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Brain-inspired hardware designs realize neural principles in electronics to provide high-
performing, energy-efficient frameworks for artificial intelligence. The Neural Engineering
Framework (NEF) brings forth a theoretical framework for representing high-dimensional
mathematical constructs with spiking neurons to implement functional large-scale neural
networks. Here, we present OZ, a programable analog implementation of NEF-inspired
spiking neurons. OZ neurons can be dynamically programmed to feature varying high-
dimensional response curves with positive and negative encoders for a neuromorphic
distributed representation of normalized input data. Our hardware design demonstrates
full correspondence with NEF across firing rates, encoding vectors, and intercepts.
OZ neurons can be independently configured in real-time to allow efficient spanning
of a representation space, thus using fewer neurons and therefore less power for
neuromorphic data representation.

Keywords: neural engineering framework, spiking neural networks, neuromorphic electronics, neuromorphic
engineering, brain-inspired electronics

INTRODUCTION

Albeit artificial intelligence has emerged as the focal point for countless state-of-the-art
developments, in many ways, it is nullified when compared with biological intelligence, particularly
in terms of energy efficiency. For instance, the honeybee is capable of exceptional navigation while
possessing just under 1 million neurons and consuming only 10−3W of power. Comparably, an
autonomous car would need to utilize over a 103W of sensing and computing power, demonstrating
lamentable energetic efficiency decreased a millionfold (Liu et al., 2014). Consequentially, brain-
inspired hardware designs have been used in numerous applications, particularly in neuro-robotics
(Krichmar and Wagatsuma, 2011; Zaidel et al., 2021) and smart-edge devices (Krestinskaya et al.,
2019; Zhang et al., 2020). In neuromorphic computing architectures, the computational principles
of biological neural circuits are utilized to design artificial neural systems. A neuromorphic circuit
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comprises densely connected, physically implemented
computing elements (e.g., silicon neurons), which
communicate with spikes (Tsur and Rivlin-Etzion, 2020).
Notable neuromorphic hardware includes the TrueNorth
(DeBole et al., 2019), developed by IBM research, the Loihi
(Davies et al., 2018), developed by Intel Labs, the NeuroGrid
(Benjamin et al., 2014), developed at Stanford University, and
the SpiNNaker (Furber et al., 2014), developed at the University
of Manchester. One theoretical framework, which allows for
efficient data encoding and decoding with spiking neurons,
is the Neural Engineering Framework (NEF) (Eliasmith and
Anderson, 2003). NEF is one of the most utilized theoretical
frameworks in neuromorphic computing. It was adopted for
various neuromorphic tasks, ranging from neuro-robotics
(DeWolf et al., 2020) to high-level cognition (Eliasmith et al.,
2012). It was compiled to work on multiple neuromorphic
hardware using Nengo, a Python-based “neural compiler,” which
translates high-level descriptions to low-level neural models
(Bekolay et al., 2014). NEF was shown to be incredibly versatile,
as a version of it was compiled on each of the neuromorphic
hardware designs listed earlier (Mundy et al., 2015; Boahen, 2017;
Fischl et al., 2018; Lin et al., 2018), although they do not follow
the same paradigm of neuromorphic implementation. Although
the Loihi, the TrueNorth, and the Spinnaker are pure digital
systems, in the sense that both computing and communication
are held digitally, the NeuroGrid is a mixed analog–digital circuit.
In the Neurogrid, synaptic computations were implemented with
analog circuitry. Although these general-purpose computing
architectures adopted the digital realm for better adherence
with application programming and ease of fabrication, analog
implementation of synapses (such as the one implemented in
the NeuroGrid) is commonly found in analog neuromorphic
sensing and signal processing. Notably, some of the first and
most significant successes in neuromorphic architectures have
been in vision (Indiveri and Douglas, 2000) and sound (Liu and
Delbruck, 2010) processing.

