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ABSTRACT Recognition of nonlinearities in the neuronal encoding of repetitive
spike trains has generated a number of models to explain this behavior. Here we
develop the mathematics and a set of tests for two such models: the leaky integrator
and the variable-y model. Both of these are nearly sufficient to explain the dynamic
behavior of a number of repetitively firing, sensory neurons. Model parameters can
be related to possible underlying basic mechanisms. Summed and nonsummed,
spike-locked negative feedback are examined in conjunction with the models.
Transfer functions are formulated to predict responses to steady state, steps, and
sinusoidally varying stimuli in which output data are the times of spike-train events
only. An electrical analog model for the leaky integrator is tested to verify predicted
responses. Curve fitting and parameter variation techniques are explored for the
purpose of extracting basic model parameters from spike train data. Sinusoidal
analysis of spike trains appear to be a very accurate method for determining spike-
locked feedback parameters, and it is to a large extent a model independent
method that may also be applied to neuronal responses.

INTRODUCTION

These papers are part of a series presented over the past several years in which
we have attempted to develop a quantitative model that is sufficient to explain
the observed repetitive firing behavior of certain sensory neurons (Purple and
Salasin, 1969; Poppele, 1970b; Purple, 1970; Rescigno et al., 1970; Poppele and
Purple, 1971; Poppele and Chen, 1972; Fohlmeister, 1973; Fohlmeister et al.,
1974a, b, ¢, 1975). The aim has been to find a mathematical model capable of
completely describing observed behavior, particularly the dynamic behavior,
and that can also serve as a basis for understanding underlying mechanisms. In
addition, we have sought the simplest model (i.e. the one with the least number
of parameters) that is consistent with this aim.

The approach has been to employ methods of system identification that are
based on spike train analysis. The advantages of the analysis are that it is
relatively noninvasive, allowing the system to operate normally, and that it gives
information about events occurring at the trigger zone where repetitive firing is
taking place. Much emphasis is placed on the use of cyclic stimuli which are a
natural means of exciting a system whose parameters vary periodically. Interac-
tions between the periodicities in encoder parameters and stimulus produce
patterns of output pulses that contain information about the dynamic properties
of encoder parameters (Rescigno et al., 1970; Fohlmeister et al., 1974q).
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Repetitive firing may be defined as the occurrence of a train of action
potentials in response to a constant current stimulus. Many sensory neurons are
capable of firing repetitively at very low rates, a property not shared in general
by the axon. It implies that some process, not described by Hodgkin-Huxley
types of models for the action potential, delays the occurrence of a spike to
prolong sufficiently the interspike interval. The search for a model adequate to
describe this behavior began when Adrian (1928) showed how a time-varying
threshold after a spike could account for a prolongation of the interspike
interval. Indeed many models involving threshold and/or membrane impedance
changes will qualitatively account for slow repetitive firing (e.g., Kernell, 1968;
Kernell and Sj6holm, 1972, 1973; Katz, 1939; Michaelis and Chaplain, 1973).
However, few of these models have been extensively tested quantitatively or
under dynamic conditions.

The study of encoder dynamics has been largely in terms of simplified models,
beginning with the analysis of the integrate-and-fire model of Knight (1969).
Although the steady-state input-output characteristics of this model are linear,
as is often the case for sensory neurons, its response to cyclic inputs was shown to
be quite different. By simply introducing a leak to the integrator, however, the
dynamics of the model response become similar to those observed for sensory
neurons (Stein and French, 1970; Poppele, 1970a; Knight, 1972). These dynam-
ics have been described for the response to sinusoidal inputs in terms of Bode
plots of gain and phase and they result from an entrainment interaction occur-
ring between the pacemaker rhythm of the encoder and the frequency of the
sinusoidal stimulus (Rescigno et al., 1970). The model parameter y [the relaxa-
tion rate, which is equal to (RC)™! of a leaky integrator analog] is uniquely
defined by the Bode plot and the rate of firing of the unmodulated encoder (f,).

It was then shown that the “y” of sensory neurons is not a constant, as in the
model, but is a variable which depends on the duration of the interspike interval,
in such a manner that

Y * fo,
(Poppele and Chen, 1972). Furthermore, it was shown that there were at least
two ways of determining the model y from pulse train analysis and the applica-
tion of these two techniques to sensory neurons gives two different values. These
experimental findings were reconciled with a third model, which is a further
generalization of the two described above.

In this model ¥y is a state variable that depends on time and membrane voltage
(Fohlmeister, 1973). The variable-y model accounted both for the experimental
observations outlined above, and for the observed ratio ¥/y, = 2 where ¥ and vy,
are the values of y obtained by the two measurement techniques (Fohlmeister et
al., 1974a). In addition, the model makes at least two predictions that are
supported by independent observations: (a) that membrane loading (corre-
sponding to y in the model) is large at the beginning of the interspike interval
after the spike, and then becomes small; and (b) that this parameter can be reset
by hyperpolarization.

Even though the correspondence between the variable-y model and sensory
neuron behavior is very close, there are certain systematic discrepancies particu-
larly for those neurons known to contain mechanisms that introduce spike-
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locked feedback to the encoding process. The interaction of pacemaker activity
and feedback has been explored previously for the linear integrator model both
by mathematical analysis (Knight, 1969) and analog simulation (Purple and
Salasin, 1969) and it was shown that the qualitative effect is a decrease in low
frequency gain whose time constant and magnitude depend on the parameters
of the feedback (see also Barbi et al., 1975, who consider feedback for the leaky
integrator model). Since this corresponded qualitatively to a discrepancy ob-
served between model and neuron we have proceeded, generally and quantita-
tively, to explore the effects of encoder feedback.

In this paper, we present a mathematical analysis of two kinds of spike-locked
feedback in the context of the leaky integrator model. With this model the
problem can be treated mathematically in closed form and the results of that
analysis also account quantitatively for the dynamic behavior of the variable-y
model with feedback (which can be analyzed only by numerical integration). In
addition, we compare the results of the mathematical analysis with the dynamic
behavior of an electrical analog of the leaky integrator. This allows us to
determine directly from Bode plot data the magnitude of the parameters used in
the analog. Thus, it is proposed that spike train analysis can be used not only to
determine the presence of encoder feedback, but also to determine the magni-
tude and time course of that feedback.

MATERIALS AND METHODS

Experiments were conducted on an electrical analog of the “leaky integrator” encoder
(French and Stein, 1970). The essential functional elements consist of an RC impedance
which integrates an applied current to produce an output voltage. As the voltage reaches
a threshold level, a pulse is produced and the integrator is reset. Two types of feedback
were incorporated into the analog: summed and nonsummed feedback. In both cases an
output pulse is inverted, shaped by a low pass filter, and added to the input current. In
the case of nonsummed feedback the signal resets the integrator to a given minimum
value while the summed feedback always changes the integrator value by a given amount.
The basic difference is that summed feedback can accumulate from one interval to the
next while nonsummed feedback cannot.

The analog device is driven by a current source that can be modulated to produce step
changes in current or sinusoidally modulated current at various modulation frequencies.
Output pulses are timed, along with synchronization pulses from the current modulator
by an on-line computer (IBM 1800 Data Acquisition and Control System, IBM Corp.,
White Plains, N. Y.).

One object of the experiments is to provide a check on the mathematical analysis of the
model which is based on a linearization of pulse train parameters using first order
perturbation theory (Knight, 1969). In this context, the problem we face with the
experimental data is to extract the modulation component from among the many carrier
and side-band components present in the spectrum of a frequency-modulated pulse
train. The problem has been discussed in previous work and there are, in fact, many ways
to solve it (e.g., Matthews and Stein, 1969; Knox, 1970; Poppele and Bowman, 1970;
Knight, 1972). One basic method is filtering, to isolate the modulation frequency. A
second is averaging, to suppress carrier and side-band components that have a random
phase with respect to the modulation (Bayly, 1968). The simplest application of these two
processes is the cycle histogram technique of estimating the probability density of impulse
occurrence in a single cycle of modulation. Filtering is accomplished in this method by
histogram binning; frequency components with periods shorter than two bin widths are
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filtered out as are frequency components lower than the single cycle chosen for the
averaging base. There are two problems in using this technique. One is that it requires a
large data sample. If we use harmonic distortion as an index of how well the modulation
component is isolated, then we find that this measure depends on the length of the
sample and on the depth of modulation (Knox, 1970). For small modulations of a regular
pulse train {f,/f, € 0.1, see glossary below), about 10,000 events must be averaged before a
distortion of the order of 5% can be expected when five harmonics are computed. This is
about a 10-fold improvement over what can be expected with a noisy pulse train (Knox,
1970), but it is still a rather large data sample. When larger modulation depths are used,
the convergence is faster only if the pulse train is generated by a linear integrator
(Knight, 1969). If the leaky integrator is used, there is a phase-locking between modula-
tion and carrier components so that these latter components can no longer be suppressed
by averaging (Rescigno et al., 1970; see also Fig. 1). The analysis technique we use can
overcome both of these problems.!

