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Abstract: We present observations from a laboratory-controlled study on the impacts of extreme
wetting and drying on a wetland soil microbiome. Our approach was to experimentally challenge
the soil microbiome to understand impacts on anaerobic carbon cycling processes as the system
transitions from dryness to saturation and vice-versa. Specifically, we tested for impacts on stress
responses related to shifts from wet to drought conditions. We used a combination of high-resolution
data for small organic chemical compounds (metabolites) and biological (community structure based
on 16S rRNA gene sequencing) features. Using a robust correlation-independent data approach,
we further tested the predictive power of soil metabolites for the presence or absence of taxa. Here,
we demonstrate that taking an untargeted, multidimensional data approach to the interpretation of
metabolomics has the potential to indicate the causative pathways selecting for the observed bacterial
community structure in soils.

Keywords: 16S rRNA gene; soil metabolomics; random forest classification; wetland microbiome

1. Introduction

Hydrologic fluctuations are a driving factor regulating wetland biogeochemical pro-
cesses, but controlled studies investigating the effect of rapid and extreme moisture regime
shifts on the soil microbiome, specifically on anaerobic carbon (C) cycling pathways, are
limited. The few studies on the impact of fluctuating precipitation regimes (extreme wetting
and drying) on the soil microbiome have been carried out on upland systems either by
characterizing microbial community composition shifts [1–5], or by identifying correla-
tive associations between the microbial community and metabolite data [6,7]. The latter
correlations are useful for describing, predicting, and managing functional traits of the
microbiome [8] and can inform new hypotheses regarding microbe-dependent ecosystem
processes [9,10]. For example, we know that there are direct links between soil redox condi-
tions and the soil microbiome that impact biogeochemical functions including greenhouse
gas production, iron reduction, and C-sequestration potentials [11–14]. Still, metrics such
as correlations are limited in detecting linear associations. To uncover causal relationships,
statistical approaches free of the assumption of linear relationships, as is commonly seen in
multidimensional microbiome datasets from soil, must be utilized. Such approaches that
link community membership information (e.g., 16S rRNA gene surveys) with microbial
metabolic processes remain unexplored in soil systems.

Untargeted mass spectrometry approaches to characterize soil/sediment metabolomes
have only recently been developed and applied [3,15,16]. From these techniques, metabolic
pathways have been inferred using network analysis methods [7] or through integration
of gene expression (metatranscriptomes) with metabolite profiles using association net-
works [3]. The rationale for the use of association networks to analyze metabolomics data
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is that differences or commonalities in biological processes are reflected in the character-
istics of the inferred correlation networks [17]. Generally, the correlations observed in
metabolomics data are the result of the combination of all reactions and regulatory pro-
cesses in the network; there may be no correlations between metabolites that are close in a
certain metabolic pathway [18]. Pairwise correlations are also limited because only pairs of
features can be assessed at once and correlation quantifies the linear relationship between
two features. Such approaches allow us to visualize and examine correlations/relationships
between pairs of features simultaneously but may not work for soil metabolomic profiling
that are typically characterized by complex multivariate relationships with the microbial
community structure. Inferring soil functions from correlations between observed features
for microbial taxa and small organic molecules (metabolite and/or substrate) is inadequate
and provides limited insight into relationships between these features.

An area of soil multi-omics research needing major advances is in the application of
metabolome data from untargeted approaches, i.e., mass spectrometry, to infer microbial
community composition and predict community metabolism. Derivatives of the relative
abundance of a set of Operational Taxonomic Units (OTUs) from soil microbiomes have
been used to infer ecological modules or clusters [19,20]. However, microbial taxa composi-
tion alone is a poor predictor of soil function because it does not link ecology to phenotype,
i.e., the plethora of physiological adaptations expressed in prokaryotes, such as the use
of different C functional groups, and terminal electron acceptors as a soil environment
change. Here, we adopted the definition of the metabolome as an effective phenotype
modulator [21] and used it to infer soil microbiome biomarkers under altered soil moisture
conditions as described below.

We used controlled laboratory incubations to simulate the following three soil moisture
conditions: constant saturation, fluctuating, and drying as previously described [22]. Our
objective was to force shifts in the soil microbial community composition and metabolite
profiles. We hypothesized that the accumulation of metabolites central to fermentative path-
ways, and anaerobic respiration under wet/saturated conditions would provide evidence
for the presence of microbial taxa specializing in these pathways. Similarly, microbial taxa
resilient to rapid drying would be predicted by metabolites indicative of drought/stress
tolerance. We applied a data-integration approach to determine if and how the compo-
sition and abundance of metabolites predict the presence/absence of microbial taxa in
soils. We used a random forest classifier [23] to integrate data from 16S rRNA sequenc-
ing and metabolite profiles from gas chromatography–mass spectrometry (GC–MS). Our
findings indicated that the use of metabolites as predictors of presence/absences of taxa
using random forest models can be a meaningful approach to link community structure
to function.

