedback alone (h = Sl, = 0.013 V/s, and ~ = 0.8 s). 
When n o n s u m m e d  feedback is added,  the gain and phase become the dashed 
curves. The  values of  k and Tk chosen for this example cor respond  to the 
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FIGURE 8. Dynamic behavior of leaky integrator with summed and nonsummed 
feedback together. Curves are plotted from Eq. (I.17). Solid curves: RC = 27 ms, h 
= 0.013 V/s, si = 0.013 V/s,f0 = 20 imp/s, A = 5 mV, and k = 0. Dashed curves, 
same parameters except k = 1.0 V/s and ~'k = 6.5 ms. The solid curves are also plots 
of the equation with h = 0.035 V/s, si = 0.035 V/s, k = 1.0 V/s, and z, = 6.5 ms. The 
ratio h/si = 1.0 determines the gain and phase independently of the presence of 
nonsummed feedback for given f0, T, and A. 

parameters  which produce  a neuron-l ike after hyperpolarizat ion in the potential 
trajectory (see also Fig. 13). However,  by increasing both h and Sl (such that h = sl 
= 0.035 V/s) the gain and phase revert  to the solid curves. There fo re ,  a l though 
n o n s u m m e d  feedback alone has no effect on gain or  phase,  it alters the effect o f  
summed feedback when it occurs together  with it. Tha t  effect is entirely on the 
magni tude  h but not  on the ratio h/Sl. There fore ,  a l though the transfer  function 
contains only the ratio h/so, it can be seen f rom this example that the ratio h/sl 
becomes an impor tant  parameter  in determining gain and phase as we have 
defined them. 

IV. Curve Fitting and Parameter Variation 

The  model  presented here serves as a basis for explor ing the behavior and 
mechanisms of  repetitively firing neurons.  There fo re  we will a t tempt  to corre- 
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late the model behavior with the responses o f  these neurons  by specifying a set o f  
parameters  which produce  a describing function that most closely matches the 
neuronal  data. To  do so requires that we have some idea about  how sensitive the 
model  equations are to variation o f  parameters.  We explored the problem by 
testing our  ability to fit data genera ted  by the electrical analog using only the 
data obtained with a sinusoidal drive. As noted above, the transient behavior 
provides an additional independen t  measure of  some of  the parameters  when 
summed  feedback is present.  

Four  variables o f  the electrical analog were fixed as: RC = 48.4 -+ 10% ms, A = 
19.5 V, ~" = 450 ms, f0 = 12.4 imp/s. Ratios were used in setting the other  
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FIGURE 9. Dynamic behavior of leaky integrator with summed feedback. The 
symbols are data points obtained from the electrical analog with A = 19.5 V, RC = 
48 ms,f0 = 12.4 imp/s, h/s l  = 0.0361, and sl/so = 0.052. The heavy solid line is a plot 
of Eq. (I.17) using parameters determined by a parameter variation fit to the 
experimental data (see text). The thin lines are plots of Eq. (I. 17) (with no feedback) 
for the same model. The dashed line is a plot of the feedback terms only in Eq. 
(i.20). 

parameters ,  such that: A l s o  = 31.8 ms, s l / so  = 0.052, and h / s t  = 0.0361. Ampli tude  
and phase data (14 points) were then taken approximately  equally spaced (log 
scale) over a range o f  modulat ion frequencies between 0.05 Hz and 11.8 Hz (Fig. 
9, closed circles). Using this data as the unknown,  a simplex method  of  variation 
o f  parameters  (Nelder and Mead, 1964) was used to find the set o f  parameters  
which gave the best root  mean square fit o f  the experimental  data to the 
ampli tude and phase equations. Al though the parameter  space proved to have 
many local minima,  it was always possible to find a best fit by adopt ing  an 
appropr ia te  strategy. 7 In this example,  the experimental  data were fit to -+0.08 

Since we were testing a model with summed feedback only, we excluded any consideration of 
n o n s u m m e d  f e e d b a c k .  Even with the remaining six parameters (Eq. [I.17]) it was  n o t  poss ib le  to let 
all six vary simultaneously and obtain a best fit. However, we could let two or three vary at a time a n d  
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imp/s  in  a m p l i t u d e  a n d  -+ 1.05 ° in phase  (Fig. 9, heavy solid l ine).  T h e  p a r a m e -  
ters which  give this fit were:  RC = 53.5 ms,  ~" = 428.4 ms,  A/so = 33.5 ms,  Sl/SO = 
0.068, a n d  h/sl = 0.0377. 