We use a binning technique similar to the cycle histogram, however, instead of merely
adding a count to a bin when a pulse occurs, the interval since the last pulse is measured
and that value is saved in a particular bin. The average interval for each bin is then
calculated and its reciprocal, the average “instantaneous frequency” is plotted as the value
for each bin (see Poppele and Bowman, 1970). Because frequency is determined by an
exact measure of interval length, it takes very few data points to give the desired answer.
Thus, with 100-200 pulses we can determine the modulation component with near zero
harmonic distortion. For large modulations, however, where there is a large difference
between maximum and minimum intervals, a phase distortion is introduced because of
the nonlinear relation between interval and frequency. In the example shown in Fig. 1,
where the modulation (f,/f;) was about 0.5, the distortion due to this effect was about 6%,
with resulting error in phase determination of the order of 1-2°. The technique has also
another disadvantage in that it is extremely sensitive to noise. One extra pulse added to
an otherwise smoothly modulated train can induce a large error in the estimate of the
modulation component. This is because that extra pulse can produce an extra-short
interval, represented in the reciprocal by a very high instantaneous frequency, thereby
distorting the average for some bin. If one used the histogram technique that extra pulse
would have the same weighting factor as all the other pulses in a particular bin and it
would therefore not greatly disturb the value for that bin.

Both of these problems (phase distortion and noise sensitivity) can be avoided by using
relatively low modulation depths (<0.3) and by selecting data to avoid noise. In that
domain the technique has the advantages of rapid analysis with short data samples and a
relative insensitivity to phase locking (Fig. 1). The latter property results because the
technique depends on filtering rather than averaging. The parameters of the filter are
determined by the interspike interval so that frequency components with periods shorter
than two interspike intervals are suppressed. Thus components occurring at the carrier
frequency, such as those illustrated in Fig. 1, are removed by filtering. This is equivalent
to choosing a bin width for the cycle histogram that is equal to the interspike interval. If
that technique were used we would introduce another problem for modulation frequen-
cies close to the pulse repetition rate of the pulse train, since there would be very few bins,

! It can be pointed out here that the most direct solution to this problem is to apply a Fourier analysis
directly to the pulse train. In general, this requires that all data points be saved, which can require a
large memory capacity and therefore become costly. With the histogram or binning techniques, it is
only necessary to provide storage to accommodate the number of bins used since the binning can be
done in real time. In addition the Fourier analysis based on equally spaced points over a cycle (e.g.,
Karmen and Boit, 1940) is in general faster than most Fourier analysis algorithms. Therefore, with
the binning and the fast Fourier transform the entire analysis can be conveniently accomplished on
line.
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although a certain minimum number of bins is required in order accurately to fit the
modulation. We have found that at least 11 binned points are needed in the determina-
tion of Fourier components to give the most accurate results. With five points, for
example, there is a systematic underestimation of amplitude of the order of 6%. Little if
any improvement in accuracy is achieved if more than 11 points are used. Therefore, with
the exception of the analysis plotted in Fig. 1, all analyses in these papers were made from
11-point determinations of the first 12 sine and cosine coefficients of the Fourier series
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Ficure 1. Methods of spike train analysis. Two model encoders, the linear
integrator and the leaky integrator (RC = 37 ms) were driven at 16 pulses/s and
modulated at 4 Hz to =5.3 pulses/s. Pulse train data were analyzed by cycle
histogram binning (below) and average interval binning (above). 37 bins were used
in each case. The interval plots have not been normalized for the zero-order hold
(see McKean et al., 1970) but calculations of amplitude and phase have been. For
the interval binning, 200 pulses were used in the analysis and the distortion did not
improve with larger samples. In order to obtain the same value of distortion with
cycle histogram analysis for the linear integrator, 6,000 pulses were required. With
the leaky integrator, the cycle histogram shows peaks corresponding to phase-
locked carrier components which could not be suppressed by averaging. Even so,
the Fourier analysis of this histogram gives accurate values of amplitude and phase.
The theoretical phase for the leaky integrator at this modulation frequency is 12.6°
and for the linear integrator it is 0°.

that best fits the 11 binned data points. The fundamental component is reported as
amplitude (|f;!, imp/s) or as gain, defined here as:

20 log,, Mll

and its phase with respect to the applied modulation is ¢.% The first five harmonics are

* In general we plot either a normalized gain for the purpose of matching the shapes of gain curves
or else we plot only the output, expressed in db. Thus K has the dimensions of imp/s and its value is 1
in the latter case, because the input is treated as an unknown for the purpose of curve fitting
experimental data to theory. It is done this way because the input in the theoretical equations is
proportional to, but not the same as the input used in the experiment, and we do not, in general,
know the proportionality constant.
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used to determine the harmonic distortion, which is the root mean square amplitude of
these components as a percent of the amplitude of the fundamental. Results of the
analysis are plotted as Bode plots in which gain and phase are plotted as functions of the
logarithm of the modulation frequency, w.

Computations of leaky integrator behavior were made on the IBM 1800 directly from
equations presented in the results. The variable-y model presented in Results is defined
by the following pair of coupled equations:

U= -yu +s,
v = —By + Du,
(Fohlmeister, 1973) supplemented with a specific initial condition for vy at the beginning
of each interspike interval (symbols defined below). Calculations of its behavior were
computed by numerical integration with the Continuous Systems Modeling Program of
IBM for the 1800. For details see Fohlmeister, 1973, and Fohlmeister et al., 1974a.

The symbols used for various functions and variables are largely drawn from previous
work (Knight, 1972; Fohlmeister, 1973) and are given here in a glossary for convenient
reference.

Symbols Units Meaning

A volts threshold

B seconds™* rate constant in variable-y model

C farad integrator capacitance (leaky integrator, also to-
tal cell capacitance)

D seconds~2-volt™! constant in variable-y model

fo impulse/second mean rate of output pulses

fi impulse/second change in rate about f; of a sinusoidally modu-
lated pulse train

fm Hertz, modulation frequency

g mho encoder membrane conductance

h volt/second magnitude of drive reduction introduced by
summed feedback

H volt/second instantaneous value of summed feedback

ip ampere mean level of input current

i ampere amplitude of sinusoidal current

k volt/second magnitude of drive reduction by nonsummed
feedback

R ohm integrator resistance

So volt/second mean level of drive

Sy volt/second amplitude of sinusoidal drive

T, second interspike interval in the absence of modulation

T, second perturbation of interspike interval due to modu-
lation

u volt voltage across RC integrator also membrane volt-
age

y second™! integrator rate constant—also state variable in
variable-y

¢ radians or degrees phase angle between input and output

@' radians arbitrary phase of input

T second time constant of summed feedback

¢ second time constant of frequency decay following step
stimulus

T« second time constant of nonsummed feedback

) radian/second modulation frequency
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Definitions

s =1/C

¥ = 1/RC (leaky integrator model)
vy = g/C (variable-y model)

@ = 27ufy

RESULTS

The results are presented in five parts. The first develops the leaky integrator as
a mathematical model which is the basis of the electrical analog whose properties
are described in parts 11 and I1I. Part IV deals with the sensitivity of the analysis
technique as a means of determining model parameters. In the final part we
compare the results of the analysis with the behavior of a more realistic model
for neuronal repetitive firing —the variable-y model.

1. The Model

The leaky integrator has been considered as a model for a neuronal encoder and
some of its properties have been presented in recent publications (Stein and
French, 1970; Knight, 1972; Poppele and Chen, 1972; Fohlmeister et al., 1974a).
In this section, we will extend those descriptions to include nonsummed and
summed feedback (see Materials and Methods) and present a mathematical
description of the steady state, transient, and modulated behavior of this device
(see also Barbi et al., 1975).

STEADY STATE Steady-state operation of the encoder is defined as that due
to a constant drive (denoted by s,) which evokes a train of pulses with constant
interval Ty. This behavior is expected both in the absence and in the presence of
feedback (asymptotically in the case of summed feedback). Ignoring feedback
for the moment, however, we will consider an encoder subject to drive s, that
produces a pulse when the time integral of the drive reaches a threshold voltage
A. Because of the non-zero encoder conductance, there are losses associated with
the integration process such that the drive at time { is effectively diminished at
the later time of integration ¢’ to the amount s, exp[—(¢t' — '}y]. To arrive at this
particular form, the magnitude of the loss is assumed to be proportional to the
potential u generated by the drive, and the leak parameter vy is introduced as the
proportionality constant (Fohlmeister et al., 1974a). This leads to the characteris-
tic exponential charging curve of the constant RC(= 1 /y) circuit whose voltage
time course under constant drive s, = #,/C is given by the equation

i0=;1{--u+C‘-Z—:i or so='yu+u,u5%. (1.1)
This equation integrates —between the limitsu = 0 (at¢f = 0) and u = A (att =
Ty)—to:

To
A= f so€~Tom07 gy, (1.2)
0
The integral leads to the following steady-state relation among A, T, and sq:

A=2(1 - e, (1.3)
y
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In the limit of the nonleaky integrator, y — 0, this relation reduces to:
A= SoTo.