NEF-inspired neurons were previously directly implemented
in both digital and analog circuitry. For example, NEF-inspired
neurons were implemented on a digital Field-Programmable
Gate Array (FPGA)-circuit and used for pattern recognition
(Wang et al., 2017). However, it is not clear if such
implementations can approximate the density, energy efficiency,
and resilience of large-scale neuromorphic systems (Indiveri
et al., 2011). Current analog implementations of NEF-inspired
neurons rely on the circuit fabrication’s stochasticity to constitute
the variational activity patterns required to span a representation
space. The activity pattern of these neurons cannot be
modulated or programmed, and therefore, using them for
precise representation of a mathematical construct—even in low
dimension—requires a large number of neurons and, hence,
has suboptimal energy consumption (see section “Discussion”
for further details) (Mayr et al., 2014; Boahen, 2017). Here,
we present OZ, a programable, analog implementation of NEF-
inspired spiking neuron. OZ utilizes several of the most well-
known building blocks for analog spiking neurons to provide a
design with a programable high-dimensional response curve and
a temporally integrated output.

MATERIALS AND METHODS

Circuit Simulations and Analysis
All circuit simulations in this study were executed using LTspice,
offered by Analog Devices (2008). The simulator is based
on the open-sourced SPICE framework (Nagel and Pederson,
1973), which utilizes the numerical Newton–Raphson method to
analyze non-linear systems (Nichols et al., 1994). Signal analysis
was performed using the Python scripts we developed. Curve and
surface fittings were performed using MATLAB’s curve fitting
toolbox. Simulation files are available upon request.

Distributed Neuronal Representation
With Neural Engineering Framework
Let a be a representation, or a function, of a stimulus x using
a = f (x). With NEF, high-level network specifications, given
in terms of vectors and functions, are transformed to a set,
or an ensemble, of spiking neurons. A neural representation
will therefore take the form of a = G (J (x)), where G is a
spiking neuron model [e.g., the leaky-integrate-and-fire (LIF)
model (Burkitt, 2006)] and J is the integrated inputs introduced
to the neuron. NEF uses a distributed neuron representation,
where each neuron i responds independently to x, resulting
in ai = Gi (Ji (x)). One possible modeling for J would be
J = αxJbias, where α is a gain term and Jbias is a fixed
background current. Neurons often have some preferred stimuli
e (preferred direction, or encoder) to which they respond with
a high frequency of spikes [e.g., direction selectivity in retinal
ganglion cells (Ankri et al., 2020)]. J will therefore be more
appropriately defined using: J = αx · eJbias, where x · e equals 1
when both x and e are in the same direction, and 0 when they are
opposing each other. To conclude, in NEF, a neuron firing rate δi
is defined using:

δi (x) = Gi[αieixJi
bias
] (1)

An ensemble of neurons in which each neuron has a gain
and preferred direction distributively represents a vectorized (or
high-dimensional) stimulus x. The represented stimuli x̂ can be
decoded using:

x̂ =
∑

i

ai ∗ hdi (2)

Where di is a linear decoder, which was optimized to reproduce
x using least squared optimization and a∗i h is a spiking activity
ai, convolved with a filter h (both are functions of time). NEF
is described in detail in Eliasmith and Anderson (2003) and
succinctly reviewed in Stewart and Eliasmith (2014). NEF is the
foundation upon which our neuron model is built. Particularly,
it is utilized here to represent a high-dimensional stimulus with
spiking neurons distributively.