All the  e x a m p l e s  we t r ied  were  no t  equal ly  successful  since the abil i ty of  the  
t e c h n i q u e  to p rov ide  the cor rec t  p a r a m e t e r s  d e p e n d e d  on  the  values  o f  the  
p a r a m e t e r s  themse lves  (due  to the  e x p o n e n t i a l  t e rms  c o n t a i n i n g  t hem) ,  a n d  on  
the r a n g e  a n d  accuracy o f  the  da ta  avai lable.  We f o u n d ,  for  e x a m p l e ,  tha t  we 
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FIGURE 10. Parameter determination of y of the leaky integrator from the gain 
curve. 16 data points obtained for modulation frequencies betweenf,/2 and f ,  were 
subject to a variation of parameters fit to Eq. (I.20) for f ,  = 15 imp/s and Ifll = 3 
imp/s. Ordinate is the ratio of the acutal Re  used to generate the data to the Re  
determined from the fit when the RMS error between data and equation is a given 
fraction of the modulation Ifll (abscissa). The dashed vertical line is drawn at 0.3 
imp/s (this example) or 10% of the modulation amplitude. The curves below the 
horizontal dashed line are the locus of points obtained when the variation of 
parameters routine converges from values less than RC and the upper  portions of 
the curves are obtained when it converges from larger values. 

had  be t t e r  success in  spec i fy ing  y if  it was la rge  since the  so lu t ions  were  
insens i t ive  to changes  in y w h e n  it was small .  Fig. 10 i l lustrates  the  p a r a m e t e r  
sensit ivity of  the  a m p l i t u d e  to var ia t ions  in y a bou t  t h r e e  n o m i n a l  values  y = 133 
s -1, y = 30 s -1, a n d  y = 10 s - l .  T h e  va r i a t ion  of  y which p r o d u c e s  a s ign i f ican t  
e r r o r  is smallest  for  1/y = 7.5 ms a n d  very large  for  1/y = 100 ms. T h u s ,  w h e n  

attempt to fit certain critical parts of the amplitude and phase curves. For example, using the result 
that h does not greatly affect the amplitude near f0/2, we started by assuming h = ~ = 0, and tried to 
fit the amplitude in the range 0.5f0 - 0.9f0 by varying RC and sl. The feedback parameters were 
then obtained by finding a best fit to the phase. Finally, the parameters were tested on the total gain 
and phase data. 
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the leak is small, data can be fit equally well with equations describing the 
encoder  with no leak, whereas for  large leaks the value o f  y must be specified 
very precisely in o rde r  to fit data to the model .  

This example  gives an indication o f  the range o f  pa rame te r  sensitivity for  y.  A 
similar dependency  on pa rame te r  value was also found  for  ~" and a'k. However ,  it 
is not  ou r  purpose  to provide here  an exhaustive study of  this problem,  but  
ra ther  to give warning o f  its complexi ty and to state that there  seems to be no 
general  me thod  for  pa ramete r  specification that will yield satisfactory results in 
all cases. 

V. Comparison of Leaky Integrator and Variable-y Models with Feedback 

LOADING As we have shown previously (Fohlmeister  et al., 1974a), the 
leaky in tegra tor  fails to explain many features o f  the dynamic behavior  o f  
sensory neurons .  We have presented  a model  based on a time- and voltage- 
dependen t  y which reconciles those differences.  Here  it is shown that the 
alteration in gain and phase p roduced  by feedback in the leaky in tegra tor  are 
also p roduced  in the variable-y model .  In fact the gain curves for  these two 
models are identical. This  identity allows us to def ine a ~ o f  the variable-y model  
for  the conditions o f  each Bode plot. T h e  -~ is def ined  to equal the leaky 
in tegrator  y used in genera t ing  the same gain curve.  This is a useful tool because 
the de terminat ion  o f  4/is i nd ep en d en t  o f  the value o f  threshold as well as the 
shape and nature  (i.e. summed  feedback or  not) of  the drive. 

T h e  phase curves o f  the leaky in tegrator  and variable-y models cor respond  
only in the low f requency  range  (modulat ion frequencies  <f0/4). In this fre- 
quency range  the phase curve is in fact model  i ndependen t  and zero in the 
absence of  summed  feedback.  In the presence o f  su m m ed  negative feedback the 
low f requency phase becomes non-zero  and positive, but  the result ing shape 
remains model  i ndependen t  (Fig. 11). T h e  magni tudes  of  the shift however  
become equal only if the gain curves are first s u p e r i m p o s e d - i . e ,  only if g/is first 
made to match the leaky in tegra tor  y. This implies that the low f requency  phase 
is a measure o f  the "average" loading, but  not o f  the functional  details o f  the 
load. 