(Knight, 1969, 1972). For purposes of this paper, threshold is assumed constant
(see Discussion).

FEEDBACK Inhibitory feedback is defined for the present as any effect
which satisfies these two conditions: that the effect is initiated by an action
potential occuring in a cell; and that the effect subtracts from the stimulus to that
cell. An electrogenic sodium pump in the slowly adapting stretch receptor of the
crayfish, and self-inhibition in the Limulus eccentric cell are the mechanisms for
feedback that are studied experimentally in the companion paper (Fohlmeister
et al., 1977). The feedback sums from impulse to impulse and declines almost
exponentially with time (Stevens, 1964; Solokove and Cooke, 1971).

In addition to summed feedback we treat here also a possible channel of
nonsummed feedback that could be a mechanism for producing an afterpoten-
tial for the leaky integrator which resembles that of the sensory neurons. For this
channel we denote the initial reduction in stimulus after an impulse by the
symbol k and its relaxation time constant by 7. The drive following each pulse
then becomes

S0 — k e_t/Tk, (14)

a function of time and of the time of occurrence of pulses. Any remaining
component of the effective reduction in drive at the end of an interpulse interval
is eradicated by the following pulse which again reduces the initial value of the
drive by the amount % to follow Eq. (I.4) in the subsequent interval. Therefore
such feedback will not contribute to adaptation after the second pulse.

Summed feedback, in contrast, adds any remaining component of its feedback
at the end of an interpulse interval to the pulse-initiated amount &, which decays
with a time constant 7. For the case of summed feedback, the term to be added to
so asymptotically takes the form:

So—> 5S¢ — h ( Z e‘mT°”) et =g, — H(¢). (1.5)
m=0
The infinite series is the summed residual effect of the feedback from an infinite
number of previous pulses.
The steady-state integral with both types of feedback becomes:

Ty oo
A= [so — ke ™ —h ( e‘"‘T"”) e UTle~To — V7 4t (1.6)
0 m=0
So long as the interpulse period T, is constant, the geometric series in the
summed term adds to (1 — e~7)"! and Eq. (1.6) integrates to

e—To/‘r —_ -l(ﬂ’ k
h T e_joﬁ — (e — ). (L)

')'_7__ 'Y_;

So
- —(1 —_ e‘To'Y) -—
Y
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In the limit of the nonleaky integrator (y = 0) and summed feedback only, this
reduces to the result of Knight (1969):

A= SoTo — hrt. (1.8)

TRANSIENT BEHAVIOR The two types of feedback have different effects on
the transient behavior of the encoder, such as that exhibited when a step change
in driving current is applied. Since the effect of nonsummed feedback is not
carried over from interval to interval, all intervals are identical for any given s,.
Summed feedback, on the other hand, will induce adaptive behavior due to the
accumulation of feedback. Succeeding intervals will be identical only when the
amount of feedback added by a pulse equals that removed by the end of each
interval.

As will be described later® the accumulated feedback H(?) in response to a step
change in drive to s, may be considered a differentiable function of time,
provided that H(t) is defined as the average of the instantaneous amount of
feedback over the interval at time ¢. Thus H(t), which has the dimensions of 4
(and therefore of the stimulus sy), will enter the charging equation of the leaky
integrator as

u=—yu+ s, — H(p. (1.9)

Anticipating results to be presented separately (see footnote 3) we are led to
the following relation between steady-state frequency and mean feedback:

H(®) = h7f(»), (I.10)

where the terms H(«) and f{») refer to the instantaneous summed feedback and
the instantaneous frequency at long times (steady state) after a step. Further, if
the frequency decay to f(®) is exponential with the time constant 7, (which is the
case for the leaky integrator, cf. Part I1I, analog-transient behavior):

SO = [10) — A=)] exp (—timy) + f(), (1.11)
then there results the following relation among 7, 7, and A:

_ ThA[f (=) -1
"= [1 + [so — H(®) — yA] [so — H(w)]] "

Thus, for the leaky integrator r,is a function of 5, for a given 7 and h and further
7, < 7 always.

From the transient response to a step stimulus one may further derive an
expression for 4 as a function of an early interspike interval length T, after the
step. If 7 is much greater than the sum of the first few intervals, the summed
feedback will not have decayed substantially by the time of the interval T,. Under
these conditions Eq. (I.6) with summed feedback only specializes to

(1.12)

T

A= dfsy— lh] exp(t ~ Ti}y,

(1}

3 J. F. Fohlmeister. Manuscript in preparation.
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which integrates to

—th
A=2—2(1 - e, (1.13)
Y
Rearranging leads to
1 Ay
b= —[ + ] 1.14
[lexp T -1 7% (49

where [ is the (small) integer of the number of the interval after the change in
drive from zero to s¢. Further, if y is small such that T, -y — 0, Eq. (1.14) becomes

1 A
h ; [So Tz]’ (1.15)
under this special condition. In both cases (1.14 and 1.15), different magnitudes
of h for a given 7 will result in different rates of adaptation.

SINUSOIDAL MODULATION With the steady-state problem solved in closed
form in Eq. (I1.7) we now turn to the more general case where the steady-state
drive is perturbed by a sinusoid of angular frequency w:

s(t) = 5o + 5, €7, (1.16)

A perturbation technique is employed to derive the transfer function. The
derivation, as well as definition of the notation which has appeared previously
(Barbi et al., 1975), is relegated to the Appendix.? The transfer function with
one channel each of summed and nonsummed feedback is given by

fi _fo Jw 1- evw)/fo[ K ]-1 w1
s s jo+y 1— ek elvlf — e=tith| ’ ’
where M and K are real and dimensionless, and have the form
1 _1
M l h e(" 7)/,[0 . T‘y k e(')’ 7&)/f° _ Tk'y I 18
=1+— + = , :
DU Tyl (119
1
h i e(y—;)/" -1
K= ~( ) . I.19
sp \el™ — 1 | ( )
The amplitude is given by
o] b __o__ [Folia) (1.20
51 S0 Vol + 2 F(0)
[ F(—1/tfo) }1/2
K2 + MPF(—1/7f,) + 2MK(cos w/f, — e V™),

4 Our derivation differs chiefly by the introduction into the. equations of multiple channels of
feedback, either summed or nonsummed, or both.
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where
F(x) = e®™ + 1 — 2e* cos o/fp. (1.21)

All feedback dependence in Eq. (1.20) is contained in the final factor.® In the
absence of summed feedback K = 0, the final factor reduces to M~'. Thus
nonsummed feedback alone does not alter the w dependence of the gain curve
for the leaky integrator with a given y although it does result in an overall shift.
In the absence of all feedback K = 0, M = 1; the final factor reduces to unity
leading to the no-feedback gain curve

Al _fi [F(Y/fo)]llz
$1 So m F(0) '

(Fohlmeister et al., 1974a, Eq. [1.1]).

Since F is symmetric about @ = 7f,, summed feedback contributes a factor to
the gain curve which is symmetric about a value halfway between v = 0 and
equal to the steady-state firing (angular) frequency 2af,. In addition for positive
h, 7, and vy, the feedback factor always enhances the gain in the middle (w = 7fg)
relative to the ends (w = 0, 2xf;). The infinity in the gain curve at @ = 2xf,
however, continues to dominate the finite values of the feedback factor as
depicted in the figures. The @ = 0 limit of the gain curve is

- Vfo
K‘i o {f% (e7 ~ -z +1M(1e_ et ° (1.22)
The phase curve, defined as
phase = Arctan %((%ii—;, (1.23)
is given by
phase = Arctan Z)IIZ]}\\,/T- :;ZZ, (1.24)
where
ReN = ReU-ReV — ImU - ImV, (I.25q)
ImN = ReU-ImV + ImU-ReV, (1.25b)
and where in turn
ReU = 1/2(1 — e")F(0), (1.264)
ImU = (1 — ") sin w/f,, (1.26 b)
ReV = M + K [cos w/fy — exp (—1/1f0))/F(—1/7f,), (I.26¢)
ImV = K sin (w/fo)/F(—1/1fo). (1.264)

® F(x), unlike M and K, is strongly dependent upon omega. Hence Eq. (1.20) is not strictly formatted
to separate the dependence on driving frequency from the dependence on fixed parameters, but
instead only separates feedback effects for algebraic convenience.



826 THE JOURNAL OF GENERAL PHYSIOLOGY ‘* VOLUME 69 - 1977

The variables M and K are those of Eq. (1.18) and (1.19). An important conse-
quence of this phase curve is that in the absence of summed feedback K = 0, the
phase is identical to the no-feedback case (Eq. (1.2) of Fohlmeister et al., 1974 4).
That is to say that nonsummed feedback alone has no effect on the phase. This is
an important point for resolving an ambiguity about the origin of afterpotentials
in repetitive spike trains (see part V below).