2. Materials and Methods
2.1. Soil Collection and Incubation Conditions
2.1.1. Site

The study site is located within the tidally influenced, freshwater Secret River wetland
on the Columbia River estuary floodplain in southwestern Washington State, USA. In a
recent synoptic study of wetlands in the Pacific Northwest USA, the tidal forested wetland
at Secret River was shown to have one of the highest total ecosystem C stocks in the world,
exceeding mangroves, and more C was sequestered in the soil (to 3-m depth) than in
aboveground biomass (Kauffman et al., 2020 [24]). Further details about the study site and
soil core collection have been previously described [22].

Fifteen soil cores were sampled in opaque polyvinyl chloride columns (5 cm height
× 2.5-cm i.d.) in 2016 using a grid sampling technique [22] and transported on ice to the
Pacific Northwest National Laboratory, Richland, WA, USA, where they were stored at
4 ◦C until further use. Cores were pre-incubated at 20 ◦C for 18 days under field-moist
conditions (~50% water w/w) and monitored daily for greenhouse gas production, i.e.,
carbon dioxide (CO2) and methane (CH4), by gas chromatography. At the end of the
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pre-incubation period, cores were randomly assigned to each of the three treatments: Wet-
Dry (W-D, n = 5), Dry-Wet (D-W, n = 4), and continuous saturation (Sat, n = 3). At least
3 replicates per treatment were deemed minimum for the experiment; additional replicates
for the W-D and D-W treatments were included to perform statistical power analyses to
determine the minimum replication to confidently attribute sources of variance observed
for bulk process measurements (soil respiration, previously published [22]) and molecular
analysis, i.e., 16S rRNA sequencing and metabolomics, presented in this study. Three of the
15 cores collected were used for additional soil property analysis [22].

2.1.2. Soil Incubation

Samples were maintained in a humidity-controlled (60% relative humidity) chamber
for 14 days following treatment initiation and thereafter transferred to a biosafety cabinet
at 25 ◦C for the duration of the incubation (120 days). It took up to 16 h for soil cores
to be saturated by placing them in standing water after which an additional 1–2 mL of
water was added to the soil column surface to limit evaporative losses. The continuously
saturated (Sat) samples were saturated as described above, maintained at constant weights
by addition of 1–2 mL of water and incubated anoxically (headspace purged with 99.9%
N2). The W-D treatment was saturated and initially incubated under a microaerophilic
headspace (purged with 70% N2) for 14 days and subsequently maintained anoxically for
the next 25 days (wet phase). For the D-W treatment, pre-incubated field-moist samples
were allowed to dry to a constant weight by evaporation under a microaerophilic headspace
for 14 days and then maintained under aerobic conditions for the next 25 days of the dry
phase at 20 ◦C.

After 39 days from treatment onset, the moisture and headspace conditions for the
W-D and D-W treatments were reversed: the W-D samples initially under wet/anoxic
conditions were subjected to drying by evaporation under aerobic conditions at 20 ◦C
(moisture data published in [22]). The D-W samples from the initially dry treatments were
wetted by addition of de-gassed sterile de-ionized water until the rate of evaporative loss
was lower than the volume of water added and incubated under an anoxic headspace.
Wetting was conducted in the same manner as the initial wetting treatments, described
above. Gas measurements for headspace CO2 and CH4 were measured throughout the
incubation and have been previously reported [22].

2.1.3. Soil Core Sampling and Analyses

All sample handling and post-incubation processing for the D-W and Sat samples were
conducted inside an anoxic glove bag (Coy Laboratories, O2 < 5 ppm, 2.1% H2): soil cores
were extruded from the PVC columns, homogenized, and subsampled for deoxyribonucleic
acid (DNA) and extracellular metabolite extraction analyses (described below). DNA was
extracted immediately on the last day of incubation. DNA was stored at −80 ◦C until
further analysis. Soil subsamples were preserved at −20 ◦C until metabolite extraction.
The experiment generated a total of 60 samples for sequence and metabolite analysis.

