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Abstract

We investigated whether peripheral blood levels of SARS‐CoV‐2 Spike (S)

receptor binding domain antibodies (anti‐RBD), neutralizing antibodies (NtAb)

targeting Omicron S, and S‐reactive‐interferon (IFN)‐γ‐producing CD4+ and

CD8+ T cells measured after a homologous booster dose (3D) with the
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Comirnaty® vaccine was associated with the likelihood of subsequent

breakthrough infections due to the Omicron variant. An observational study

including 146 nursing home residents (median age, 80 years; range, 66–99; 109

female) evaluated for an immunological response after 3D (at a median of 16

days). Anti‐RBD total antibodies were measured by chemiluminescent immuno-

assay. NtAb were quantified by an Omicron S pseudotyped virus neutralization

assay. SARS‐CoV‐2‐S specific‐IFNγ‐producing CD4+ and CD8+ T cells were

enumerated by whole‐blood flow cytometry for intracellular cytokine staining.

In total, 33/146 participants contracted breakthrough Omicron infection

(symptomatic in 30/33) within 4 months after 3D. Anti‐RBD antibody levels

were comparable in infected and uninfected participants (21 123 vs. 24 723

BAU/ml; p = 0.34). Likewise, NtAb titers (reciprocal IC50 titer, 157 vs. 95;

p = 0.32) and frequency of virus‐reactive CD4+ (p = 0.82) and CD8+ (p = 0.91) T

cells were similar across participants in both groups. anti‐RBD antibody levels

and NtAb titers estimated at around the time of infection were also comparable

(3445 vs. 4345 BAU/ml; p = 0.59 and 188.5 vs. 88.9; p = 0.70, respectively).

Having detectable NtAb against Omicron or SARS‐CoV‐2‐S‐reactive‐IFNγ‐

producing CD4+ or CD8+ T cells after 3D was not correlated with increased

protection from breakthrough infection (OR, 1.50; p = 0.54; OR, 0.0; p = 0.99

and OR 3.70; p = 0.23, respectively). None of the immune parameters evaluated

herein, including NtAb titers against the Omicron variant, may reliably predict at

the individual level the risk of contracting COVID‐19 due to the Omicron

variant in nursing home residents.
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anti‐spike antibodies, breakthrough infection, Comirnaty® COVID‐19 vaccine, neutralizing
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1 | INTRODUCTION

The SARS‐CoV‐2 Omicron variant has become dominant in many

countries1 due to its increased transmissibility compared to the

Delta variant, owing at least partly to its remarkable ability to

escape from SARS‐CoV‐2 Spike (S) neutralizing antibodies (NtAb)

elicited during natural infection or after vaccination with regular

or booster schedules.2–5 Adaptive immunity is critically involved

in preventing SARS‐CoV‐2 infection6; nevertheless, protective

thresholds remain elusive for both S‐binding NtAb and T cells.7

Herein, taking advantage of SARS‐CoV‐2 Omicron variant out-

breaks in several nursing homes, whose congregate nature

facilitates wide exposure to the virus, we investigated whether

levels of antibodies targeting the receptor‐binding domain (RBD)

of S (anti‐RBD), NtAb targeting Omicron S, and S‐reactive

functional T cells measured after a homologous booster dose

(3D) with Comirnaty® were associated with the likelihood of

subsequently contracting breakthrough infections in elderly

nursing home residents.

2 | MATERIALS AND METHODS

2.1 | Participants

The current prospective and observational study included 146

participants (median age, 80 years; range, 66–99; 109 female;

median Charlson comorbidity index of 7, range 1–14) institutional-

ized in four nursing homes in the Valencian Community (Spain).

Participants vaccinated with the Comirnaty® vaccine (two doses)

were evaluated for their immunological response after a homologous

booster dose (a median to 16 days; range, 15–18),8 which was given

to all participants irrespective of their SARS‐CoV‐2 infection status,

and were followed for up 4 months. SARS‐CoV‐2 infection status at

the time of 3D (naïve vs. experienced) was defined according to

historical records in the electronic Valencia Health System Integrated

Databases and/or the presence or absence of anti‐SARS‐CoV‐2

nucleocapsid (N) IgG antibodies. None of the residents included

in the study had a documented immunosuppression condition or

were under immunosuppressive therapy within the follow‐up period.
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Anti‐RBD and anti‐N antibody detection and T‐cell assays were

performed at the Microbiology Service of the Hospital Clínico

Universitario of Valencia. NtAb was measured at the Institute for

Integrative Systems Biology, Universitat de Valencia‐CSIC. Whole‐

genome sequencing was performed at the Foundation for the

promotion of Health and Biomedical Research of the Valencian

Community (FISABIO) (Valencia, Spain).