I1. Electrical Analog Behavior without Feedback

In the following sections the behavior of the model, as expressed in Eq. (1.8) and
(I.17) is compared with the behavior of an electrical analog. The analog is a
particular member of the general class described by the model where the loss in
the integrator is due to an RC impedance such that:
1
=—. I1.1
RC (IL.1)
STEADY-STATE BEHAVIOR The steady-state behavior of these encoders is
defined by the relation between steady-state drive (s,) and the resulting rate of
output pulses (f;). From Eq. (I.3):

fo= —v/ln<1 - 'i—:) (11.2)

where A is the threshold voltage (Knight, 1972, Eq. [5.5]). Therefore, the effect
of the drive on the pulse rate depends only on the leak so long as the threshold is
constant. Furthermore, there is a minimum effective drive:

Smin = Y4, (11.3)

since smaller drives do not overcome the leak and the voltage fails to reach
threshold. The relation expressed in Eq. (I1.2) is nonlinear, but it can be seen
from Fig. 2 (solid lines), which is a plot of Eq. (11.2) for five different values of vy,
that f; increases nearly linearly with s, over a range of values. This has special
significance for the results which will be presented below with sinusoidal modu-
lations. In deriving the dynamic relation between drive and pulse rate, it is
assumed that the drive is given a small perturbation about a particular steady-
state operating point. In general, the analysis works well for input excursions
which remain within a small neighborhood of the operating point, but of itself
the analysis has little predictive value for excursions which carry the solution
away from that neighborhood. However, the results presented below indicate
that even responses to relatively large excursions are accurately predicted by the
derived function (for an explanation of this, see Modulated Behavior, below, and
Knight, 1972).
Actually, however, there is no completely linear relation between f, and drive
except in the limit where y — 0. In this case:
lim sy = foA, (I1.4)
Yy—=>0
which is also the asymptotic relation between f, and drive for the leaky encoder
as so = %. Therefore, the change in f; for a given change in s, is always greater
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for the leaky case than for the nonleaky case; moreover, the greater the leak, the
steeper this slope (see Fig. 2). It follows then that for low modulation frequencies
(<fu/4) the absolute gain of the leaky encoder is likewise greater for larger values
of y and smallest when y — 0.

The behavior of the electrical analog was compared with the behavior pre-
dicted by Eq. (I1.2). The device has a threshold of 19.5 V, and the drive is
determined by the input current and capacitance of the RC. The RC was varied
stepwise between 15 ms and 220 ms by changing capacitors. In the analog
experiments, we were not able to obtain stable pulse rates down to zero imp/s as
suggested by the theoretical curves, undoubtedly due to the very steep slope as 54
> Smin Where minute changes in drive (as occur due to noise in the analog circuit)
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Ficure 2. Steady-state behavior of the leaky integrator. Pulse frequency vs. drive
(s0) in volts/second for five different settings of the leaky integrator analog (open
circles). Model calculations for the same parameters used in the analog are plotted
with solid lines. See text for further explanation.

represent large variations in fy. In practice, there is a minimum stable value of f,
for each RC setting. The dashed line drawn through these minimum stable
values in Fig. 2 shows that the region of instability is larger for smaller values of
RC (larger ).

Both Fig. 2 and Eq. (11.2) (cf. Knight, 1972, Eq. [5.5]) make evident that all the
response curves are simply different “magnifications” (with fixed point at the
origin) of a single “universal” curve.

In summary, the steady-state behavior shows that the leak of an integrating
encoder is a major factor in its performance. By varying the leak, a very wide
range of steady-state behavior can be obtained.

MODULATED BEHAVIOR The dynamic behavior of the encoder was deter-
mined by applying a sinusoidal drive of the form:

1
Sg + 51 €os (wt + @) =6[i0 + 4, cos (wt + )], (I1.5)
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where a steady-state current i, is sinusoidally varied by i; at f;, = o/20Hz. The
output function generated by this modulation is sinusoidal and to first order
equals

Jo + f1cos (@t + ¢'). (11.6)

The extraction of the output function from the pulse train data is discussed in
Materials and Methods.

Even with rather large sinusoidal modulations, the output function shows very
little distortion from a perfect sinusoid. Distortions are typically 1-4% at low
modulation frequencies and somewhat higher as f, — f;. Modulations can be
increased to nearly 100% (where fi/fy = 0.5) without significant increases in
distortion, and the result appeared to hold for all values of RC (15-220 ms)
tested. Perturbation theory is of no help in explaining why this is so. The
perturbation expansion will not converge under these conditions, and hence
does not apply. A partial answer lies in the method of analysis (binning), and in
the phase-locking properties of the system in the presence of noise (see Materials
and Methods). The question that remains is why does the output amplitude
remain proportional to |s,| when |s,] becomes relatively large. Here the rest of the
answer may lie in the nearly linear f, vs. s, steady-state relationship. However,
since no closed form expression exists when |s,| is large, all neuronal data for
these papers were taken with |s;| = 0.1 5, where perturbation theory applies.

The two gain and phase plots shown in Fig. 3 are a comparison between the
behavior of the analog (closed circles) and the behavior predicted by Eq. (1.17)
with M = 1 and K = 0 (solid lines). The output function in this case had a steady-
state value of 30.5 imp/s with an amplitude of 1.37 imp/s at 1 Hz. As the
modulation frequency is varied below 1 Hz, the phase shift is zero and the
amplitude is constant. However, as o increases toward 27f, the amplitude and
phase both increase, such that the amplitude reaches a maximum in the neigh-
borhood of f;, = f; and then decreases as w is increased further. The amplitude
passes through a minimum and approaches another maximum at 2f,. According
to the model equation, this behavior repeats at each integer multiple of f; since
the denominator term F(0) of Eq. (1.20) equals zero whenever w/f, = 27,1 =1, 2,
3, ..., leading to an infinite output amplitude at these values of fy,. An infinite
response of the mathematical model at these modulation frequencies corre-
sponds in the electrical analog to a nonsinusoidal response. In fact the analog
becomes phase locked, and a single pulse occurs always in the same phase
relative to the modulating sinusoid. Moreover, the analog may show this behav-
ior for a range of modulation frequencies in which f; is determined by w (see
Rescigno et al., 1971).6

Eq. (1.17) with M = 1 and K = 0 predicts: (a) that the output function f; is
directly proportional to the amplitude of the drive s, for any given o, f,, and v;
(b) if the modulation frequency is expressed as the ratio w/f, rather than just w,
the output function is determined by the ratio fy/y. Thus, so long as the ratio fy/y

8 Cycle histogram plots of 1:1 phase-locked encoder behavior show that all events occur in one bin
(probability density = 1) and that the probability density is zero elsewhere. Stein (1970) has shown
that for converting the probability density to rate, a value of 1 corresponds to 2f, imp/s rather than an
infinite rate.
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(or f; RC in the analog model) is held constant, the output behavior is invariant
with respect to w/fy. In the analog experiments, doubling the input did indeed
double the output. Fig. 4 illustrates that the analog behavior also agrees with
point (b) above. For a given f,, decreasing y produces a flatter amplitude
response (narrower resonance half-width) and slower initial increase in phase as
the modulation frequency is increased (cf. Knight, 1973 [Fig. 4], who also
predicted this narrower “half-width” effect). Similarly, with a given y, (RC = 45
ms in the figure) the same changes are observed as f, is increased.

In the limiting case where y — 0, which is equivalent to an electrical analog
with a non-leaky integrator (i.e. impedance is C only), the w dependence is lost
and the equation reduces to a simple proportionality between f and s. In this
case, the output has a constant amplitude and no phase shift (Knight, 1972).
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FiGure 3. A comparison between analog simulation and mathematical equation
(I1.17) for the dynamic behavior of the leaky integrator model without feedback.
The data points were obtained from the electrical analog and the solid lines are
calculated from Eq. (1.17). Model parameters were A = 19.5 V, RC = 10 ms, f, =
30.5 imp/s, and s,/sq = 0.00489 which were the same values used in solving the
equation.

I11. Analog Behavior with Feedback

STEADY STATE BEHAVIOR The steady state behavior with feedback can be
determined by solving Eq. (I1.7) for the drive as a function of fy:

1 h(e Ve — e=7ih) k

= —— | Ay + +
1 — e l: 1 1
e
Tk

So

(e Vrh _e—"/fd):l, (I11.1)

In the limit as y — 0, this becomes:
lim sy = fo[A + bt + k7 (1 — e V)], (I11.2)
=0

which approaches
so = fo (A + hr + kr)), (I11.3)
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for 7, fo < 1. If one compares these equations with Eq. (I1.4), one can see that
for a given set of magnitude and time constant parameters, the asymptotic slope
is always reduced by feedback, and it is reduced by a greater amount with
summed than with nonsummed feedback. The curves in Fig. 5 are plots of Eq.
(II1.1) for nonsummed feedback (Fig. 5 A) and for summed feedback (Fig. 5 B).
Both families of curves show the following features: (a) more drive is required to
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FIGURE 4. Dynamic behavior of the leaky integrator with different f, and RC.
Symbols are data points obtained from the electrical analog and solid lines are
calculations of gain and phase made from Eq. (I.19). Gain values are normalized to
0 db at 0.1 Hz and all values are plotted as a function of normalized modulation
frequency, w/(f,.