Analog Building Blocks
In a seminal review by Indiveri et al. (2011) “Neuromorphic
silicon neuron circuits,” the fundamental building blocks of
analog neurons were described. Among them were (1) the

Frontiers in Neuroscience | www.frontiersin.org 2 February 2021 | Volume 15 | Article 627221

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-15-627221 February 16, 2021 Time: 19:17 # 3

Hazan and Ezra Tsur NEF-Inspired Spiking Neuron

FIGURE 1 | Neuron building blocks. (A) Pulse current source synapse. This voltage-controlled current source is activated by an active-low input spike, producing a
current, which follows the input voltage pattern and dynamic. (B) Subthreshold first-order LPF circuit. This circuit provides temporal control of both charging and
discharging of a capacitor, allowing for temporal integration of incoming spikes. (C) Voltage-amplifier LIF neuron. This spike generating circuit provides precise
control of the generated spikes, including spikes’ rise time, width, fall time, and refractory period. (D) Signal traces for the current-source synapse. When spike
arrives (synapse is activated-low; Vin), current Isyn is proportionally generated. This synapse offers magnitude control where Isyn is proportionally correlated to Vw.
(E) Signal traces for the log-domain integrator synapse. Log-domain integrator synapse features a linear integration of incoming spikes, where ahead of saturation,
each spike equally contributes to Isyn. (F) Signal traces for the voltage-amplifier LIF neuron. Neuron is driven by Iin, which was generated by the subthreshold
first-order LPF circuit (described earlier). Circuit has two voltage inverters: first inverter Iinv1 drives current INA, and second inverter Iinv2 drives the IK currents. These
currents adhere to the behavior of biological neurons, providing precise control of spikes’ dynamic.

pulse current source synaptic circuit, (2) the subthreshold first-
order LPF circuit, and (3) the voltage-amplifier LIF neuron
(Figures 1A–C). We will briefly revisit these circuits here, as they
constitute the OZ neuron’s main building blocks.

The pulse current-source synapse (Figure 1A), proposed by
Mead (1989), was one of the first artificial synapse circuits
created. It is a voltage-controlled current source, which is driven
by an active-low input spike. The resulting current Isyn is
defined using:

Isyn = Ioe−
κ

UT
(VW−Vdd) (3)

Where Vdd is the supply voltage, Io is the leakage current of the
transistor Mw, which is activated in the subthreshold regime, κ

is the subthreshold slope factor and UT is a thermal voltage (at

room temperature, it is approximately 26 mV). This circuit allows
for controlling the magnitude of Isyn such that when Vw equals
Vdd, Isyn is I0. As we decrease Vw, I0 is scaled up exponentially,
increasing Isyn accordingly (Figure 1D). While offering control
over Isyn’s magnitude, the pulse current-source synapse does not
provide temporal modulation.

The subthreshold first-order LPF circuit (Figure 1B),
proposed by Merolla and Boahen (2004), offers linear integration
of incoming spikes. This circuit is built upon the charge and
discharge synapse [described in Bartolozzi and Indiveri (2007)],
which provides temporal control of charging and discharging of
Csyn. In the charge and discharge synapses, the incoming active-
high spikes activate the transistor Min. During a spike, Vsyn
decreases linearly, at a rate set by the net current Iw − Iτ , where
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FIGURE 2 | An illustration of four OZ neurons grouped into two branches, one with positive and the other with negative encoders. Each branch initiates with an input
preprocessing module, and each neuron comprises a spike generation and temporal integration modules. Each neuron has different tuning, and it is therefore
producing spikes in a different dynamic.

Iw is the current driven through transistor Mw (and regulated
by Vw) and Iτ is the current driven through transistor Mτ (and
regulated by Vτ). This net current is responsible for discharging
Csyn. The linearly decreasing Vsyn drives Isyn by regulating
transistor Mout . In this log-domain circuit, the logarithmic
relationship between the transistor’sVgs and its current is used to
exhibit overall linear properties [see (Indiveri et al., 2011) for a
detailed analysis]. The governing equations of this synapse during
a spike Ispike

syn and between spikes Iflat
syn are:

Ispike
syn =

I0

Iτ

(
1− e−

(t−t−i )
τc

)
I−syne−

(t−t−i )

τc (4)

Iflat
syn = Isyne−

(t−t+i )

τd (5)

where t−i and ti are the times at which spike i arrives and
terminates, respectively, I−syn and Isyn are the Isyn in times t−i and
ti, respectively, τc is the time constant for the capacitor charge,
which equals UT = C/κ (Iw − Iτ), and τd is the time constant for
the capacitor-discharge, which equals UT = C/κIτ. Controlling
the charge and discharge of Csyn allows for temporal control of
both rise and fall times of Vsyn, thus providing the ability to
temporally integrate multiple incoming spikes (Figure 2E).

