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Abstract: Monitoring of marine polluted areas is an emergency task, where efficiency and low-power
consumption are challenging for the recovery of marine monitoring equipment. Wireless sensor
networks (WSNs) offer the potential for low-energy recovery of marine observation beacons. Reducing
and balancing network energy consumption are major problems for this solution. This paper presents
an energy-saving clustering algorithm for wireless sensor networks based on k-means algorithm and
fuzzy logic system (KFNS). The algorithm is divided into three phases according to the different
demands of each recovery phase. In the monitoring phase, a distributed method is used to select
boundary nodes to reduce network energy consumption. The cluster routing phase solves the
extreme imbalance of energy of nodes for clustering. In the recovery phase, the inter-node weights
are obtained based on the fuzzy membership function. The Dijkstra algorithm is used to obtain the
minimum weight path from the node to the base station, and the optimal recovery order of the nodes
is obtained by using depth-first search (DFS). We compare the proposed algorithm with existing
representative methods. Experimental results show that the algorithm has a longer life cycle and a
more efficient recovery strategy.

Keywords: wireless sensor networks; k-means algorithm; network energy; observation beacon; fuzzy
logic system

1. Introduction

The utilization of marine resources is increasingly becoming important and active to solve the issue
of resource shortage. Correspondingly, marine pollution is becoming more serious with the exploitation
of marine resources [1,2]. Wireless sensor networks (WSNs) play an important role in oceanic scenarios
such as environmental monitoring and ocean exploration [3–7]. The categories of ocean monitoring
include marine buoy monitoring, vessels, satellites, and aerial-based monitoring [8–10]. Compared with
other detection methods, mobile and fixed-point ocean observation buoy monitoring has advantages in
accuracy and cost performance [11]. After an ocean observation beacon completes the data collection
task, it needs to be recycled, as shown in Figure 1. However, in the process of monitoring the marine
environment, due to the influence of natural hazards such as waves and tides on the monitoring
equipment, there are still many problems in completing the recovery of large-scale monitoring
equipment [12,13]. So far, clustering is the most effective way to improve target detection efficiency [14].
Meanwhile, due to the instability of the marine environment, the real-time location of the monitoring
equipment directly affects the communication efficiency and recovery efficiency of the equipment [15].
Therefore, the rapid acquisition of node information is essential for the recovery of the target.
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Figure 1. Schematic diagram of marine environmental buoy monitoring. 

WSNs have different requirements for routing algorithms, according to different application 

scenarios. The main purpose is to extend the network life cycle and balance the energy consumption 

of network nodes [16]. WSNs are composed of a number of sensor nodes (SNs), which are generally 

powered by lithium batteries and communicate wirelessly to form a sensor communication network. 

Because the nodes are powered by batteries, it is not realistic to replace the dead nodes with batteries 

in a wide range of application scenarios. Therefore, the energy problem is a key factor limiting the 

reliability of WSNs [17–20]. The low-power design of the node is an effective way to solve the energy 

problem. However, low-power design limits the computational and storage capabilities of the node 

[21,22]. 

In these protocols, SNs are divided into ordinary nodes and cluster heads (CHs). An ordinary 

node does not directly communicate with the base station (BS), but sends information to the CHs, k 

whereas the CHs send the processed data to the BS [23–25]. Therefore, the CH forwarding not only 

reduces the energy consumption of the node’s ultra-long-distance transmission, but also the data 

transmission amount through data fusion. The clustering algorithm is divided into centralized and 

distributed according to the way the CH is generated [26]. The centralized algorithm selects the CH 

based on the global information of the network, and the distributed algorithm generally adopts the 

method of “self-recommended” or partial competition to generate the CH. In the cluster-based 

approach, the rationality of clustering and CH allocation can ensure the balance of network energy 

consumption, network scalability, and manageability. 