(+)fo = 36 imp/s, RC = 45 ms, y/f, = 0.62;
(A) fo = 17.5 imp/s, RC = 45 ms, y/f, = 1.27;
(O) fo = 30.5 imp/s, RC = 10 ms, y/f, = 3.28;

(@) fo = 13.8 imp/s, RC = 22 ms, y/f, = 3.29;
(D) fo = 6.8 imp/s, RC = 45 ms, y/f, = 3.27.

The same plots were obtained when s; was doubled. Thus, as predicted by Eq.
(1.17), the dynamics (shape of gain curve and phase) are independent of s, in these
normalized plots.

reach a given f, as feedback is added; (b) for small values of feedback time
constant (r <€ T, 7 = 25 ms is illustrated in Fig. 5), the effects of nonsummed and
summed feedback are similar; (¢) compared to the no-feedback case, feedback
produces a reduced early slope and lower minimum stable rate of pulse produc-
tion.

For both types of feedback the effect of varying separately the magnitude and
time constant has different effects on the steady-state behavior. In both cases,
increasing the time constants alone produces lower minimum stable pulse rates.
Further, the time constant of either type can be manipulated to obtain a nearly
linear relation between f; and 5o (with stable f, near zero), although nonsummed
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feedback can achieve this with less reduction of slope than can summed feedback
for any given magnitude k(=%).

TRANSIENT BEHAVIOR In response to a step current the analog with
summed feedback produces adaptive behavior with a pulse frequency declining
exponentially to an asymptotic value f(). In deriving Eq. (I.12) this empirical
observation was used as an underlying assumption.?

Fig. 6 shows a plot of pulse frequency f — f(®) vs. time (where f{®) = 24 imp/s).
In the logarithmic plot the solid line is a linear regression fit to the data points
and the dashed line is drawn according to the time constant, 7;, calculated from
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FicUure 5. Steady-state behavior of the leaky integrator with feedback. Symbols
are data points from the electrical analog and solid lines are calculations from Eq.
(I11.1). Model RC was 15 ms. A, Nonsummed feedback (left plot). (®) No feedback;
(O) increasing values of k with 7, = 25 ms; k = 1,200 V/s and 1, = 25 ms (O), 100 ms
(4), and 400 ms (A). B, Summed feedback (right plot). (®) No feedback; (O) in-
creasing values of & with 7 = 25 ms; (A) A = 250 V/s, and 7 = 100 ms; (A) k = 100
V/s and v = 400 ms.

Eq. (I.12) with the model parameters. The model parameters used were y = 66.7
sLA =195V, r =25s, and h/H () = 0.015. The data indicate a value for 7, of
0.778 s to be compared with the calculated 7, = 0.746 s. The agreement is well
within the errors of estimating 7 and A/H(*) which were determined directly
from measurements made from the oscilloscope face. However, they could also
have been estimated from the first three intervals after the step by using Eq.
(1.12) and (I.14) with the measured value of f(). With these equations we obtain
h/H (®) = 0.016 and from the measured 7, of 0.778 s we obtain 7 = 2.85 s.

Using Eq. (I.14) to determine & implies taking a small difference between the
two large numbers in brackets. This invariably leads to the possibility of large
errors in the determination of the value of £. Therefore the value so determined
was cross-checked with that resulting from the use of Eq. (I1.10).
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Thus it is possible, from the response to a step input, to obtain the parameters
of the summed feedback leading to the adaptation after the onset of that input.
It only requires that we know A and y. The threshold voltage (A) can be
determined for a neuron by measurement or estimate and the applicable value
of y from the modulated behavior (see Fohlmeister et al., 19744, and below).
MODULATED BEHAVIOR WITH FEEDBACK Nonsummed feedback alone,
while it alters steady-state behavior, decreases only the amplitude of the dynamic
response uniformly at all modulation frequencies, and it does not affect phase.
This behavior has been discussed in connection with the model after Eq. (1.19)
(cf. also Discussion).
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Figure 6. Transient behavior of the leaky integrator with summed feedback.
Symbols are data points obtained from the leaky integrator analog with RC = 15
ms, h/H(®) = 0.015,7 = 2.5, and f, = f () = 24 imp/s. The frequence [f(¢) — f()] =
[(intervals)~' — f()] is plotted vs. time in the upper plot, and log (f{(t) — f(«)) vs.
time in the lower plot. The solid line is computed by linear regression fit to data
points in the lower plot and replotted in the upper plot. The dashed line is
calculated from Eq. (I.12) by using the parameters of the analog.

Summed Feedback Alters Both Amplitude and Phase of the Encoder Response

At very low frequencies of modulation, summed feedback decreases the
response amplitude; it has less effect at modulation frequencies near f,/2
where the gain with summed feedback may either increase or decrease relative
to the no feedback gain. Summed feedback again decreases the response in the
neighborhood of f; and its multiples (see Fig. 7). The effect on phase is also
confined to modulation frequencies near zero, f;, and its multiples with zero
phase shift at half-odd integer multiples of f,. The effects of summed feedback
are the result of frequency-dependent alterations introduced by the feedback
term in Eq. (I.17). Since this term is a multiplicative factor to the equation
without feedback, the two terms will simply add in plots on a log scale. Like-
wise, the phase contribution of feedback will add to the phase without feed-
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back. The summation property of the gain is clearly seen in Fig. 9 (below),
where the feedback term is plotted as a dotted line and the equation without
feedback is the thin solid line. The heavy solid line, which represents the re-
sponse of the encoder with feedback, is also the sum of the other two curves
minus a constant (2.1 dB) which is the reduction in effective drive caused by the
feedback.
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FIGURE 7. Dynamic behavior of leaky integrator with summed feedback. Plots of

feedback term in Eq. (I.17) for various parameters RC, y, and & with f, = 20 imp/s.
A, RC = 15 ms, 7 = 100 ms, and & = 20 V/s (top curve in gain and low frequency
phase), 40 V/s, 80 V/s, and 160 V/s (bottom curves). B, RC = 15 ms, 4 -7 = 10 V with
7= 1.0 s (top curve in gain and lowest frequency peak in phase), 500 ms, 200 ms, 100
ms, and 50 ms (bottom gain curve and highest frequency peak in phase). C, 7 = 100
ms, k = 40 V/s, RC = 45 ms (top curve in gain and low frequency phase), 15 ms, 10
ms, and 7.5 ms (bottom curves). D, Same as B with a logarithmic frequency scale.

The effect of the k, 7, and y parameters on the encoder behavior is summa-
rized in Fig. 7. Parts A-C are plotted on a linear frequency scale to emphasize
that both the amplitude and phase of the feedback component are symmetrical,
about £4/2 (10 Hz in this case). All three factors affect the magnitude of the
feedback, while only 7 has a significant effect on the frequency response.
Increasing any of these parameters increases the ratio between maximum and
minimum of the feedback factor. However, y alone (C) reduces both maximum
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and minimum more than is achieved by increasing & alone (A). The effect of 7 on
the frequency response is shown in Fig. 7B and also in Fig. 7 D, which is a plot of
the same parameters on log frequency coordinates. The latter plot emphasizes
the low-frequency cut-off feature of summed feedback, and shows how the cut-
off varies with 7.

When both summed and nonsummed feedback are included together, it can
be seen from Eq. (1.17), (I1.18), and (I1.19) that the nonsummed part does enter
into terms that affect dynamics. This is illustrated in Fig. 8. The solid curves are
gain and phase with summed feedback alone (h =s,, = 0.013 V/s, andr = 0.8 s).
When nonsummed feedback is added, the gain and phase become the dashed
curves. The values of k and 7, chosen for this example correspond to the
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Ficure 8. Dynamic behavior of leaky integrator with summed and nonsummed
feedback together. Curves are plotted from Eq. (I1.17). Solid curves: RC = 27 ms, 4
= 0.013 V/s, s, = 0.013 V/s, f, = 20 imp/s, A = 5 mV, and # = 0. Dashed curves,
same parameters except# = 1.0 V/s and 7, = 6.5 ms. The solid curves are also plots
of the equation with 2 = 0.035 V/s,s, = 0.035 V/s,k = 1.0 V/s, and 7, = 6.5 ms. The
ratio A/s; = 1.0 determines the gain and phase independently of the presence of
nonsummed feedback for given f;, v, and A.

parameters which produce a neuron-like after hyperpolarization in the potential
trajectory (see also Fig. 13). However, by increasing both k and s, (such thath =5,
= 0.035 V/s) the gain and phase revert to the solid curves. Therefore, although
nonsummed feedback alone has no effect on gain or phase, it alters the effect of
summed feedback when it occurs together with it. That effect is entirely on the
magnitude A but not on the ratio h/fs,. Therefore, although the transfer function
contains only the ratio h/s,, it can be seen from this example that the ratio A/s,
becomes an important parameter in determining gain and phase as we have
defined them.