The voltage-amplifier LIF neuron is a spike generating circuit
proposed by van Schaik (2001) and Figure 1C. This circuit
enhances the classic axon-hillock neuron design [described in

Mead (1989)] with precise control of the generated spikes’
dynamic, including spikes’ rise time, width, fall time, and
refractory period. Capacitor Cmem models the neuron membrane
and Vlk, which regulates the conductance of transistor Mlk,
controls its leakage current Ilk. In the absence of an input current
from incoming spikes (flat phase), Ilk drives the membrane
voltage Vmem down to 0 V. When an input current is apparent,
the net incoming current Iin − Ilk is charging Cmem, increasing
Vmem. When Vmem exceeds Vth, an action potential is generated
via an operational amplifier (op-amp). This action potential is
introduced into a voltage inverter, where high logical states are
transformed into low logical states and vice versa. A low logical
voltage state activates transistor MNa, through which INa current
is driven, charging Cmem and creating a sustained high voltage
(constituting the spike). A second voltage inverter drives Ikup
through transistor Minv2, charging Ck, thus controlling spike’s
width. As Ck is charging, it activates transistor Mk, through which
Ik is driven. Ik discharges Cmem and when Vmem drops below Vth,
the amplifier’s output drops to a low state. In response, the first
voltage inverter’s output is driven high, deactivating transistor
MNa, thus terminating INa. The second inverter’s output voltage
is driven low, terminating Ikup and allowing Iref to discharge Ck.
As long as Iref is not strong enough to discharge Ck, the circuit
cannot be further stimulated by incoming current (assuming
Iin < Ik), constituting a refractory period. The generated spikes
are shown in Figure 1F. This process is a direct embodiment
of the biological behavior, in which an influx of sodium ions
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FIGURE 3 | OZ neuron analog design. (A) Preprocessing module for negatively encoded OZ neurons. Module inverses input voltage, aligns it to initiate at 0 V, and
reinverts and scales it to terminate at 3.3 V. (B) Neuron’s spike generator. Voltages from two weighted inputs are transformed into a proportional current, injected into
a modified voltage-amplifier LIF neuron. Neuron produces a spike train according to its response dynamic. Spike train is introduced into a temporal integration circuit.
(C) Eight OZ neurons, four of them are positively encoded (right), and four are negatively encoded (left). All neurons were stimulated with a linearly increasing voltage,
rising from –1 to 1 V. Each neuron was modulated with various values of Vlk to produce a spike train at a particular rate, starting from a specific input (intercept).

(Na+) and a delayed outflux of potassium ions (K+) govern the
initiation of an action potential.

RESULTS

Circuit Design
In our circuit design, stimulus x is introduced through
preprocessing modules to two branches, one connected to
positively encoded OZ neurons and the other to negatively
encoded OZ neurons. These preprocessing modules accept an
input voltage ranging from −1 to 1 V (corresponding to the
default input normalization scheme taken by NEF) and produce
an output voltage ranging from 0 to 3.3 V. Each OZ neuron is
comprised of two consecutive modules: a spike generator and