2.2. DNA Extraction and 16S rRNA Sequence Analysis

DNA was extracted from 0.25 g portions (five technical replicates per core) of ho-
mogenized subsamples using the PowerSoil DNA isolation kit (MoBio Laboratories Inc.,
Carlsbad, CA, USA) according to the manufacturer’s instructions. DNA extracts were
quantified using the Qubit Fluorometer 2.0 (Thermo Fisher Scientific Inc., Waltham, MA,
USA) and checked for quality (A260/A280 > 1.9) using the NanoDrop 2000 (Thermo Fisher
Scientific Inc.). Additional DNA purification was performed using the ZR-96 Genomic
DNA Clean and Concentrator-5 kit (Zymo Research Corporation, Irvine, CA, USA). The
V4 region of the 16S rRNA gene was amplified using the PCR protocol developed by the
Earth Microbiome Project [25]; this protocol was modified to include a 12-base barcode
sequence in the forward primer. Amplicons were sequenced on an Illumina MiSeq using
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the 500 cycle MiSeq Reagent Kit v2 (http://www.illumina.com/ (accessed on 16 September
2016)) according to manufacturer’s instructions.

Raw sequence reads were de-multiplexed using ea-utils [26] with zero mismatches
allowed in the barcode sequence. Reads were quality-filtered with BBDuk2 [27] to remove
adapter sequences and PhiX with a matching kmer length of 31 bp at a hamming distance
of 1. Reads shorter than 51 bp were discarded. The forward and reverse reads were merged
using USEARCH [28] with a minimum length threshold of 175 bp and maximum mismatch
of 1%. Sequences were de-replicated (minimum sequence abundance of 2) and clustered
using the distance-based, “greedy clustering” method (i.e., maximize similarity within
clusters, minimize similarity between clusters) of USEARCH at 97% pairwise sequence
identity among OTU member sequences. De novo prediction of chimeric sequences was
performed using USEARCH during clustering. Taxonomy was assigned to OTU sequences
at a minimum identity cutoff fraction of 0.8 using the global alignment method implemented
in USEARCH across RDP Trainset database version 15 trained with the UTAX 250 bp
configuration [29]. OTU seed sequences were filtered against RDP Gold reference database
version 9 to identify chimeric OTUs using USEARCH.

2.3. Metabolome Extraction and GC–MS Analysis

Extracellular metabolites were extracted from 2 g of wet soil from each core (approx.
1–1.5 g dry weight equivalent) (with five technical replicates) using 10 mL of de-ionized wa-
ter. Samples were shaken on a mechanical shaker for 12 h at 4 ◦C, centrifuged at 2500× g for
15 min at 4 ◦C, and filtered through 0.2 µm polyethersulfone membrane filters (Pall Corpora-
tion, New York, NY, USA). The polar metabolites were completely dried under a speed vac-
uum concentrator, then chemically derivatized and analyzed by gas chromatography–mass
spectrometry (GC–MS). An Agilent 7890A gas chromatograph coupled with a quadrupole
5975C mass spectrometer (Agilent Technologies, Inc., Santa Clara, CA, USA) was used
for all analyses. Metabolites were derivatized as previously described [3,30] by adding
20 µL of methoxyamine solution (30 mg mL−1 in pyridine) and were incubated at 37 ◦C for
90 min to protect the carbonyl groups and reduce carbohydrate isoforms. Then, 80 µL of
N-methyl-N-(trimethylsilyl)-trifluoroacetamide with 1% trimethylchlorosilane were added
to each sample to trimethylsilyate the hydroxyl and amine groups for 30 min. The samples
were cooled to room temperature prior to GC–MS analysis. Data collected by GC–MS
were processed using the MetaboliteDetector software, version 2.5 beta [31]. Retention
indices of detected metabolites were calculated based on analysis of the fatty acid methyl
esters mixture (C8–C28), followed by chromatographic alignment across all analyses after
deconvolution. Metabolites were initially identified by matching experimental spectra to a
PNNL-augmented version of the Agilent Fiehn Metabolomics Library, containing spectra
and validated retention indices for over 900 metabolites [32]. Additionally, metabolites
were cross-checked by matching with NIST17 GC-MS Spectral Library. All metabolite
identifications were manually validated to minimize deconvolution and identification
errors during the automated data processing.

3. Data Analyses
3.1. 16S rRNA Sequence Data Filtering

The number of samples that successfully sequenced for each treatment were: 10 (out of
20) for D-W, 20 (out of 25) for W-D, and 13 (out of 15) for Sat (uneven replicates were the result
of limits on soil core collection and sequencing failures). A total of 14,999 OTUs were observed
in at least one of the 43 samples. An outlier detected using a randomization test based on
pairwise Jaccard distances was removed as was a sample without corresponding metabolite
data. Additionally, any OTUs that were observed in less than 2 samples were removed. A
total of 4191 such OTUs were removed, leaving 12,649 OTUs in the dataset of 41 samples.