IV. Curve Fitting and Parameter Variation

The model presented here serves as a basis for exploring the behavior and
mechanisms of repetitively firing neurons. Therefore we will attempt to corre-
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late the model behavior with the responses of these neurons by specifying a set of
parameters which prodiice a describing function that most closely matches the
neuronal data. To do so requires that we have some idea about how sensitive the
model equations are to variation of parameters. We explored the problem by
testing our ability to fit data generated by the electrical analog using only the
data obtained with a sinusoidal drive. As noted above, the transient behavior
provides an additional independent measure of some of the parameters when
summed feedback is present.

Four variables of the electrical analog were fixed as: RC = 48.4 = 10% ms, A =
19.5 V, r = 450 ms, f, = 12.4 imp/s. Ratios were used in setting the other
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FIGURE 9. Dynamic behavior of leaky integrator with summed feedback. The
symbols are data points obtained from the electrical analog with A = 19.5 V, RC =
48 ms, f, = 12.41imp/s, h/s; = 0.0361, and s,/s, = 0.052. The heavy solid line is a plot
of Eq. (I.17) using parameters determined by a parameter variation fit to the
experimental data (see text). The thin lines are plots of Eq. (I.17) (with no feedback)

for the same model. The dashed line is a plot of the feedback terms only in Eq.
(1.20).

parameters, such that: A/s, = 31.8 ms, s,/so = 0.052, and A/s, = 0.0361. Amplitude
and phase data (14 points) were then taken approximately equally spaced (log
scale) over a range of modulation frequencies between 0.05 Hz and 11.8 Hz (Fig.
9, closed circles). Using this data as the unknown, a simplex method of variation
of parameters (Nelder and Mead, 1964) was used to find the set of parameters
which gave the best root mean square fit of the experimental data to the
amplitude and phase equations. Although the parameter space proved to have
many local minima, it was always possible to find a best fit by adopting an
appropriate strategy.” In this example, the experimental data were fit to =0.08

7 Since we were testing a model with summed feedback only, we excluded any consideration of
nonsummed feedback. Even with the remaining six parameters (Eq. [I.17]) it was not possible to let
all six vary simultaneously and obtain a best fit. However, we could let two or three vary at a time and
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imp/s in amplitude-and *1.05° in phase (Fig. 9, heavy solid line). The parame-

ters which give this fit were: RC = 53.5 ms, 7 = 428.4 ms, A/s, = 33.5 ms, s1/s50 =
0.068, and A/s, = 0.0377.

All the examples we tried were not equally successful since the ability of the
technique to provide the correct parameters depended on the values of the
parameters themselves (due to the exponential terms containing them), and on
the range and accuracy of the data available. We found, for example, that we
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Ficure 10. Parameter determination of y of the leaky integrator from the gain
curve. 16 data points obtained for modulation frequencies between f,/2 and fy were
subject to a variation of parameters fit to Eq. (1.20) for f, = 15 imp/s and |fi| = 3
imp/s. Ordinate is the ratio of the acutal RC used to generate the data to the RC
determined from the fit when the RMS error between data and equation is a given
fraction of the modulation |f}| (abscissa). The dashed vertical line is drawn at 0.3
imp/s (this example) or 10% of the modulation amplitude. The curves below the
horizontal dashed line are the locus of points obtained when the variation of
parameters routine converges from values less than RC and the upper portions of
the curves are obtained when it converges from larger values.

had better success in specifying y if it was large since the solutions were
insensitive to changes in y when it was small. Fig. 10 illustrates the parameter
sensitivity of the amplitude to variations in y about three nominal values y = 133
s,y = 307!, and y = 10 s™'. The variation of y which produces a significant
error is smallest for 1/y = 7.5 ms and very large for 1/y = 100 ms. Thus, when

attempt to fit certain critical parts of the amplitude and phase curves. For example, using the result
that h does not greatly affect the amplitude near fo/2, we started by assuming h = r = 0, and tried to
fit the amplitude in the range 0.5 f; — 0.9 f, by varying RC and s,. The feedback parameters were
then obtained by finding a best fit to the phase. Finally, the parameters were tested on the total gain
and phase data.
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the leak is small, data can be fit equally well with equations describing the
encoder with no leak, whereas for large leaks the value of y must be specified
very precisely in order to fit data to the model.

This example gives an indication of the range of parameter sensitivity fory. A
similar dependency on parameter value was also found for r and 7. However, it
is not our purpose to provide here an exhaustive study of this problem, but
rather to give warning of its complexity and to state that there seems to be no
general method for parameter specification that will yield satisfactory results in
all cases.

V. Comparison of Leaky Integrator and Variable-y Models with Feedback

LOADING As we have shown previously (Fohlmeister et al., 19744), the
leaky integrator fails to explain many features of the dynamic behavior of
sensory neurons. We have presented a model based on a time- and voltage-
dependent y which reconciles those differences. Here it is shown that the
alteration in gain and phase produced by feedback in the leaky integrator are
also produced in the variable-y model. In fact the gain curves for these two
models are identical. This identity allows us to define a 4 of the variable-y model
for the conditions of each Bode plot. The y is defined to equal the leaky
integrator y used in generating the same gain curve. This is a useful tool because
the determination of ¥ is independent of the value of threshold as well as the
shape and nature (i.e. summed feedback or not) of the drive.

The phase curves of the leaky integrator and variable-y models correspond
only in the low frequency range (modulation frequencies <fy/4). In this fre-
quency range the phase curve is in fact model independent and zero in the
absence of summed feedback. In the presence of summed negative feedback the
low frequency phase becomes non-zero and positive, but the resulting shape
remains model independent (Fig. 11). The magnitudes of the shift however
become equal only if the gain curves are first superimposed —i.e. only if ¥ is first
made to match the leaky integrator y. This implies that the low frequency phase
is a measure of the “average” loading, but not of the functional details of the
load.

STEADY-STATE BEHAVIOR OF VARIABLE-y WITH FEEDBACK It has been
pointed out that the steady-state f, vs. i, behavior of sensory cells such as the
crayfish stretch receptor is very linear and that these cells are capable of steady-
state firing rates at very low frequency (<1 imp/s) (e.g., Terzuolo and Washizu,
1962). The leaky integrator even with summed feedback does not mimic this
behavior very well. The variable-y, however, does give a nearly proportional f,
vs. so behavior (Fig. 12). This is due to the fact that for each f; there is a different
v such that y/fy = constant. Rewriting Eq. (I1.2) in the form

" )
ln(l - 7—) = —3/f (v.1)
So
leads to

74

= V.2
L= exp (~7/f) V2

So
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upon taking the exponential of both sides. With y approximately proportional to
Jo this results in
sy = constant- f,. (V.3)

This property continues to hold in the presence of summed feedback. The total

10 J
8 s} /./
O -
[U]
/'/ ~
-5F 90 g
R
S ELpW
—w————'\._. % ° g
ox
o
02 04 1 2 4 10 20

MODULATION FREQUENCY (Hz)

Figure 11. Dynamic behavior of the variable-y model with summed feedback
compared to the leaky integrator. The points are values computed for the variable-
v model withA = 8mV,B =0.2s57!,D = 0.00015572-V~', 5 (0) = 0.35s7* (giving a
value of 1/y = 27 ms; see Fohlmeister et al., 19744), 2 = 0.02 V/s,5, = 0.02 V/s. 7 =
0.8 s, s = 0.64 and therefore f; = 20 imp/s. The solid curves are drawn from a
solution of Eq (1.17) with A = 8 mV, 1/y = 27 ms, h = 0.0076 V/s, 7 = 0.8s,s, =
0.0076, s, = 0.4711 and f, = 20 imp/s. The A/s, ratio, 7, and y are the same for the
two models.

30t

201

imp/s

n "

02 04 06 Vis

Ficure 12. Steady-state behavior of the variable-y model. Open circles are for the
same model parameters used in Fig. 11 without feedback and the closed circles are
with summed feedback.

amount of summed feedback effect H subtracts from the applied stimulus s, (Eq.
[1.9]). In the steady state, H(%) is always proportional to f, (Eq. [1.10]). Mathe-
matically, these two statements imply that s, is to be replaced by s, — H(®)
everywhere it appears in Eq. (V.1), (V.2), and (V.3). It follows that Eq. (V.3)
retains its form in the presence of feedback with the value of the constant
increased by the added amount k7.