a temporal integrator. Each spike generator is characterized by
a tuning curve, modulated using control signals, thus realizing
Eq. 1. A generated spike train is introduced to a temporal
integrator, which integrates the incoming spikes, thus realizing
Eq. 2 and constituting a NEF-inspired neuron. The circuit
schematic for two negatively encoded and two positively encoded
neurons is shown in Figure 2. The negative preprocessing
circuit comprises two consecutive modules: the first one inverses
the voltage and aligns it to initiate at 0 V, and the second
reinverts and scales it so it will terminate at 3.3 V (circuit’sVdd)
(Figure 3A). The first module uses an op-amp based adder to
add 1 V to the input signal (aligning it to 0 V) and inverts
it according to Vo = − (VV−), where V and V− are the
op-amp’s input terminals. The resulted voltage is ranging from
0 to 2 V. The second module uses an inverter amplifier that
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scales its input voltage according to −Rfb/Rin, where Rfb is
the feedback resistor and Rin is the amplifier’s input terminal
resistor. Here, Rfb2 = 1.65 kOhm and Rin2 = 1 kOhm,
achieving a scaling factor of −1.65, which transform 2 to 3.3
V output. The positive preprocessing module resembles the
negative preprocessing module, with the addition of another
voltage inverter, which produces a similar waveform, initiating at
3.3 V and terminating at 0 V.

The OZ neuron is shown in Figure 3B. It is based on
modified versions of the pulse current source synaptic circuit
(for weighted input), the voltage-amplifier LIF neuron (for spike
generation), and the subthreshold first-order LPF circuit (for
temporal integration). The pulse-current source synapse is used
to convert an input voltage to a proportional current, introduced
into the spike generation circuit, and defined by Vw according
to Eq. 3. The voltage-amplifier LIF neuron’s response dynamic
is predominantly determined by the values of Ikup, Ikdn, INa,
and Iref and the leakage current Ilk (driven through transistor
Mlk), which are regulated, respectively, by of Vkup, Vkdn, VNa,
Vref , and Vlk via dedicated transistors. Therefore, this neuron
has five degrees of freedom (DOF): Vlk controls the discharge
rate of Cmem, Vref controls spikes’ refractory period, Vkup and
Vkdn control the fall time of the generated spikes, and VNa
controls the spikes’ rise time. Furthermore, its spiking dynamic
relies on an op-amp, which is comprised of multiple transistors
and resistors. OZ’s spike generator is a NEF-optimized circuit
design, where Vup, VNa, and Vkdn are redundant. Furthermore,
it does not rely on op-amp for spike generation, as the amplifier
has no significant functional effect in terms of neuron’s firing
rate and intercept (see section “Discussion”). A NEF-tailored
design should also enable high-dimensional input representation,
which can be achieved by concatenating the input module
(highlighted in Figure 3B as weighted input; see section “Circuit
Analysis”). Finally, temporal integration can be achieved via a
simplified LPF temporal integration circuit. In OZ, capacitor
Cint is charged by current Iint , which is activated by the
generated spike train and driven through transistor Mint . Cint
is discharging at a constant rate through a leakage current,
which is driven through transistor Mint2 and regulated by a
continuously held voltage Vint . The voltage on Cint constitutes
the OZ neuron’s output.

A useful way of representing a neuron’s response to varying
inputs is by using a response, or a tuning curve, which is one
of the most fundamental concepts of NEF. In NEF, a tuning
curve is defined using an intercept, the value for which the
neuron starts to produce spikes at a high rate, and its maximal
firing rate. OZ’s tuning curve can be programmed to control
both. For circuit analysis, we built eight OZ neurons, four
with positive and four with negative encoders. Each neuron
has d + 2 DOF, where d is the dimensionality of the input,
corresponding to d values of Vw, which regulate each input
dimension, and Vlk and Vref correspond to the two other
DOF. To demonstrate OZ, we built eight neurons; each was
defined to feature a different intercept and maximal firing
rate. Each neuron was stimulated with the same input voltage,
which linearly increased from −1 to 1 V over 1 s. Results are
shown in Figure 3C.