Rarefaction curves for 16S rRNA data for each sample were generated using the
R package vegan [33], using R programming language (R Core Team, 2018), to assess
the sufficiency of depth of sequencing to calculate species richness and inform outlier
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removal (Supplementary Figure S1). OTU tables were generated using the phyloseq R
package [34]. OTUs present were counted after removal of singletons for all downstream
analyses. Count data were screened for changes in relative abundance based on upper
75th-quartile normalized library counts (Bullard et al., 2010 [35]). A significant change in
relative abundance was considered at p-adj. < 0.05. Significance values were corrected for
multiple tests using the Benjamini–Hochberg procedure (Dalmasso et al., 2005 [36]). A
nonmetric multidimensional scaling (NMDS) plot with all OTUs was used to visualize the
data based on Bray–Curtis distance metrics. NMDS was performed using vegan package
v.2.5.4 [33]. Figures were rendered using ggplot2 v.3.1.1.

3.2. Metabolomics Data Univariate Analysis

A total of 125 metabolites were observed in at least one of the 41 samples. Any metabo-
lites that did not have enough data to conduct quantitative statistical testing (observed
in 2 samples for at least 2 of the 3 treatments) were removed and missing observations
were replaced with NAs. The data were log2 transformed and then normalized via median
centering as previously reported [3]. For each metabolite, a mixed-effects linear model was
fit to the data assuming a conditional normal distribution. The fixed effect was “moisture”,
and a random effect for the soil core was included using lme4 v1.1-19. All pairwise group
comparisons were conducted, and a one-step multiple test adjustment was made to the
resulting p-values to obtain the adjusted p-values using multcomp v1.4-10.

3.3. Metabolite Data Processing for Random Forest Classification Approach

A total of 125 metabolites were observed in at least one of the 41 samples. Because
random forest classifiers require complete observations, all missing values were imputed
by replacing the missing value with half of the lowest observed log2 metabolite abundance
across all the data (3.2992124). The data were then normalized via median centering. The
number of samples for each treatment used for subsequent analysis were: 10 for D-W, 18 for
W-D, and 13 for Sat. Filtering down to samples successfully analyzed for metabolites and
16S resulted in both data sources having the same set of 41 samples.

3.4. Predicting OTU Presence/Absence with Metabolomic Profiles

To test if metabolite abundance profiles could be used to predict whether an OTU
would be observed (i.e., have a nonzero count) or not within a given moisture treatment,
we used the following approach: for each OTU, data were converted to binary pres-
ence/absence data for each sample, i.e., if an OTU was observed with a non-zero count, it
was denoted as present and otherwise absent. A random forest model [23] was fit to the
data for each OTU using the randomForest R package [37]. The binary outcome of interest
was presence/absence of the OTU for each sample, and the normalized log2 metabolite
abundance values were used as the explanatory variables. The random forest model uses
bootstrap aggregating as a validation strategy to protect against overfitting and to fairly
evaluate the model’s predictive ability.

OTUs that were present for all or nearly all samples, or were absent for nearly all
samples, are not amenable to classification. Moreover, they are not biologically interesting
for the purposes of understanding how metabolites might predict the presence/absence of
OTUs for individual samples. Thus, we required an OTU to have a minimum of 3 samples
where the OTU was observed and a minimum of 3 samples for which the OTU was not
observed. The number of OTUs meeting the above requirements were: 4916 for the Sat,
2987 for the D-W, and 5531 for the W-D treatments.

For each random forest model, i.e., each OTU and treatment, the following informa-
tion was obtained: (i) variable importance metric for each variable, i.e., a metabolite; (ii)
predictions (present/absent) for each sample based on the metabolomic abundance profiles;
(iii) overall model predictive efficacy. Variable importance metrics were calculated as the
mean decrease in the Gini index [22], a metric that can be used across models utilizing the
same set of predictors.
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We used the balanced accuracy metric (Powers, 2011), the mean of the true positive
and true negative prediction rates, to summarize model efficacy for the different moisture
treatments (Supplementary Figure S2). Balanced accuracy is used when there is an imbal-
ance in the number of positive and negative labels and is equivalent to accuracy when
labels are balanced between the two groups [38]. We set a balanced accuracy threshold
greater than or equal to 80% to predict the presence/absence of OTUs to identify models to
further investigate.

4. Results and Discussion

We aimed to test whether microbial taxa enrichment under a given soil moisture
treatment could be a predictable trait as a function of the observed metabolites, particu-
larly those belonging to classes of complex polysaccharides, long-chain fatty acids, and
nitrogenous compounds. Therefore, in this study, we tested for the predictive power of
observed metabolites in the ecological context of bacterial population shifts as result of
moisture perturbations in wetland soils. We used a random forest classifier model to assess
the effectiveness of metabolite data in the prediction of the presence/absence of patterns
of microbial taxa obtained from 16S rRNA sequencing. The advantages of this approach
include the ability to examine and detect linear and nonlinear relationships between ob-
served metabolites and taxa in a multivariate manner; random forest analyses provide both
a metric of how well the presence/absence of an OTU can be predicted and how useful
a metabolite is for such a prediction in the presence of other metabolites. It also allowed
us to examine patterns across similar taxa, i.e., assuming functional traits, and to make
comparisons across treatments. In addition to high predictive performance, random forest
classifiers can reveal feature importance [39]. Here, we applied this approach in the context
of how the soil bacterial community responds to fluctuating moisture regimes.