STEADY-STATE BEHAVIOR OF VARIABLE-')/ WITH FEEDBACK It has been 
pointed out  that the steady-state f0 vs. i0 behavior  o f  sensory cells such as the 
crayfish stretch receptor  is very l inear and that these cells are capable o f  steady- 
state fir ing rates at very low f requency  (<1 imp/s) (e.g., Te rzuo lo  and Washizu, 
1962). T h e  leaky in tegrator  even with summed  feedback does not  mimic this 
behavior  very well. T h e  variable-y, however ,  does give a nearly propor t ional  f0 
vs. So behavior  (Fig. 12). This  is due  to the fact that for  each f0 there  is a d i f fe ren t  

such that ~//fo ~- constant.  Rewriting Eq. (II.2) in the form 

In 1 - ~ - o  -- - 'Y/f°  (V.1) 

leads to 

~a  
so = (v .2)  

1 - e x p  (-3'/fo)' 
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u p o n  t ak ing  the  e x p o n e n t i a l  o f  bo th  sides. With  ~ a p p r o x i m a t e l y  p r o p o r t i o n a l  to 

f0 this resul ts  in 

so - cons tan t . fo .  (V.3) 

Th i s  p r o p e r t y  c o n t i n u e s  to ho ld  in  the p re sence  of  s u m m e d  feedback.  T h e  total  
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FIGURE 11. Dynamic behavior of the variable- 7 model with summed feedback 
compared to the leaky integrator. The points are values computed for the variable- 
Y model with A = 8 mV, B = 0.2 s -1, D = 0.00015 s-2-V -1, Y (0) = 0.35 s -~ (giving a 
value of 1/'~ = 27 ms; see Fohlmeister et al., 1974a), h = 0.02 V/s, sl = 0.02 V/s. ~- = 
0.8 s, So = 0.64 and therefore f0 = 20 imp/s. The solid curves are drawn from a 
solution of Eq (I.17) with A = 8 mV, 1/7 = 27 ms, h = 0.0076 V/s, r = 0.8 s, Sl = 
0.0076, so = 0.4711 and f0 = 20 imp/s. The h/sa ratio, 7, and T are the same for the 
two models. 

30 

2O 

o_ 

E 

10 

o • 

i 

0 

0 Q 

0 

0 Q 

' ' Oi ' 0 ' 6 '  0 2  4 V / s  

FIGURE 12. Steady-state behavior of the variable-y model. Open circles are for the 
same model parameters used in Fig. 11 without feedback and the closed circles are 
with summed feedback. 

a m o u n t  of  s u m m e d  feedback  effect  H subt rac ts  f r o m  the  app l i ed  s t imu lus  So (Eq. 
[I.9]). In  the  s teady state, H(oo) is always p r o p o r t i o n a l  to f0 (Eq. [I.10]). Mathe-  
matically,  these  two s t a t emen t s  imply  that  So is to be rep laced  by So - H(o0) 
eve rywhere  it appea r s  in Eq. (V.1), (V.2), a n d  (V.3). It  follows that  Eq. (V.3) 
re ta ins  its f o r m  in the  p r e s e n c e  o f  feedback  with the  value o f  the  c o n s t a n t  
inc reased  by the  a d d e d  a m o u n t  h . r .  

INTERSPIKE VOLTAGE TRAJECTORIES O n e  o f  the  at t ract ive aspects o f  the 
variable-  7 mode l  is that  i n t e r sp ike  vol tage t ra jector ies  are s imi lar  to what  is 
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observed intracellularly in sensory neurons .  In part icular  there  is an af te rpoten-  
tial af ter  each spike followed by a near  l inear rise to threshold.  In the variable-y 
model  this is the result o f  a t ime-varying m em b ran e  load that initially drives the 
voltage toward the potassium equil ibrium potential.  But it is clear that a similar 
potential t rajectory could also be genera ted  by n o n s u m m e d  feedback with 
appropr ia te  choice o f  k and rk. This is shown in Fig. 13. T h e  dashed potential  
curve was genera ted  by the variable- T model  and the solid curve by the leaky 
integrator  with k = 1.0 V/s and rk = 0.0065 s. T h e  gain and phase curves for  
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FIGURE 13. Comparison of the variable-y model with the leaky integrator with 
nonsummed feedback. Upper plot shows the voltage trajectory of the variable-y 
model for the parameters used in Fig. 11 (dashed curve) and of the leaky integrator 
model with RC = 27 ms, k = 1.0 V/s, ~k = 6.5 ms, and f0 = 20 imp/s. Bode plot shows 
the gain and phase computed for the two models; solid line; leaky integrator (Eq. 
[I.17]) and points, variable~ model. 