INTERSPIKE VOLTAGE TRAJECTORIES One of the attractive aspects of the
variable-y model is that interspike voltage trajectories are similar to what is
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observed intracellularly in sensory neurons. In particular there is an afterpoten-
tial after each spike followed by a near linear rise to threshold. In the variable-y
model this is the result of a time-varying membrane load that initially drives the
voltage toward the potassium equilibrium potential. But it is clear that a similar
potential trajectory could also be generated by nonsummed feedback with
appropriate choice of k and ;.. This is shown in Fig. 13. The dashed potential
curve was generated by the variable-y model and the solid curve by the leaky
integrator with & = 1.0 V/s and 7, = 0.0065 s. The gain and phase curves for

10 20 30 40 50
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o
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MODULATION FREQUENCY (HZ2)

Ficure 13. Comparison of the variable-y model with the leaky integrator with
nonsummed feedback. Upper plot shows the voltage trajectory of the variable-y
model for the parameters used in Fig. 11 (dashed curve) and of the leaky integrator
model with RC = 27 ms, k = 1.0 V/s, 7, = 6.5 ms, and f, = 20 imp/s. Bode plot shows
the gain and phase computed for the two models; solid line; leaky integrator (Eq.
[1.17]) and points, variable-y model.

these models are plotted below. Notice that the gain curves are identical,
indicating that the average loading is the same for the two models. In the one
case, however, the trajectory shape is due to effective changes in the stimulus
and in the other to changes in loading. To decide which of the two mechanisms
is responsible for the trajectory we refer to the phase data which show that when
a particular voltage trajectory is caused by time-dependent changes in drive, the
phase is identical to the phase of the leaky integrator. This is entirely consistent
with our earlier observation that the phase curve is particularly sensitive to the
precise membrane loading in the interspike interval. Therefore we caution that
models which attempt to fit only voltage trajectories may not be sufficient to
account for the dynamic behavior of the encoder.
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DISCUSSION

The principal results of this paper are: (a) a verification of the mathematical
analysis of the leaky integrator model using an electrical analog with known
parameters; and (b) the demonstration that the parameters of summed feedback
can be determined from Bode data for the leaky integrator and for the more
general variable-y model.

The first result gives confidence in the use of the small perturbation technique
used in the mathematical derivation of the gain and phase equations and also
confirms the appropriateness and accuracy of the interval binning technique
used to handle experimental data.

The second result bears directly on the problem posed in the companion
paper (Fohlmeister et al., 1977): the determination of feedback parameters in
two sensory neurons. We showed that it is possible to determine accurately a
number of model parameters for the leaky integrator model from the gain and
phase. Specifically, the model value of y can be determined from the gain data to
within less than =10% for values of 33 s or greater (see Fig. 10), and this
includes the range of values of y found for sensory neurons (Fohlmeister et al.,
1974 a; 1977). Furthermore, such determination is independent of the presence
of feedback. When feedback is present it is additionally possible to determine the
parameters of summed feedback but not of the nonsummed variety, since only
summed feedback has an effect on the dynamics. Steady-state behavior can only
suggest a contribution by feedback and cannot at present be used reliably to
determine its parameters.

As long as it is possible to determine a ¥ from the gain curve produced by a
particular encoder, the results of the analysis with both summed and non-
summed feedback operating together as well as those with the variable-y model
suggest that it is always possible to determine the ratio k/s, and the time constant
7 from the gain and phase. For instance, when the ¥ for the variable-y equals y
for the leaky integrator, the low-frequency gain and phases are identical in the
two models when the same values of h/s, and 7 are used (Fig. 11). So even if one
questions the appropriateness of the variable-y as a relatively accurate neuron
model, there is some basis for confidence in the determination of neuronal
feedback from a sinusoidal analysis because that determination appears to be
model independent.

Even though it is the ratio h/s, that appears in the transfer function (Eq.
[1.17]), the results show that the dynamic behavior of |f;| for a given f, varies with
the parameter |s,|, the magnitude of the sinusoidal component of encoder drive.
Thus, in order to know the magnitude of encoder feedback 4, it is necessary to
know also the magnitude of drive effective at the encoder site. With that
information, then, it is possible to determine both the magnitude and the time
constant of summed feedback for an encoder from spike train analysis by using
the leaky integrator model as a basis for the determination.

As for the nonsummed feedback, it does not seem that its presence can be
established in a general or model-independent sense. In the context of the leaky
integrator it may be identified and evaluated by comparing the value of appar-
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ent RC from the steady behavior with the y determined from the gain curve; a
discrepancy may indicate the presence of a nonsummed effect. In this context,
we have shown that such nonsummed effects can produce charging curves in the
interspike interval that are similar to those observed in many repetitively firing
neurons. By using a large k and small 7, the voltage trajectory exhibits an
afterhyperpolarization even with a constant RC load and a constant stimulus s,
because the drive now becomes s, — k exp (—t/r;) after each spike (Fig. 13). A
dynamic analysis of this system, however, yields a phase curve identical with the
no-feedback case (¢ = 0) which differs substantially from the w-dependence of
sensory neurons which exhibit an afterhyperpolarization (Fohlmeister et al.,
1974a). This result, of course, does not preclude the existence of a nonsummed
feedback effect; it does, however, support the need for a variable load in order
to mimic the dynamic behavior of certain neurons and it is therefore unlikely
that nonsummed feedback in the drive is responsible for the shape of the
charging curve in those cases.

In the steady state and in the transient equations, threshold potential A
appears explicitly. Further, in the derivation of the modulated behavior, inte-
grals appear whose value depends on threshold. In these derivations we implied
that A is a fixed number. The assumption of a fixed threshold is probably
justified for the steady-state case and fairly accurate for the modulated case,
since the encoder is assumed to have been operating with a stimulus near a
constant value s, for an indefinitely long time. Thus, since the interspike
intervals are all nearly identical, the neuronal encoder is presumably experienc-
ing nearly the same threshold at the time of each impulse occurrence. For the
transient behavior A may not be constant and the relative significance of any
threshold increase must be evaluated with each individual situation. Effects that
threshold variations can introduce into encoder dynamics are considered in
detail elsewhere (see footnote 3).

The appendix contains the derivation of two transfer functions—both with
two channels of feedback. The first contains one channel of summed and one
channel of nonsummed feedback. The second contains two channels of summed
feedback for comparison with the sensory neurons (studied in Fohlmeister et al.,
1977) which appear to operate with two such mechanisms that have widely
different decay times. In each channel the feedback effect increases by a fixed
amount (& or k) in response to an impulse, followed by a relaxation of the effect
which is approximated by an exponential decay. The possibility of a delay
between the spike and the onset of feedback is not considered here. This
problem has been discussed by Ratliff et al. (1969) and by Purple and Salasin
(1969).

The model studies illustrate two important points pertaining to information
processing in the leaky encoder. While requiring a greater drive than the
nonleaky integrator, the leaky encoder also confers a greater, absolute, static
gain (sensitivity in terms of impulses/s/As,) which may, over certain ranges of
drive, be linearized by the presence of feedback (Fig. 5). Second, the phase-
locking properties of these models cause the dynamic sensitivity (frequency
response) to increase as the input frequencies w approach the mean rate of firing
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Jfo? With regard to the first point one might speculate that the linearized,
enhanced gain requires fewer signal channels to carry a given signal/noise level
to the next neurons in a circuit. On the second point, encoder frequency
enhancement could be a mechanism utilized by the nervous system to achieve
enhanced sensitivity to certain time-varying changes in the environment. Other
possible utilities relating to phase locking, re-entrant patterns, and stability with
respect to noise have been discussed by Stein (1970), Stein and French (1970),
Knight (1972), and Rescigno et al. (1970). Such nonlinear behavior, as exhibited
by the leaky encoders, suggests that the encoder process in a neuron is an
important mechanism in the further integration and processing of information
within the repetitively firing nerve cell.

APPENDIX

In the course of the Results we make extensive reference to the effects of summed and
nonsummed feedback on the dynamic properties of impulse encoding. For the purposes
of these papers we derive here two transfer functions. Both derivations utilize first-order
perturbation theory within the context of the leaky integrator. For the first we assume
simultaneously one channel of summed and one channel of nonsummed feedback.

Second, we derive the transfer function with two simultaneous summed feedback
channels in order to have an expression of channel crosstalk for these dynamically
important feedbacks.

The complex number notation in the sinusoidally perturbed stimulus s(f) = s + 5, exp
(jwt), (Eq. [1.16]), allows both amplitude (gain) and relative phase shift to be computed in
compact form. The constant s, is in general complex, its argument giving the arbitrary
phase of the stimulus sinusoid at the lower limit, ¢t = 0, of the integral for A (Eq. [L.6]),
that is, at the beginning of the interspike interval.

Including the perturbation term s; in the integral Eq. (1.6) now renders closed-form
mathematics intractable. The approximation used to bypass this difficulty is to assume all
perturbation terms (that is terms with subscript 1) to be a small fraction, =20% of the
steady-state values (subscript 0), of the corresponding variables. This approximation can
always be satisfied experimentally by an appropriately “small” choice of the magnitude
[s1]. With this approximation, terms involving products of two or more factors of the
perturbing quantities may be neglected in comparison with terms containing only one
such factor. This procedure, known as first-order perturbation theory, is eminently
adequate for the identification and determination of feedback parameters as shown
below. The function so derived contains full transfer information, provided that it is
compared with experiments utilizing a sinusoidal perturbing stimulus of sufficiently
“small” amplitude (see Discussion).