4.1. Shifts in Relative Abundances of Bacterial Taxa

The 16S rRNA gene sequences retrieved from all samples corresponded to 32 bacterial
phyla-, 129 family-, and 218 genus-level OTUs. Ordination analyses performed using all
(Figure 1a) and the top 100 OTUs (Supplementary Figure S2) demonstrated separation of
samples by moisture treatments. The relative abundances (>0.5%) of phyla are shown in
Figure 1b. Among the dominant phyla based on the mean relative abundance across the
three treatments were Acidobacteria, Actinobacteria, Bacteroidetes, Gemmatimonadetes,
Latescibacteria, Planctomycetes, Proteobacteria, Verrucomicrobia, and Firmicutes. In the
Sat treatment, Acidobacteria, Actinobacteria, Planctomycetes, and Firmicutes were signifi-
cantly lower in relative abundance while Latescibacteria was higher (p-adj < 0.05) relative
to both the W-D and D-W treatments. Organisms in the phylum Latescibacteria are capable
of fermentative pathways as well as of oxygen-dependent metabolic reactions and have
been recovered from oxygenated and partially/seasonally oxygenated aquatic habitats [40].
Their higher abundance in the Sat treatment is potentially due to this metabolic specializa-
tion compared to the other phyla, which are more physiologically diverse and ubiquitous
in soils.

Relative shifts in class abundances in response to the moisture fluctuations may be
reflective of ecological selection based on their primary respiratory pathways, i.e., aerobic
or anaerobic. Acidobacteria Gp2, Acidobateria Gp7, and Betaproteobacteria were higher in
the Sat treatment compared to those in W-D and D-W (Figure 1c).

Acidobacteria_Gp1, Clostridia (obligate anaerobes), Deltaproteobacteria (aerobic),
Gemmatimonadetes (both aerobic and anaerobic), and Sphingobacteria decreased in abun-
dance in response to drying in the W-D samples while correspondingly increasing in
response to wetting in the D-W samples. Spartobacteria and Alphaproteobacteria were
higher in the D-W samples compared to the Sat samples. The Gemmatimonadetes are
found in a wide range of environments and can adapt to low-moisture conditions [41].
Spartobacteria have been observed in diverse ecological niches and display aerobic, fac-
ultative anaerobic, or obligate heterotrophic lifestyles [42]. They are capable of utilizing
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various C compounds, e.g., cellulose, xylan [43,44], and sugars [45] or methane [46]. We
interpret the relative shifts in class abundances in response to the moisture fluctuations
to be reflective of ecological selection based on their primary respiratory pathways, i.e.,
aerobic or anaerobic.
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Figure 1. (a) Ordination plots showing separation of all OTUs by moisture treatments visualized by
nonmetric multidimensional scaling (NMDS) of Bray–Curtis distance metrics. The three moisture
treatments are shown in blue (Dry-Wet), grey (Saturation), and orange (Wet-Dry). The biological
replicates and their technical replicates are shown by distinct symbols for each moisture treatment
and listed under BioRep for their unique experimental IDs. (b) Relative abundance (>0.5%) of OTUs
at the phylum level measured for each moisture treatment (Dry-Wet, Wet-Dry, and Saturation). Data
are shown as violin plots where whiskers indicate the most extreme values within 1.5 multiplied by
the interquartile region. Box, 25% quartile; median, 75% quartile. Pairwise comparisons of means to
test treatment effects were performed after outlier removal. (c) Relative abundance (>0.5%) of OTUs
at the class level measured for each moisture treatment (Wet-Dry, Dry-Wet, and Saturation). Data are
shown as violin plots where whiskers indicate the most extreme values within 1.5 multiplied by the
interquartile region. Box, 25% quartile; median, 75% quartile. Pairwise comparisons of means to test
treatment effects were performed after outlier removal.