these models are plotted below. Notice that the gain curves are identical, 
indicating that the average loading is the same for  the two models. In the one  
case, however,  the trajectory shape is due  to effective changes in the stimulus 
and in the o ther  to changes in loading. To  decide which o f  the two mechanisms 
is responsible for  the trajectory we re fe r  to the phase data which show that when 
a part icular  voltage trajectory is caused by t ime-dependen t  changes in drive,  the 
phase is identical to the phase o f  the leaky integrator .  This is entirely consistent 
with ou r  earl ier  observation that the phase curve is particularly sensitive to the 
precise membrane  loading in the interspike interval. T h e r e f o r e  we caution that 
models which a t tempt  to fit only voltage trajectories may not be sufficient to 
account for  the dynamic behavior  o f  the encoder .  
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D I S C U S S I O N  

T h e  principal results of  this paper  are: (a) a verification of  the mathematical  
analysis of  the leaky integrator  model  using an electrical analog with known 
parameters ;  and (b) the demonst ra t ion  that the parameters  of  summed  feedback 
can be de te rmined  f rom Bode data for  the leaky in tegrator  and for the more  
general  variable-y model.  

T h e  first result  gives conf idence in the use of  the small per turbat ion  technique 
used in the mathematical  derivation o f  the gain and phase equations and also 
confirms the appropr ia teness  and accuracy o f  the interval b inning technique 
used to handle  exper imenta l  data. 

The  second result bears directly on the problem posed in the companion  
paper  (Fohlmeister  et al., 1977): the de terminat ion  of  feedback parameters  in 
two sensory neurons .  We showed that it is possible to de te rmine  accurately a 
number  of  model  parameters  for  the leaky integrator  model  f rom the gain and 
phase. Specifically, the model  value o f t  can be de te rmined  f rom the gain data to 
within less than +-10% for values of  33 s -t  or  greater  (see Fig. 10), and this 
includes the range of  values o f ~  found  for sensory neurons  (Fohlmeister  et al., 
1974a; 1977). Fu r the rmore ,  such de terminat ion  is i ndependen t  of  the presence 
of  feedback. When  feedback is present  it is additionally possible to de te rmine  the 
parameters  o f  summed  feedback but  not of  the n o n s u m m e d  variety, since only 
summed  feedback has an effect  on the dynamics. Steady-state behavior  can only 
suggest a contr ibut ion by feedback and cannot  at present  be used reliably to 
de te rmine  its parameters .  

As long as it is possible to de te rmine  a ~ f rom the gain curve p roduced  by a 
particular encoder ,  the results of  the analysis with both  summed  and non- 
summed  feedback opera t ing together  as well as those with the variable-y model  
suggest that it is always possible to de te rmine  the ratio h/st and the time constant 
r f rom the gain and phase. For instance, when the -) for  the variable-y equals y 
for  the leaky integrator ,  the low-frequency gain and phases are identical in the 
two models when the same values ofh/st and r are used (Fig. 11). So even if one 
questions the appropr ia teness  of  the variable-y as a relatively accurate neuron  
model,  there  is some basis for  conf idence  in the de terminat ion  of  neurona l  
feedback f rom a sinusoidal analysis because that de terminat ion  appears  to be 
model  independen t .  

Even though it is the ratio h/so that appears  in the t ransfer  funct ion (Eq. 
[I. 17]), the results show that the dynamic behavior  o f  [/'11 for a given f0 varies with 
the paramete r  Istl, the magni tude  of  the sinusoidal co m p o n en t  of  encoder  drive. 
Thus ,  in o rde r  to know the magni tude  of  encoder  feedback h, it is necessary to 
know also the magni tude  of  drive effective at the encoder  site. With that 
informat ion,  then,  it is possible to de te rmine  both the magni tude  and the time 
constant of  summed  feedback for an encoder  f rom spike train analysis by using 
the leaky in tegrator  model  as a basis for  the determinat ion.  