Circuit Analysis
Architectural Design
For the sake of discussion, we will consider one-dimensional (1D)
OZ neurons. First, we shall consider the classic voltage-amplifier
LIF neuron, shown in Figure 1C. This design relies on an op-
amp for spike generation. From a functional perspective, the
op-amp provides the neuron with a digital attribute, splitting the
neuron into an analog pre-op-amp circuit and a digital post-op-
amp circuit. Particularly, when an incoming current is inducing
Vmem to exceed a predefined threshold voltage, the op-amp yields
a square signal, which generates a sharp INa response. This fast
response induces sharp swing-ups in Vmem and Vout . Without the
op-amp, this transition between states is gradual (Figures 4A–C).
Although both designs permit spike generation, the op-amp-
based design can generate spikes in a higher frequency and
amplitude. To compensate for that, we can discard both INa and
Ikup controls through the removal of their regulating transistors.
Removing these resistance-inducing transistors maximizes INa
and Ikup, thus achieving op-amp-like frequency and amplitude
(Figures 4D–F). Moreover, without the op-amp, there is no need
to explicitly define a threshold, providing a more straightforward
and biologically plausible design.

Neuron Control
Did we lose control over the maximal firing rate over our neuron
by eliminating the regulation of Ikup? Fortunately, both Ikup and
Iref impact neuron’s firing rate. Although Ikup limits neuron’s
firing rate by governing the rise time of the generated spikes,
Iref does that by setting the refractory period between spikes.
Controlling both currents is redundant as both imply similar
constraints, as shown in Figure 4G (Vlk and Vw are held constant
at 2.2 and 0.5 V, respectively).

Vlk controls the discharge rate of Cmem by regulating a leakage
current through transistor Mlk. As long as this leakage current
is lower than the input current (driven through the weighted
input module), Vmem will rise toward saturation. As we decrease
Vlk, leakage current drops and Cmem charged faster. As a result,
the neuron’s intercept (the input value for which the neuron’s
initiate spikes at a high rate) increases for positively encoded
neurons and decreases for negatively encoded neurons. Neurons
exhibit maximal firing rate when their input voltage is either
−1 or 1 V, depending on the neuron’s encodings. The maximal
firing rate is proportionally dependent on the charging status of
membrane capacitance Cmem. The faster Cmem is charging, the
more frequent the neuron will emit spikes. However, a neuron’s
maximal firing rate is not entirely decoupled from its intercept.
Although a neuron’s intercept is controlled by Vlk, it can also be
modulated by Vw, which provides a magnitude control for the
input current. Therefore, although Vlk can be used to define the
neuron’s intercept, Vw can impose on it a firing rate constraint.
For example, the neuron’s spiking rate will not exceed 400 Hz,
when Vw is set to 2.2 V. Vlk and Vw imposed constraint on
neuron’s spiking rate is demonstrated in Figure 4H (Vref and Vup
are held constant at 3.3 and 1 V, respectively).

Figures 4I,J summarizes the control of the neuron’s intercept
and spiking rate using Vref and Vlk (whereas Vw was
held constant at 2.4V). Through curve and surface fittings
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FIGURE 4 | Circuit analysis. (A–C) Voltage traces for the subthreshold first-order LPF neuron circuit with and without op-amp for spike generation (colored orange
and blue, respectively). Traces for the voltages over Cmem, gate of MNa, and CK are shown in panels A–C, respectively. (D–F) Similar traced to panels A–C, where
the transistor-based controls of INa and Ikup were eliminated. (G) Neuron’s spike rate as a function of Vref and Vup. (H) Neuron’s spike rate as a function of Vw and
Vlk (I) Neuron’s intercept as a function of Vlk . (J) For a given intercept (determined by Vlk ), a neuron’s spiking rate can be determined by Vref . Vw was held constant at
2.4 V for both I and J panels.

(R2 > 0.98), neuron’s intercept Nint can be described with:

Nint(Vlk) = 5.611 · 10−3e6.911·Vlk − 0.8178 (6)

and neuron’s maximal firing rate NFR with:

NFR
(
Vref , Nint

)
= − 36180Vref 55Nint − 34.4Vref

266.3Vref Nint
(7)

In Figure 5, the tuning curves of our eight OZ neurons, along
with the tuning curves of eight simulated neurons, which were
computed directly with NEF, are demonstrated. The tuning
curves indicate varying intercepts and spiking rates, showcasing
the produced spike trains’ high predictability and the full
correspondence between our hardware design and NEF. In
Figures 5B,D, we compared 2D tuning curves. It was achieved
with OZ by concatenating two weighted inputs: x1and x2,
weighting them with Vw1 and Vw2, respectively. Results show
the high predictability of the neuron in response to a high-
dimensional stimulus.