2.2 | Virological diagnosis of SARS‐CoV‐2
breakthrough infections

Residents suspected of having developed COVID‐19 were tested

within 24 h after symptoms onset by reverse transcription polymer-

ase chain reaction (RT‐PCR) for detection of SARS‐CoV‐2 RNA in

nasopharyngeal specimens. Asymptomatic residents were tested by

RT‐PCR within 48 h of diagnosis of the index case and two to three

times afterward throughout the outbreak. Involvement of the SARS‐

CoV‐2 Omicron BA.1 variant was documented by whole‐genome

sequencing performed at the FISABIO (Valencia, Spain), as previously

described.8

2.3 | Immunological testing

Anti‐RBD total antibodies and N‐reactive IgGs were detected by the

Roche Elecsys® Anti‐SARS‐CoV‐2 S and the Elecsys® Anti‐SARS‐

CoV‐2 N assays (Roche Diagnostics), respectively, with values

≥ 0.4 BAU/ml and cut‐off index ≥1.0 considered positive results in

the respective tests, according to the manufacturer.

NtAb targeting the S protein was measured using a Green

fluorescent protein (GFP)‐expressing vesicular stomatitis virus

pseudotyped with the Omicron variant, as previously described.8,9

In brief, we introduced mutations in a mammalian expression vector

encoding a codon‐optimized SARS‐CoV‐2 S sequence from the

Wuhan‐Hu‐1 (ancestral) reference variant. First, the D614G muta-

tion was introduced by site‐directed mutagenesis. Subsequently,

additional site‐directed mutagenesis and/or the cloning of synthetic

fragments harboring the mutations (Gblocks, IDT) was performed to

introduce all mutations using the NEBuilder HiFi DNA assembly mix

(NEB). Pseudotype vesicular stomatitis virus (VSV) carrying the

S protein of Omicron was generated using a codon‐optimized

Omicron S expression plasmid (Genescript MC_0101274) that was

modified to delete the C‐terminal 19 amino acids to improve

pseudotyping efficiency. The neutralization capacity of circulating

antibodies (NtAb) against the SARS‐CoV‐2 ancestral (Wuhan‐Hu‐1)

and Omicron S was then assessed in plasma samples using this GFP‐

expressing VSV pseudotyped virus on A549‐ACE2‐TMPRSS2 cells

(InvivoGen catalog code: a549‐hace2tps). All tests were done in

duplicate using fivefold serum dilutions ranging from 1:20 to

1:62 500, with ~500 focus forming units per well. Following 16 h

of infection, the GFP signal in each well was quantified using a live‐

cell microscope (Incucyte S3; Sartorius). Background fluorescence

from uninfected wells was subtracted from all infected wells, and

the GFP fluorescence in each antibody‐treated dilution was

standardized to the average fluorescence observed in mock‐

treated wells. Any value resulting in a relative GFP signal of

<0.001 versus was assigned a value of 0.001 to eliminate negative

values. Finally, the reciprocal antibody dilution resulting in 50%

virus neutralization was calculated using the drc package (version

3.0‐1) in R via a three‐parameter log‐logistic regression model (LL.3

model). Sera testing negative (undetectable) were arbitrarily

ascribed a titer of 1/20 (limit of quantitation of the assay for all

variants).

SARS‐CoV‐2‐S specific‐IFNγ‐producing CD4+ and CD8+

T‐cell immunity were measured by whole‐blood flow cytometry

for intracellular cytokine staining (BD Fastimmune, Becton

Dickinson, and Company Biosciences) as previously described.10

Heparinized whole blood (0.5 ml) was simultaneously stimulated

for 6 h with two sets of 15‐mer overlapping peptides (11‐mer

overlap) encompassing the SARS‐CoV‐2 Spike (S) glycoprotein

(S1, 158 peptides and S2, 157 peptides) at a concentration of

1 μg/ml per peptide, in the presence of 1 μg/ml of costimulatory

monoclonal antibodies (mAbs) to CD28 and CD49d. Peptide

mixes were obtained from JPT Peptide Technologies GmbH.