As for the n o n s u m m e d  feedback,  it does not  seem that its presence can be 
established in a general  or mode l - independen t  sense. In the context  of  the leaky 
integrator  it may be identif ied and evaluated by compar ing  the value o f  appar-  
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ent RC f rom the steady behavior  with the y de te rmined  f rom the gain curve; a 
discrepancy may indicate the presence o f  a n o n s u m m e d  effect.  In this context ,  
we have shown that such n o n s u m m e d  effects can p roduce  charging curves in the 
interspike interval that are similar to those observed in many repetitively f ir ing 
neurons .  By using a large k and small rk the voltage trajectory exhibits an 
af terhyperpolar iza t ion  even with a constant  RC load and a constant stimulus So, 
because the drive now becomes so - k exp (-t/~'k) after  each spike (Fig. 13). A 
dynamic analysis o f  this system, however ,  yields a phase curve identical with the 
no-feedback case (k = 0) which differs substantially f rom the to-dependence o f  
sensory neurons  which exhibit an af terhyperpolar iza t ion (Fohlmeister  et al., 
1974a). This result,  o f  course,  does not  preclude the existence o f  a n o n s u m m e d  
feedback effect; it does, however,  suppor t  the need for a variable load in o rde r  
to mimic the dynamic behavior  o f  certain neurons  and it is t he re fo re  unlikely 
that n o n s u m m e d  feedback in the drive is responsible for  the shape o f  the 
charging curve in those cases. 

In the steady state and in the transient  equations,  threshold potential  A 
appears  explicitly. Fur ther ,  in the derivation of  the modula ted  behavior ,  inte- 
grals appear  whose value depends  on threshold.  In these derivations we implied 
that A is a f ixed number .  T h e  assumption of  a f ixed threshold is probably 
justified for the steady-state case and  fairly accurate for  the modula ted  case, 
since the encoder  is assumed to have been opera t ing  with a stimulus near  a 
constant value so for  an indefinitely long time. Thus ,  since the interspike 
intervals are all nearly identical, the neurona l  encoder  is presumably experienc-  
ing nearly the same threshold at the t ime o f  each impulse occurrence.  For  the 
transient  behavior  A may not be constant  and the relative significance of  any 
threshold increase must be evaluated with each individual situation. Effects that 
threshold variations can in t roduce  into encoder  dynamics are considered in 
detail elsewhere (see footnote  3). 

T h e  appendix  contains the derivation of  two t ransfer  f u n c t i o n s - b o t h  with 
two channels o f  feedback.  T h e  first contains one channel  o f  summed  and one 
channel  o f  n o n s u m m e d  feedback.  T h e  second contains two channels o f  su m m ed  
feedback for  compar ison with the sensory neurons  (studied in Fohlmeister  et al., 
1977) which appea r  to opera te  with two such mechanisms that have widely 
d i f ferent  decay times. In  each channel  the feedback effect  increases by a f ixed 
amoun t  (h or k) in response to an impulse,  followed by a relaxation o f  the effect  
which is approx ima ted  by an exponent ia l  decay. T h e  possibility o f  a delay 
between the spike and the onset of  feedback is not  considered here .  This  
problem has been discussed by Ratliff  et al. (1969) and by Purple  and Salasin 
(1969). 

T h e  model  studies illustrate two impor tan t  points per ta in ing to in format ion  
processing in the leaky encoder .  While requir ing a grea ter  drive than the 
nonleaky integrator ,  the leaky encoder  also confers  a greater ,  absolute, static 
gain (sensitivity in terms o f  impulses/s/Aso) which may,  over  certain ranges o f  
drive, be l inearized by the presence o f  feedback (Fig. 5). Second,  the phase- 
locking proper t ies  o f  these models cause the dynamic sensitivity ( f requency 
response) to increase as the input  frequencies  to approach  the mean rate o f  f ir ing 
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fo. s With r e g a r d  to the  first po in t  one  migh t  specula te  that  the l inear ized,  
e n h a n c e d  gain requi res  fewer  signal channe ls  to ca r ry  a given s ignal /noise level 
to the next  n e u r o n s  in a circuit.  O n  the  second  po in t ,  e n c o d e r  f r e q u e n c y  
e n h a n c e m e n t  cou ld  be a m e c h a n i s m  util ized by the ne rvous  system to achieve  
e n h a n c e d  sensitivity to cer ta in  t ime-va ry ing  changes  in the  e n v i r o n m e n t .  O t h e r  
possible utilities re la t ing  to phase  locking,  r e - en t r an t  pa t te rns ,  and  stability with 
respect  to noise have  been  discussed by Stein (1970), Stein and  F r e n c h  (1970), 
Knigh t  (1972), a n d  Resc igno et al. (1970). Such non l inea r  behav io r ,  as exh ib i ted  
by the leaky encode r s ,  suggests  tha t  the  e n c o d e r  process  in a n e u r o n  is an 
i m p o r t a n t  m e c h a n i s m  in the  f u r t h e r  in tegra t ion  and  p rocess ing  o f  i n f o r m a t i o n  
within the  repet i t ively f i r ing  ne rve  cell. 