DISCUSSION

Numerous digital and analog designs of spiking neurons
have been previously proposed. For example, Yang et al.
(2018b) proposed a biologically plausible, conductance-
based implementation of spiking neurons with an FPGA.
This design was used to simulate 1 million neurons by
utilizing six state-of-the-art FPGA chips simultaneously,
achieving biological plausibility and scale (Yang et al., 2018a).
Furthermore, it was shown to feature multicompartmental
neuron design, supporting the morphologically detailed
realization of neural networks (Yang et al., 2019). Biologically
plausible spiking neurons were also implemented in analog
circuits, featuring spike adaptation (Aamir et al., 2017).
Although incredibly versatile and highly configurable, these
designs were guided by a bottom–up approach, tailored to
reproduce biological behavior. However, to achieve function-
optimized neural networks (e.g., for neurorobotics or other
smart-edge devices), top–bottom modeling is more suitable
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FIGURE 5 | OZ and Nengo neuron tuning curves. (A) Tuning curves of eight 1D hardware-based OZ neurons. (B) Tuning curves of four 2D hardware-based OZ
neurons. (C) Tuning curves of eight NEF-based simulated neurons, directly computed with Nengo. (D) Four tunning curves of four 2D simulated neurons (D). In
panels A,C, each color stands for one neuron spiking at a specific rate in response to an input voltage (x1). In OZ-based 2D representation, Vw for x1 was held
constant at 2.5 V, Vref at 0.4 V, and Vlk at 0.729. Vw values for x2 were 3.3, 2.8, 2.6, and 2.4 V, left to right, respectively.

(Eliasmith and Trujillo, 2014). By throwing out morphological
and physiological constraints, the NEF allows top–down
optimization, with which high-level specification can be realized
in spiking neurons with a minimal number of explicitly defined
neuronal characteristics.

NEF is one of the most utilized theoretical frameworks in
neuromorphic computing. A version of NEF was compiled
on various neuromorphic digital systems, such as Intel’s Loihi
and IBM’s TrueNorth (Fischl et al., 2018; Lin et al., 2018),
as well as on hybrid analog/digital systems such as the
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FIGURE 6 | Neurons activity in high dimension. (A) In 32D representation, a uniform distribution of intercepts (left) creates many neurons, which are either always or
never active (right). (B) Using a rational distribution of intercepts (using Eq. 7), a uniform activity pattern of neurons across the representation space can be generated.

NeuroGrid (Boahen, 2017). NEF-inspired neurons were directly
implemented in both digital (Wang et al., 2017) and analog
(Indiveri et al., 2011) circuitry. Although digital NEF-inspired
implementations are versatile and programmable, they are
fundamentally less energy-efficient and footprint-restricted in
comparison with analog circuitry (Amara et al., 2006). Current
analog implementations of NEF-inspired neurons rely on the
inherent stochasticity in the fabrication process of integrated
circuits to create the variational neurons’ tuning required to span
a representation space (Mayr et al., 2014; Boahen, 2017) or to
support machine learning (Tripathi et al., 2019).

Neurons in NEF represent mathematical constructs, and their
accuracy of that representation is fundamentally limited to the
neurons’ tuning curves. A tunning curve is defined using an
intercept and maximal spike rate. Intercepts represent the part
of the representation space for which the neuron will fire. In
1D, uniformly distributed intercepts will uniformly span the
representation space. A neuron with an intercept of 0 will be
active for 50% of that space, and a neuron with an intercept of
0.75 will be active for only 7.5% of that space. However, using
randomly distributed tuning curves would require many more
neurons to achieve adequate space spanning. When an input does
not invoke a neuron to spike, that neuron is essentially a waste of
space and energy.