4.2. Metabolite Shifts in Response to Hydrologic Shifts

Drying generally increased abundances of amino acids compared to wetting (Figure 2a).
The abundances of nine amino acids shifted in both the W-D and D-W treatments relative
to the Sat condition. For example, L-glutamic acid (p = 0.015) and L-isoleucine (p = 0.038)
decreased significantly in the D-W compared to the Sat treatment (Figure 2a). Glycine
(p = 0.024) decreased while L-serine (p = 0.004) and L-threonine (p = 0.000) increased in
W-D compared to Sat.
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(p < 0.05, one-way ANOVA). Whiskers indicate the most extreme values within 1.5 multiplied by the
interquartile region. Box, 25% quartile; median, 75% quartile. Pairwise comparisons of means to test
treatment effects were performed after outlier removal. (b) Impact of soil moisture perturbations on
the soil metabolome shown as log2-fold abundances of metabolites (other than amino acids) that
shifted significantly in response to a moisture treatment (Dry-Wet, Saturation, or Wet-Dry). Fifteen of
70 detected metabolites changed significantly under the wet or dry treatments compared to control
(p < 0.05, one-way ANOVA). Whiskers indicate the most extreme values within 1.5 multiplied by the
interquartile region. Box, 25% quartile; median, 75% quartile. Pairwise comparisons of means to test
treatment effects were performed after outlier removal.
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N-methylalanine (or 2-aminoisobutyric acid) decreased in both W-D (p = 0.009) and
D-W (p = 0.038) relative to Sat. Under conditions of a high ratio of organic C to nitrogen, het-
erotrophic microorganisms compete with primary producers for the available nitrogen [47].
If much of the nitrogen is present in organic form, it is likely that the ability to use organic
nitrogenous compounds as nitrogen sources would confer some advantages to organisms
with this ability over those lacking it. Such utilization of ethylamine, beta-alanine, and
L-serine as nitrogen but not as sole C sources have been well established. The ability to
use methylamines as nitrogen sources by bacteria but not as sources of C has been widely
shown in natural habitats [48]. In addition, Methylotrophic bacteria able to utilize methy-
lamines as sole C and energy sources first convert the methyl groups to formaldehyde,
which is subsequently either assimilated or oxidized to CO2 [49,50].

L-pyroglutamic acid decreased in both D-W (p = 0.022) and W-D (p = 0.007) relative to
Sat. Among the amino acids that significantly increased in abundance in W-D compared
to D-W were L-glutamic acid (p = 0.045), L-leucine (p = 0.000), L-serine (p = 0.000), L-
threonic acid (p = 0.037), and L-threonine (p = 0.000). Protein amino acids such as glutamic
acid, serine, and glycine can play significant roles as constitutive osmolytes or precursors
thereof under soil drought [51,52]. The higher abundances of L-serine, L-leucine, L-threonic
acid/threonine, and glutamic acid in the W-D treatment could be a stress response or
simply accumulation of these small molecules in the soil exometabolome.

Higher relative abundances of methylalanine and glycine in the Sat treatment could
indicate stimulation of pathways related to methylamine synthesis or degradation. Methy-
lamines are produced from glycine and other amino acids (from protein or peptidoglycan),
compatible solutes, and lipids. Expression of glycine-cleavage transcripts in methanogenic
environments [53,54] and methanogenesis from methylamines by methanogens [55] and
methylotrophs [56] have only been recently reported. Therefore, the higher abundance of
methylalanine indicates conditions conducive to methanogenesis in the Sat treatment.

Organic acids such as benzoic acid, phenylacetate, and capric and lauric acid have
been observed in anaerobic systems and have also been implicated in the methanogenic
degradation of lignin derivatives [57]. Thirteen of the measured organic acids decreased in
abundance in both D-W and W-D when compared to Sat (Figure 2b). Several organic acids
increased in W-D compared to D-W, including those of 2-ketoisocaproic acid (p = 0.05),
3-hydroxybutyric acid (p = 0.048), DL-glyceraldehyde (p = 0.020), glycosylglyceric acid
(p = 0.006), and methylsuccinic acid (p = 0.035). The organic acids that decreased in W-D
compared to D-W included 3,4-hydroxybenzoic acid (p = 0.019), 4-hydroxycinnamic acid
(p = 0.000), benzoic acid (p = 0.006), lauric acid (p = 0001), myristic acid (p = 0.005), and
nonanoic acid (p = 0.018). A previously reported accumulation of short-chain fatty acids
such as formate, isobutyrate, isovalerate, propionate, and pyruvate in the W-D samples
occurred during the antecedent wet phase when anaerobic processes were dominant [22].
Therefore, the redox-active metabolites from fermentation and homoacetogenesis could be
the precursors for active methanogenesis.