A P P E N D I X  

In the course of  the Results we make extensive reference to the effects of  summed and 
nonsummed feedback on the dynamic properties of  impulse encoding. For the purposes 
of  these papers we derive here two transfer functions. Both derivations utilize first-order 
perturbation theory within the context of  the leaky integrator. For the first we assume 
simultaneously one channel of  summed and one channel of  nonsummed feedback. 

Second, we derive the transfer function with two simultaneous summed feedback 
channels in order  to have an expression of  channel crosstalk for these dynamically 
important feedbacks. 

The complex number notation in the sinusoidally perturbed stimulus s( t )  = So + sl exp 
(/'tot), (Eq. [I. 16]), allows both amplitude (gain) and relative phase shift to be computed in 
compact form. The constant sx is in general complex, its argument  giving the arbitrary 
phase of  the stimulus sinusoid at the lower limit, t = 0, of  the integral for A (Eq. [I.6]), 
that is, at the beginning of  the interspike interval. 

Including the perturbation term sx in the integral Eq. (1.6) now renders closed-form 
mathematics intractable. The approximation used to bypass this difficulty is to assume all 
perturbation terms (that is terms with subscript 1) to be a small fraction, -<20% of the 
steady-state values (subscript 0), of the corresponding variables. This approximation can 
always be satisfied experimentally by an appropriately "small" choice of  the magnitude 
Isll. With this approximation, terms involving products of  two or more factors of  the 
perturbing quantities may be neglected in comparison with terms containing only one 
such factor. This procedure,  known as first-order perturbation theory, is eminently 
adequate for the identification and determination of feedback parameters as shown 
below. The function so derived contains full transfer information, provided that it is 
compared with experiments utilizing a sinusoidal perturbing stimulus of sufficiently 
"small" amplitude (see Discussion). 

The integral, Eq. (I.6), including the sinusoidal perturbation of  Eq. (I. 16), now takes 
the form: 

A = d t  e-~r-t~Z'{s o + s l e  ~¢°t - k e  - t / ' k  - h  e-~rn'c°'r°)+t)/"}. (A. 1) 
in=0 

The interpulse period is generalized to T = To + T1, with TI the (complex) perturbation in 
period. 

To calculate the factor 2h(m, to, To), which is the time interval between the occurrence of  

8 For a single neuron this obtains by choosing the appropriate to-dependent normalization, Eq. (A- 
13). In treating a large population of  neurons, the normalization is implicit (Knight, 1972). This 
results in the so-called resonance behavior. 
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the mth pulse before that at t = 0, and time t = 0, we need to determine the behavior of 
the Tt term as a function of time (cf. also Knight, 1969). The magnitude and phase of T~ 
depends on the magnitude and phase of h.  Further,  since sl varies sinusoidally, the TI 
perturbation term will also vary periodically in time with the same frequency co. There-  
fore, the perturbation term ofm periods before the present integration interval takes the 
form T~e -~m'~T°. The To in the exponent ,  in place of a more general T, is consistent with 
the first-order perturbation approximation. 

The summed feedback term in Eq. (A .  1) contains an infinite s e r i e s - the  total feedback 
from an infinite number  of previous pulses remaining at t = 0. From the discussion in the 
previous paragraph the factor 7"(m, co, To) becomes 

1 --  e -jma'T° 
"F(m, co, To) - mTo + TI e -jr'or° = mTo + T1 -eT,,Co Z ~ • (A.2) 

r = l  

The integral of Eq. (A.1), because it involves an imaginary exponential as well as a 
complex s~ and complex TI is a contour integral in the complex-t-plane. However since 
the integrand is an analytic, entire function with a pole only at infinity, the integral may 
be treated as any real variable integration. Integrating term by term, the first two terms 
a r e  

r dt(so + sl e ~ ) e  ct-79y (1 - e -r~) + ( e  j°~r° - e-YY°). (A.3) °0 
Y 3 w + y  

Note tha t -cons i s ten t  with the first-order perturbation a pp r ox i ma t i on - t he  interspike 
period in the s~ integral has been replaced by To. Expanding the T~ portion of the 
exponential in the So term, 

s0 [1 - (1 - Tly + "" ")e-r°Y], (A.4) 
Y 

and again retaining only zero- and first-order terms results in the integrated value of Eq. 
(A.3): 