Samples mock‐stimulated with phosphate‐buffered saline (PBS)/

dimethyl sulfoxide and costimulatory antibodies were run in

parallel. Brefeldin A (10 μg/ml) was added for the last 4 h of

incubation. Blood was then lysed (BD FACS lysing solution) and

frozen at −80°C until tested. On the day of testing, stimulated

blood was thawed at 37°C, washed, permeabilized (BD permea-

bilizing solution), and stained with a combination of labeled mAbs

(anti‐IFNγ‐FITC, anti‐CD4‐APC‐H7, anti‐CD8‐PerCP‐Cy5.5, and

anti‐CD3‐APC) for 1 h at room temperature. Appropriate positive

(phytohemagglutinin) and isotype controls were used. Cells were

then washed, resuspended in 200 μl of 1% paraformaldehyde in

PBS, and analyzed within 2 h on a FACSCanto flow cytometer

using DIVA v8 software (BD Biosciences Immunocytometry

Systems). CD3+/CD8+or CD3+/CD4+ events were gated then

analyzed for IFN‐γ production. All data were corrected for

background IFN‐γ production (FITC‐labeled isotype control anti-

body). Data are expressed as the number of SARS‐CoV‐2‐reactive

IFN‐γ‐producing CD4+or CD8+ T cells relative to the absolute

number of CD4+ and CD8+ T cells, respectively, x100 (%). Any

frequency value of SARS‐CoV‐2‐reactive IFN‐γ‐producing

CD4+ or CD8+ T cells after background subtraction was

considered a positive (detectable) result and used for analysis

purposes.

2.4 | Statistical methods

Frequency comparisons for categorical variables were carried out

using the Fisher exact test. Differences between medians were

compared using the Mann–Whitney U‐test. Regression logistic

models were built to assess the association between immune
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parameters and the risk of breakthrough infection. The odds ratio for

each of these parameters is reported). The analyses were performed

using SPSS version 20.0 (SPSS). Statistical significance was set at

p < 0.05. Data on anti‐SARS‐CoV‐2 RBD total antibody levels in

sequential specimens collected from 33 residents at a median of

20 days and3 months after 2D, and at the time of 3D, were used to

build an exponential decay model11 to estimate antibody half‐life on

an individual basis.

3 | RESULTS

3.1 | SARS‐CoV‐2 Omicron breakthrough
infections in nursing home residents

Out of the 146 participants, 33 (22.6%) developed a breakthrough

infection due to the Omicron BA.1 variant, at a median of 105 days

after 3D (range, 76–123). Case distribution across participating

nursing homes is shown in Supporting Information: Table 1. SARS‐

CoV‐2 infection was symptomatic in 30/33 participants (two requir-

ing hospitalization). Incidence of breakthrough infection was compa-

rable (p = 0.12) across SARS‐CoV‐2‐naïve (22/80) and experienced

(11/66) residents at 3D.

3.2 | Anti‐RBD antibody response following the
third vaccine dose and subsequent occurrence of
SARS‐CoV‐2 Omicron infection

In total, 145/146 participants had detectable anti‐RBD total

antibodies after 3D (median, 16 days). Residents developing break-

through infection displayed comparable median plasma levels of anti‐

RBD antibodies to those who did not (21 123 vs. 24 723 BAU/ml;

p = 0.34) (Figure 1A).

3.3 | NtAb responses following the third vaccine
dose and subsequent occurrence of SARS‐CoV‐2
Omicron infection

Data on S‐reactive NtAb against the ancestral Wuhan Hu‐1 and

Omicron variants were available from 68 residents. No differences

between those who contracted the infection or not were observed

for the fraction of residents with detectable NtAb responses

targeting the Omicron variant (24/28 vs. 32/40, respectively;

p = 0.75), nor median NtAb titers (reciprocal IC50 titer of 157 vs.

95, respectively; p = 0.32; Figure 1B). As expected,2–5 overall, NtAb

titers against the Omicron variant were significantly lower than those

against the Wuhan Hu‐1 variant and were comparable in magnitude

across participants either contracting or not breakthrough infection

(p = 0.32). Having detectable NtAb against Omicron was not

associated with a decreased risk of developing breakthrough

infection (OR, 1.50; 95% CI, 0.40–5.57; p = 0.54).

3.4 | SARS‐CoV‐2‐S‐reactive‐IFNγ‐producing
T‐cell responses following the third vaccine dose and
subsequent occurrence of SARS‐CoV‐2 Omicron
infection

Data on SARS‐CoV‐2‐S‐reactive‐IFNγ‐producing T cells were availa-

ble from 59 participants. The frequency of detectable CD4+ and

CD8+ T‐cell responses after 3D was comparable in infected and

uninfected participants (13/13 vs. 40/46 for CD4+, respectively;

p = 0.32; 12/13 vs. 36/46 for CD8+, respectively; p = 0.42). More-

over, median frequencies of both S‐reactive T‐cell subsets were

similar across participants in both groups (p = 0.82 and p = 0.91,

shown in Figure 1C,D respectively). Having detectable SARS‐CoV‐2‐

S‐reactive‐IFNγ‐producing CD4+ or CD8+ T cells after 3D was not

associated with a decreased risk of developing breakthrough

infection (OR, 0.0; 95% CI, 0.0 to >50; p = 0.99; OR, 3.70; 95% CI,

0.42–32.76; p = 0.23, respectively).