The integral, Eq. (1.6), including the sinusoidal perturbation of Eq. (1.16), now takes
the form:

T oo
A= f dt e T-0s, + 5,9t — ke Uik —}, 2 e-GomaTasom (A1)
0 m=0
The interpulse period is generalized to T = T, + T,, with T, the (complex) perturbation in
period.
To calculate the factor T(m, @, T,), which is the time interval between the occurrence of
8 For a single neuron this obtains by choosing the appropriate o-dependent normalization, Eq. (A-

13). In treating a large population of neurons, the normalization is implicit (Knight, 1972). This
results in the so-called resonance behavior.
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the mth pulse before that at ¢ = 0, and time ¢ = 0, we need to determine the behavior of
the T, term as a function of time (cf. also Knight, 1969). The magnitude and phase of T
depends on the magnitude and phase of s5,. Further, since s, varies sinusoidally, the T,
perturbation term will also vary periodically in time with the same frequency w. There-
fore, the perturbation term of m periods before the present integration interval takes the
form Tie~#™*T°. The T, in the exponent, in place of a more general T, is consistent with
the first-order perturbation approximation.

The summed feedback term in Eq. (A.1) contains an infinite series —the total feedback
from an infinite number of previous pulses remaining at ¢ = 0. From the discussion in the
previous paragraph the factor Tim, w, T,) becomes

1 — eimaTo

m
Tim, w, T,) = mTy + T, 2, e = mT, + T, (A.9)
r=1

ejmTo . 1
The integral of Eq. (A.l), because it involves an imaginary exponential as well as a
complex s; and complex T is a contour integral in the complex-t-plane. However since
the integrand is an analytic, entire function with a pole only at infinity, the integral may
be treated as any real variable integration. Integrating term by term, the first two terms
are

5
joty

T
f dt(so + 5, €3)et-D7 = ~;_0(1 ~—e ™+ (e79To — e=7Tv). (A.3)
0

Note that—consistent with the first-order perturbation approximation —the interspike
period in the s, integral has been replaced by T,. Expanding the T, portion of the
exponential in the s, term,

;~°[1 — (1~ Ty + e ], (A.4)
and again retaining only zero- and first-order terms results in the integrated value of Eq.
(A.3):

S5y
jo +y

';_0(1 — e T) 4 5, Tye T + (€0 — g-To), (A.5)

Integration of the nonsummed feedback term is similar to the s, integration and leads to
the contributions

kr

T
~k J’ dt e~ T Vet = __ _k_( e~ Toe— e=To%)
0 yri— 1
Y (A.6)
+ Tl y___.Tk — 1_( e—Tn/'r,, —_ .y,rke—To’r)_
The summed feedback term has the following form (cf. Eq. [A.2]):
S 1—edmoro} [} (7
~h mzo exp {—[mTo + 7T, —em—o—_——l—:l ;}jo dt et~ T, (A7)
The T, exponential factor is expanded to yield
ks _ e—imoT T
-k Eo e—mTolt (1 _ T;l_ leT’wTeo_:Tf +0 (le)) fo dt e-tI" e~T-07, (A.8)

Retaining only terms up to first order in T, the summation is that of two geometric series:
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©

ke ' —m( L+ ju)T,
_,z(l_Tl._l__ﬁe_W_f_»L I TR0

T el — 1) a2, 7 elfo— 125 (A.9)
=_h(1__T_l 1 ) 1 AT, 1 1
TN~ 1/1-¢eT 1 elh—] —(—+jw)7‘., ’
l1—¢e 7
and the summed feedback term, Eq. (A.7), equals
_ ._}_ll'_ ____1._ [e—Tolr - e—ToY _ Tl (l e—To/‘r -y e-T.,y)]
yr— 11— e T T
(A.10)

T:h 1 1
vr — 11— Pl e—ijo — eTor

(e7Tolm — e Tw),

Next we add the integrated contributions (Eq. [A.5], [A.6], and [A.10]) to Eq. (A.1) and
subtract from that equation the steady-state Eq. (I.7), thus:

0 = Tys,e”To¥ +jw S_:_ 5 (e¥eTo — e‘m) + 'y_-r%é—l (e Tofk — yr, e~ To7) R
Th e™ —yre™  Th 1 L eror — e (40
yr—1 1= eTo Ty — 11~ eTol7 g 3olo — Tl € e™™).
At this point we note that for
%=T0iT1=TLO_%‘;_2+0(Tg), (A.12)
we make the identifications
f=7 (A1)
and
T,=-~fiT¢= - I (A.14)

fot

The gain and phase curves are used primarily for the accurate determination of
parameters. In particular the gain function at the higher frequencies is a sensitive
measure of y. We have found that by choosing the appropriate, frequency-dependent
normalization, one can achieve a greater spacing between curves derived for two slightly
different values of vy, thereby reducing error in measurement. The appropriate factor
has the function of fixing the modulation wavelength so that it appears to be independent
of w. This is equivalent to normalizing the impulse frequency f, such that a fixed number
of spikes occurs in each period of the sine wave for a given f,. Such a normalization does
change the shape of the gain and phase curves so that the gain appears to have a
singularity at = 2 7 f;. From the shape of the gain function in the neighborhood of this
infinity, one can then make precise determinations of y. Although the frequency-
dependent normalization factor applies directly to the transfer function, it may be
introduced by writing a normalized perturbation frequency f; such that

] — e~duin

h= "k
Substituting (A.14) and (A.15) for T, in Eq. (A.11), we solve for fy/s; which is the transfer

flunnormalized. (A . 15)
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function (I1.17).2 To extract the gain and phase from this expression one defines Gain =
20 log |fi/s.], and calculates Phase = Arctan [Im (fi/s,)/Re (fi/5:)] (cf. Results).
With two summed feedbacks the leaky integrator charging curve becomes

u=—yu+s,+s e —-H —H,, (A.16)
where

Hy+ Hy=hy 2 et 4 hy X et (A.17)
m=0 m=0

The integration of the feedback terms is similar to that of (A.8) and (A.9), and of the
stimulus terms to (A.5), resulting in

2 A Y
—SL_ (efoTo = e~To) + T, {so P N T 1 (e—ro/r. - e—yr.,)

— 2 ~—
Jo Ty =1 YT 1 (A.18)
)
+ 2 : (e"o”f - Y7 e_”t')} =0;
=y — 1
analogous to (A.11). In (A.18) and the following we define
£ h
h = = o ei"T"“‘ , (A.19)
and
O, = _r (A.20)

Py

Again making the substitutions (A.14) and (A.15) in Eq. (A.18) leads to the transfer
function for two summed feedbacks:

fi o _jo_ (L= e ]

l—e_

51 sojw+y (1—eff) p (Q) (A.21)
where
' b ) - by Oy 1
by =1 B (G- e (b
1 (1 [ ) v7, — 1 <1 e ) (A22)

}; vy — 1 So v — 1

In order to determine the two summed feedbacks gain'®

f_i =f_o @ Fly/fo)|1e . D112
5 som[ F(O) ] [D* D] /, (A23)

we must calculate D*D (an asterisk [*] denotes complex conjugation). All w-dependence is
in the factors {}); of Eq. (A.22) which we rewrite

9 The transfer function H(w) is defined for a sinusoidal forcing function such that f, = H(w)s, e/,
The normalized f, (Eq. [A.15]) includes a multiplicative factor, e **, such that the ratio f,/s, = H(w)
is in fact the transfer function. Its application is thus restricted to sinusoidal forcing functions.

1 As defined in Results, F(x) = €= + 1 — 2e* cos w/fo.



846 THE JOURNAL OF GENERAL PHYSIOLOGY * VOLUME 69 - 1977

D=a+b,+cQ,y, (A.24)
where
1 1
~—|/f by ——|/f
) (05
a=-1+-L + =2 , (A.25)
So yr — 1 So yr2 — 1
(19
hAl 1—e¢ v
b= — S:—__——‘YTI — , (A.26)
(-9
ﬁz l1—e 2
cC= - ; —_’y;—l‘—‘ (A27)
With these definitions
D*D = a + B QO O, + 23, (A.28)

+ab (9 + 08 + ac (Q, + O + bc (O, + 0,08,

showing the type of cross-talk expected in the w-dependence of the gain.
For the two summed feedbacks phase

Imfi/s, (A.29)

hase = Arctan ,
P Refi/s

we calculate

Imfifs; _ Im{j(= jo + y)(1 = e®*7m)(1 — e#i%) D¥)

Refi/si  Re{j(-jo + y)(1 — eh)(1 — e~iolfe) D¥}

_ @[ImU-ReD* + Re U-Im D*] + y [Re U-Re D* — Im U~ Im D*] (430
w[ReU-ReD* —Im U-ImD*] ~ y[Re U-Im D* + Im U-Re D*]’

where
Re U = (1 - "% F (0)/2, (A.31)
ImU =(1 - e sinw/f, (A.32)

174 172t
ReD* = a+ s + pifers - E Gt (cf/rzfo)] cosw/f (A-39)
and

bel/’rlfo + ce””"l
F (Ui fo) F (1/7of0)
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