So (1 - e -r°y) + So T i e  -r°y + sl (e ¢°r° - e-r°Y). (A.5) 
y j,o + y  

Integration of the nonsummed feedback term is similar to the So integration and leads to 
the contributions 

f r k~'k e_To~) - k  d t  e -~T- t )~e  -tIck - -  - -  - -  I ( e - r ° : ~ - -  
o y r k  

(A.6) 
k 

+ T1 ~ (  e -T°/~k - yr~e-T°~). 
T~'~ - 1 

The summed feedback term has the following form (cf. Eq. [A.2]): 

[ l-e-J"~'r°11}'fdte-t/'e -'T-re' - h  _ exp - inTo + T ,  eTWgSi ] (A.7) 
m~0 JO " 

The TI exponential factor is expanded to yield 

- h ~  e-mro/~(1 T~ 1 - e  -Jmoro ) fo  r m=0 r e ~'°r° - 1 + 0 (7"1 ~) dt e -t/~ e -~r-m'. (A.8) 

Retaining only terms up to first order in T~ the summation is that of two geometric series: 
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e ~'°ro - i r e "~oTo - 1 m=o e m=0 (A.9) 
= _ h ( 1  T~ 1 ) 1 hT1 1 l 

"r e f°T° - -1  1 - - e  -T°/" 1" e '°T° - -1  -(!+jo, lT, ' 
1 - e  

and  the s u m m e d  feedback te rm,  Eq. (A.7), equals 

--  h ~  ~ [ e - T o t * - - e - T o T - -  T , ( ~ e - T o t T - - y e - T o Y ) l  
3,'r 1 1 -  

(AAO) 
T l h  1 ] . (¢~_ToI, r --  e_Tov)" 

+ T'r - 1 1 - e -Td* e -Jr°To - e T°t* '~ 

Next we add the in tegra ted  cont r ibut ions  (Eq. [A.5], [A.6], and  [A.10]) to Eq. (A.1) and  
subtract  f rom that equat ion the steady-state Eq. (I.7), thus: 

= Tlsoe-ToV + st  ~ r o  ) T lk  (e_To/r  ~ 0 jto + 'Y (e - e -T°T, ,  + 'yT k - -  1 - -  T ' rk  e -T°T)  

(A.11) 
Tth  e -r°l* --  77" e -T°y + Tth  1 1 (e_Tot,  _ e_Toy).  

+ yz - 1 1 - e -r0/* "rot - 1 1 - e -T°t* e -j°T° - e T°/* 

At this point  we note  that for 

] 1 1 Tt 
- -  - - -  + 0 ( T t 2 ) ,  ( A . 1 2 )  

= To + Tx To To ~ 

we make the identif icat ions 

and  

1 
fo = ~-  (A.13) 

1 0  

_ A ( A . 1 4 )  T , - - - - A T 0 2 =  - f T .  

T h e  gain and  phase curves are used pr imari ly  for the accurate de te rmina t ion  of  
parameters .  In  par t icular  the gain funct ion  at the h igher  f requencies  is a sensitive 
measure  of  T. We have fo u n d  that by choosing the appropr ia te ,  f r equency -dependen t  
normal iza t ion ,  one  can achieve a greater  spacing be tween curves der ived for two slightly 
d i f ferent  values of  T, thereby r educ ing  e r ro r  in measu remen t .  T h e  appropr ia te  factor 
has the funct ion of  f ixing the modu la t ion  wavelength so that it appears  to be i n d e p e n d e n t  
of  to. This  is equivalent  to normal iz ing  the impulse  f requency f0 such that a fixed n u m b e r  
of  spikes occurs in each per iod of  the sine wave for a given f0. Such a normal iza t ion  does 
change the shape of  the gain and  phase curves so that  the gain appears  to have a 
singulari ty at to = 2 IT f0. F rom the shape of  the gain funct ion  in the ne ighborhood  o f  this 
infini ty,  one  can then  make precise de te rmina t ions  o f  T. Al though  the f requency-  
d e p e n d e n t  normal iza t ion  factor applies directly to the t ransfer  func t ion ,  it may be 
in t roduced  by wri t ing a normal ized  pe r tu rba t ion  f requency f l  such that 

] - -  e-J,.~/lo 
f t -  -Jto/fo f l  . . . . . . .  lizea. (A.15) 

Subst i tu t ing (A.14) and  (A.15) for TI in Eq. (A.11), we solve f o r f d s l  which is the t ransfer  
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funct ion  0.17).  9 T o  extract  the gain and  phase  f rom this express ion  one  def ines  Gain = 
20 log [ll/sll, and calculates Phase = Arctan [Im (fdsl)/Re (fl/sl)] (cf. Results). 