3.5 | Estimated anti‐RBD and NtAb levels at the
time of breakthrough infections

Sequential data on anti‐RBD total antibodies before receipt of 3D

were available from 33 residents. As shown in Figure 2A, the data fit

well to an exponential decay model in 22 participants (5 SARS‐CoV‐

2‐experienced and 17 naïve), yielding an antibody half‐life of 53.6

days (range, 14.1–164). As a secondary analysis, we used this derived

half‐life measurement and the antibody levels quantified after 3D to

estimate anti‐RBD and NtAb within 2 days before diagnosis of

breakthrough infection as well as at a comparable time in uninfected

residents. Median predicted anti‐RBD antibody levels for 2 days pre‐

infection were comparable across groups (3445 BAU/ml; IQR,

80.2–21,713 vs. 4345 BAU/ml; IQR, 89.7–33,618, respectively;

p = 0.59; Figure 2B). Similarly, predicted NtAb against Omicron

2 days before diagnosis also did not differ between groups (188.5

reciprocal IC50; IQR, 0–267 vs. 88.9; IQR, 0–903.6; p = 0.70;

Figure 2C).

4 | DISCUSSION

In this study, we have been unable to identify a threshold level

that would protect against Omicron breakthrough infection within

4 months following 3D in elderly nursing home residents using anti‐

RBD antibody levels, Omicron‐binding NtAb titer, and frequencies of

SARS‐CoV‐2‐S specific‐IFNγ‐producing CD4+ and CD8+ T cells in

whole blood as predictive parameters; indeed, not even the presence

or absence of detectable NtAb responses after 3D were predictive of

breakthrough success. In the two antibody specificities evaluated

(anti‐RBD and NtAb), antibody levels as estimated at around the time

of molecular diagnosis of infection were also unpredictive. Omicron

BA.1 infection occurred despite strong anti‐RBD antibody levels,

as previously reported,12 and moderate‐to‐high frequencies of
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F IGURE 1 SARS‐CoV‐2‐S‐reactive antibody and T‐cell responses following a booster dose of the Comirnaty® vaccine in nursing home
residents either with or without subsequent Omicron variant breakthrough infection. The reverse transcription polymerase chain reaction assays
used for diagnosis were the Roche Cobas 6800 SARS‐CoV‐2 test (Roche Diagnostics) and the TaqPath COVID‐19 Combo Kit (Thermo Fisher
Scientific). Box‐and‐whisker plots depicting total anti‐RBD antibody levels (A), neutralizing antibodies against the Spike protein of the Omicron
variant and Wuhan‐Hu1 ‐ancestral‐variant (B), frequency of peripheral blood SARS‐CoV‐2‐S specific‐IFNγ‐producing CD4+ (C) and CD8+

(D) T cells in comparison groups. p Values (Mann–Whitney test) for comparisons across infected and uninfected residents are shown. Statistical
significance was set at p < 0.05.

4220 | TORRES ET AL.



peripheral blood S‐reactive T cells. Omicron‐S‐binding NtAb levels

were overall rather low after 3D, in line with previously reported

data,2–5 but this was the case whether or not residents contracted

Omicron infection.

The current study has several limitations, including the low

number of breakthrough infections in the cohort and the lack of

available specimens collected near the time of Omicron infection. In

addition, we cannot rule out that the enumeration of monofunctional

T cells other than those producing IFNγ or polyfunctional T cells may

behave as a reliable marker of protection. Likewise, the assumption

that NtAb decay kinetics are similar to those of anti‐RBD antibodies

may prove wrong; in fact, a previous study showed NtAb response

dynamics in patients who have recovered from COVID‐19 to vary

greatly at the individual level.13 Moreover, antibody decay models

were not built separately for SARS‐CoV‐2 naïve and SARS‐CoV‐2

experienced individuals, due to the scarce number of participants in

the latter category (n = 5). Finally, the policy of RT‐PCR testing of

asymptomatic individuals in nursing homes could have not been

optimal for detecting cases, so the possibility of misclassification

regarding SARS‐CoV‐2 infection status cannot be ruled out.

Population‐based studies concur that NtAb levels are

strongly associated with vaccine efficacy,14,15 yet our data

suggested that none of the immune parameters evaluated herein,

including NtAb titers against the Omicron variant, may reliably

predict the risk of contracting Omicron breakthrough COVID‐19

on an individual basis.
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