Moreover, as we advance toward representing values in higher
dimensions, articulating and carefully defining neurons’ tuning
curves become a critical design factor. This design factor was
attested by the authors of Mayr et al. (2014), as they discussed
their analog implementation of a NEF-inspired neuron: “as
the spread of the curves is determined by random effects of
the manufacturing process, individual instances of the ADC
[the designated application for that design] have to be checked
for sufficient spread, thus defining a yield in terms of ADC
resolution. When comparing the two families of tuning curves,
the main observation is that the Nengo generated neurons tend
to vary more, especially in their gain. . . this has a significant
impact on the overall computation. If the neurons do not
encode for sufficiently different features of the input signal, the
representation of the input signal degrades” (Mayr et al., 2014).

Moreover, our proposed implementation offers a high-
dimensional representation. Distributing intercepts uniformly
between −1 and 1 makes sense for 1D ensembles. Because a
neuron’s intercept defines the part of the representation space
in which this neuron is firing, in 1D representation, uniformly
distributed intercepts create a uniform spanning of that space. In
higher dimensions, the proportions of activity are getting smaller
(or larger for negatively encoded neurons). In high dimensions,
the naive distribution of intercepts results in many neurons,
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either rarely producing spikes or always active (Figure 6A). In
both cases, these neurons are essentially not contributing to the
representation. A representation space in 2D is a 3D sphere, in
which each neuron’s encoder points to a cap, which specifies the
space in which that neuron is active (Gosmann and Eliasmith,
2016). The intercept is the location of the cap’s cutoff plane.
The ratio between the cap’s and the sphere’s volumes is the
percentage of the representation space in which a neuron is active.
A generalized sphere in a higher dimension is a hyper-sphere. The
volume of a hyper-sphere cap vcap is defined with:

vcap =
1
2

CdrdI2rh−h2/r2

(
d + 1

2
,

1
2

)
(8)

where Cd is the volume of a unit hypersphere of dimension d
and radius r, h is the cap’s height, and Ix(a, b) is the regularized
incomplete beta function. Here, r = 1 (representation is in
[−1, 1]), and h = x− 1, where x is the intercept. The ratio p
between the hypersphere’s volume Cd and its cap’s volume vcap is:

p =
1
2

I1−x2

(
d + 1

2
,

1
2

)
(9)

To more efficiently span in high-dimensional representation
space, we can use the inverse of Eq. 6 to derive a desired p value,
the intercept, which will create it. This equation is defined with:

x =

√
1− I−1

2p

(
d + 1

2
,

1
2

)
(10)

With Eq. 7, we can generate the intersects to better span the
representation space. Utilizing this equation can provide the
intersects distribution for which the spikes activity pattern is
uniform (Figure 6B). This is a clear example of the importance
of being able to modulate neuron’s tuning curves in high-
dimensional representation. The importance of the discussion
earlier was recently highlighted in DeWolf et al. (2020) in the
context of neuro-robotics.

Here, we presented the OZ neuron—a programmable analog
implementation of a spiking neuron, which can have its
tuning curve explicitly defined. With our system design, for

a uniform distribution of tuning curves (required in most
low-dimensional applications), only one among the positive
and negative branches has to be defined, cutting in half the
number of neurons, which have to be controlled. Because we
can design the neurons’ tuning curve to accurately span the
representation space following a particular application’s needs,
the required number of neurons for spanning that space can
be significantly reduced. Moreover, uniquely, neurons’ tuning
curves can be changed in real-time to provide dynamically
modulated neuromorphic representation. However, when the
required number of neurons is large, the apparent overhead
of control must be considered. Our design can be scaled to
a full very large-scale integration neuromorphic circuit design,
providing analog, distributed, and energy-efficient neuromorphic
representation of high-dimensional mathematical constructs.
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