With two s u m m e d  feedbacks the leaky in tegra to r  cha rg ing  curve  becomes  

= - yu + So + sl e j'ot - HI  - H2, (A.16) 

where  

H1 + H2 = hi ) ]  e -~tT' + h2 )-~ e -~t'z. (A.17) 
m~O m=0 

T h e  in tegra t ion  o f  the feedback te rms  is similar to that  o f  (A.8) and (A.9), and o f  the  
st imulus te rms  to (A.5), resul t ing  in 

51 
( e  J o t °  = e -~r*) + T1 so e -~r° - _y--~--Z~_ 1 e -~ 

Jto + Y ~=1 (A.18) 

+ ,=, y'r, ~ --  /~' "- 1 (e-rdr' -- ~/'r' e-'/r°)} = 0 ;  

analogous  to (A.11). In  (A.18) and the  fo l lowing we de f ine  

h~ (A. 19) 
/ ~ -  1 - e - T 0 / * , '  

and  

1 ~  - 1 ( A . 2 0 )  

- 

Again mak ing  the substi tutions (A.14) and (A.15) in Eq.  (A.18) leads to the t rans fe r  
funct ion for  two s u m m e d  feedbacks:  

f~ _ f 0  jto (1 - e °'~+~°) 1 (A.21) 
sl - sojto + y (1 - e ~'~/t°) O (1")) 

where  

D(fi) -= - l 
^ ^ 1 

y r l -  1 - (A.22) 

$0 y r l  - -  l 

In  o r d e r  to d e t e r m i n e  the two s u m m e d  feedbacks gain 1° 

f~l l _fo~o to [F(Y/f°)]v2 - C_dr_g__~_[~  j [D*.D] -1", (A.23) 

we must  calculate D*D (an asterisk [*] denotes  complex  conjugat ion) .  All to -dependence  is 
in the factors l~l o f  Eq.  (A.22) which we rewri te  

The transfer function H(to) is defined for a sinusoidal forcing function such thatf~ = H(to)sa e jolt*. 
The normalized f l  (Eq. [A. 15]) includes a muitiplicative factor, e -jott°, such that the ratiofJsa --- H(to) 
is in fact the transfer function. Its application is thus restricted to sinusoidal forcing functions. 
x0 As defined in Results, F(x) = e ~' + 1 - 2e x cos t0ff0. 

y ~  

So yI"2 - 1 



846 T H E  J O U R N A L  OF G E N E R A L  P H Y S I O L O G Y  " V O L U M E  6 9  • 1 9 7 7  

w h e r e  

D = a  + b h , + c l ~ 2 ,  (A.24) 

a - - = - l +  
So yr l  - 1 So T'r2 -- 1 ' 

(A.25) 

So y~', - I 
(A.26) 

Wi th  these  de f in i t ions  

D*D = a 2 + b 2 (~'1 (I, + c2~?ffi2 

C M - -  
So yz~ - 1 

+ ab (h ,  + (Ix*) + ac (1~2 + ~ )  + bc (fiT(~2 + l~,(l~), 

showing  the  type  o f  cross- ta lk e x p e c t e d  in the  t o - d e p e n d e n c e  o f  the  ga in .  
For  the  two s u m m e d  feedbacks  p h a s e  

phase  = A r c t a n  l m f l / s ,  
R e A / s l  ' 

we calculate  

Im f l / s ,  _ Im {j ( - j o J  + 7)(1 - e°~+v)ls°)(1 - e -J'~la) D*} 
R e f J s ,  Re  { j ( -  jto + y)(1 - e°~+'lto)(1 - e -J~/t°) D*} 

to [Im U" Re D* + Re U" Im D*] + y [Re U" Re D* - Im U" Im D*] 

w h e r e  

a n d  

to [Re U ' R e  D* - Im U ' I m  D*] - y [Re U . I m  D* + I m  U ' R e  D*] ' 

Re D* = a + 

(A.27) 

(A.28) 

( A . 2 9 )  

(A.30) 

Re U = (1 - e ~ls°) F (0)/2, (A.31) 

Im U = (1 - C/r0) sin to/f0, (A.32) 

b c [ be xl'~° ce 11"*r° ] 
F (1/z~f0) + V (1/Tzf0) I F  (1/~'~fo) + J ~ J  cos w/fo, (A.33) 

- [  be u'¢° cell,,so ] 
Ira D* = [ F  3 0 )  + F ~ J  sin to/f0. (A.34) 
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