4.3. Metabolites Predict Taxa

We rank metabolites based on their variable importance metric and present those
found to be the strongest predictors of OTUs under each moisture condition (Figure 3).
These were metabolites that had a variable importance score in the top 20% of variable
importance scores across all models. Among these 34 top ranked metabolites, 24 were
organic acids, 4 were amino acids, 3 were sugars, 1 was a carbonate ion, 1 was inositol,
and 1 was uracil. Collectively, these metabolites were among the strongest predictors
of 31 OTUs for the Sat treatment and 29 OTUs for the W-D treatment. However, we
observed strong variabilities in the strength of metabolite–OTU predictability as a function
of the moisture condition in question. For example, 3,4,5-trihydroxypentanoic acid, capric
acid, and glycolic acid were among the strong predictors of the observed OTUs under
the Sat condition. In contrast, 4-guanidinobutyric acid, 4 hydroxy-3-methoxybenzoic acid,
5 aminovaleric acid, D-xylose, glucosylglyceric acid, L-phenylalanine, maltotriose, sucrose,
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and toluic acid were strong predictors of OTUs under the W-D condition. Surprisingly,
none of the metabolites had sufficient predictive power for the OTUs observed under the
D-W condition (Supplementary Figure S4).
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In the W-D treatment, 4-guanidinobutyric acid, 4-hydroxy-3-methoxybenzoic acid,
and glucosylglyceric acid strongly predicted the presence of Acidobacteria (Gp1, Gp10,
Gp12, Gp5, and Gp6), Armatimonadetes, Planctomycetes, Deltaproteobacteria, and Subdi-
vision3. D-xylose was a strong predictor of Parcubacteria, while sucrose was the strongest
predictor of Acidobacteria_Gp5 among others from this phylum. Succinic acid also strongly
predicted the presence of Parcubacteria and Firmicutes under the W-D condition and that
of Acidobacteria_Gp22 and Gp18 under the Sat condition. Toluic acid ranked among the
strongest predictors of Proteobacteria (Betaproteobacteria), Chlamydiae, Armatimonadetes,
and Acidobacteria (Gp12, Gp10, and Gp1).

Our results show the high predictive power of D-xylose and sucrose for several mem-
bers of the phylum Acidobacteria under the W-D treatment. Acidobacteria is a highly
diverse phylum and is capable of metabolizing a wide range of carbohydrates as C sources,
ranging from simple sugars to complex substrates such as D-glucose, D-xylose, and other
polysaccharides [58]. Maltotriose, another carbohydrate, was also among the strong predic-
tors of Acidobacteria although its metabolism is not well documented. These observations
are consistent with previous studies that showed positive correlations between Acidobacte-
ria subgroups and gene families related to C degradation, specifically those involved in
hemicellulose degradation. For example, subgroup Gp4 has been described as the most
versatile in the use of C from sucrose, maltose, and chitins [59,60]. It is important to note
that much of our understanding of C degradation by Acidobacteria in soil is limited to
correlative studies. The lack of isolates of most Acidobacteria subgroups is a challenge due
to discrepancies between information from genomes of cultured representatives and that
from marker gene assays.

In the Sat treatment, capric acid was consistently a strong predictor of Verrucomicrobia
(Subdivision 5), Proteobacteria (betaproteobacteria), Firmicutes (Negativicutes), Chlamy-
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diae (Chlamydiia), and Acidobacteria Gp6. Myo-inositol (a polyol) also had sufficient
predictive power for many taxa including Verrucomicrobia Subdivision 5, Betaproteobacte-
ria, Chloroflexi (Anaerolineae), Chlamydiae, and Acidobacteria Gp22. 3-aminoisobutyric
acid and N-methylalanine, the methylamines that occurred in higher abundances in the
Sat treatment, did not rank very high in predictive power for most OTUs, but in the W-D
treatment were strong predictors of Firmicutes (Clostridia), Chlamydiae, and Acidobacte-
ria_Gp18. None of the other amino acids ranked high enough based on our criterion for
metabolite of predictive importance, although their relative abundances shifted significantly
with wetting and drying. Glucosyslglyceric acid, significantly increased in abundance in
the W-D treatment, has characteristics of compatible solutes under combined salt stress
and nitrogen-limiting conditions and has been observed in prokaryotes across a wide taxo-
nomic distribution [61]. Enrichment of the Latescibacteria in Sat treatment and their high
predictability by capric acid, benzeneacetic acid, glycolic acid, polyols such as inositol and
myo-inositols, and myristic acid support the diverse metabolic capacities of this phylum as
also corroborated by recent reports of their biogeography [62].

The conversion of CO2 back to acetate by homoacetogenesis is a strictly anaerobic
process; homoacetogenesis was shown to be preferred over methanogenesis in profundal
sediments of Lake Constance [63], and anaerobic peatland soils [64,65] notwithstanding the
predominance in low-temperature ecosystems. The higher relative abundances of Holopha-
gae in the D-W and Sat treatments (Figure 1c) might be an indicator of homoacetogenesis as
an active process that could potentially outcompete methanogenesis, as previously reported
in swamp peats at pH 6.5 [64]. One member of the Holophagales order, Holophoga foetida,
can also degrade aromatic compounds [66], an observation supported by our measure-
ments of higher abundances of lactic acid, hydroxyphenylacetic, and 3-hydroxybutyric and
methylsuccinic acids under saturated conditions (Figure 2b). All these acids have been
implicated in anaerobic lignin degradation pathways [57]. Based on these observations, we
hypothesize that homoacetogenesis is an active pathway in these soil systems.

The presence of Clostridia under the wet and saturated conditions may explain the high
levels of isopropanol and acetone accumulation reported previously [22]. The metabolic
pathway of Clostridia remains poorly understood but recent studies suggest they may use
pyruvate for biosynthetic reactions [67]. Elevated concentrations of acetate or butyrate, or
both as we previously observed [22], have been suggested to trigger acetone production in
C. acetobutylicum [68]. Close interactions between Methanosarcina and cellulolytic Clostridia
have also been reported in freshwater methanogenic environments [69]. The combined
observations of high concentrations of acetate and butyrate [22] and the strong predic-
tive power of 3-aminoisobutyric acid from this study may support the co-occurrence of
methanogenesis and fermentation processes upon rewetting soils.

The spatiotemporal variability in hydrological fluctuations in wetlands causes the
development of temporal and spatial redox gradients [70–73], such that the subsequent
manifestation of microbial processes is a function of the availability of terminal electron
acceptors and metabolic substrates and products. Here, we provide evidence for shifts
in microbial taxa and metabolite abundance in response to moisture shifts as a proxy for
redox. Specifically, we find enrichment of drought-tolerant microbial taxa and sugars as
metabolites upon drying a previously saturated soil; in addition, an increasing abundance
of fatty acids with high predictive power for anaerobes such as Clostridia, Holophagales, and
Latescibacteria under saturated conditions suggest a predominance of anaerobic C cycling.
We, therefore, infer that present soil redox status may enrich for metabolite classes linked
to anaerobic or aerobic metabolism, which, in turn, may predict the dominant microbial
community structure in tidal wetlands under fluctuating moisture conditions.

5. Conclusions

Soil moisture legacy and redox metabolism are intimately linked, yet it is difficult to
discern how these soil conditions drive microbiome shifts within a predictive framework.
Our results illustrate the potential of untargeted statistical approaches such as Random
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Forest models to interrogate complex soil microbiomes such as wetland sediments using
multidimensional data such as metabolomics and the 16S rRNA gene-based community
structure. The predictive power to consider discrete datasets for microbial population
and/or substrate characteristics for wetland biogeochemistry, collectively and in relation,
has previously been limited to correlation analyses. Elucidation of the chemical compo-
sition of microbial substrates such as fatty acids, polysaccharides and sugars, and amino
acids and their dynamics in response to environmental factors is a critical step toward a
predictive understanding of the complex relationship between soil chemical environment
and microbial communities. Here, we demonstrate that taking a multidimensional data
analysis approach to the interpretation of metabolomics has the potential to unravel the
causative pathways selecting for the observed community structure. For example, the
dominance of sugars and osmolytes in response to drought stress and that of organic
acids under saturation conditions provide evidence of the dynamic nature of metabolome
shifts with moisture while enriching for the specialized or facultative microbial taxa. The
advantage of our approach is that the random forest model does not make any assumptions
about the distribution (e.g., normal distribution) of variable values and can detect nonlinear
relationships between predictors and response variables, unlike stepwise regression or
correlation-based models that can only detect linear relationships. Such a linear relationship
is not relevant to a complex microbial community structure.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/microorganisms10081653/s1, Figure S1: Rarefaction curves of
bacterial assemblages from individual samples subjected to (a) Dry-Wet, (b) Wet-Dry, and (c) Satu-
ration treatments. OTUs were determined by a cutoff value of 97% sequence similarity; Figure S2.
Ordination plots showing separation of top 100 OTUs by moisture treatments visualized by nonmetric
multidimensional scaling (NMDS) of Bray–Curtis distance metrics. The three moisture treatments are
shown in blue (Dry-Wet), grey (Saturation), and orange (Wet-Dry). Figure S3: Histogram showing the
balanced accuracy metrics corresponding to the number of OTUs observed in the Dry-Wet, Saturation
or Wet-Dry treatments. The red bars and fonts call out the number of OTUs with a balanced accuracy
of >0.8 for a given moisture condition; Figure S4: Metabolites ranked based on their mean variable
importance for predicting OTUs under Dry-Wet treatment.
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