Many researchers proposed methods for solving the energy problems of WSNs. The low-energy 

adaptive clustering hierarchy (LEACH) algorithm is the most classical clustering algorithm [27]. The 

node rotation mechanism is used to select the CH. Each node has the opportunity to be elected as the 

CH. The CH selection mechanism of the algorithm cannot guarantee the quantity and quality of the 

CH and does not consider the node energy problem. The network is prone to the “energy hole” 

phenomenon. The power-efficient gathering in sensor information systems (PEGASIS) algorithm is 

based on the idea of the LEACH algorithm, which constructs a chain through greedy algorithms for 

all nodes in the network [28]. The algorithm requires each node to know the location of other nodes, 

which increases the storage difficulty of nodes. The long chain length increases the communication 

energy consumption of the node, and CH failure leads to network routing failure. The LEACH-C 

(LEACH centralized) algorithm effectively compensates for the shortcomings of LEACH algorithm 

by selecting CHs through the BS [29]. However, the flexibility of the algorithm is limited by the 

availability of the global information. The distributed energy-efficient clustering (DEEC) algorithm 

adds the initial energy and residual energy of the node based on the LEACH-C algorithm. The DEEC 

algorithm not only balances network energy but also extends the network life cycle [30]. The 

algorithm requires uniform network energy consumption, which limits the practicability of the 

algorithm. The LEACH-MEEC (LEACH mobile, energy-efficient, and connected) algorithm selects 

the CH by the connectivity between adjacent nodes and the residual energy of the nodes. The 

LEACH-MEEC algorithm uses four mobile models to verify the rationality of the algorithm [31]. The 

CH of each round is selected according to the state of adjacent nodes, which lacks global features. The 

Figure 1. Schematic diagram of marine environmental buoy monitoring.

WSNs have different requirements for routing algorithms, according to different application
scenarios. The main purpose is to extend the network life cycle and balance the energy consumption
of network nodes [16]. WSNs are composed of a number of sensor nodes (SNs), which are generally
powered by lithium batteries and communicate wirelessly to form a sensor communication network.
Because the nodes are powered by batteries, it is not realistic to replace the dead nodes with batteries
in a wide range of application scenarios. Therefore, the energy problem is a key factor limiting
the reliability of WSNs [17–20]. The low-power design of the node is an effective way to solve the
energy problem. However, low-power design limits the computational and storage capabilities of the
node [21,22].

In these protocols, SNs are divided into ordinary nodes and cluster heads (CHs). An ordinary
node does not directly communicate with the base station (BS), but sends information to the CHs,
k whereas the CHs send the processed data to the BS [23–25]. Therefore, the CH forwarding not
only reduces the energy consumption of the node’s ultra-long-distance transmission, but also the
data transmission amount through data fusion. The clustering algorithm is divided into centralized
and distributed according to the way the CH is generated [26]. The centralized algorithm selects the
CH based on the global information of the network, and the distributed algorithm generally adopts
the method of “self-recommended” or partial competition to generate the CH. In the cluster-based
approach, the rationality of clustering and CH allocation can ensure the balance of network energy
consumption, network scalability, and manageability.

Many researchers proposed methods for solving the energy problems of WSNs. The low-energy
adaptive clustering hierarchy (LEACH) algorithm is the most classical clustering algorithm [27]. The
node rotation mechanism is used to select the CH. Each node has the opportunity to be elected as
the CH. The CH selection mechanism of the algorithm cannot guarantee the quantity and quality of
the CH and does not consider the node energy problem. The network is prone to the “energy hole”
phenomenon. The power-efficient gathering in sensor information systems (PEGASIS) algorithm is
based on the idea of the LEACH algorithm, which constructs a chain through greedy algorithms for all
nodes in the network [28]. The algorithm requires each node to know the location of other nodes, which
increases the storage difficulty of nodes. The long chain length increases the communication energy
consumption of the node, and CH failure leads to network routing failure. The LEACH-C (LEACH
centralized) algorithm effectively compensates for the shortcomings of LEACH algorithm by selecting
CHs through the BS [29]. However, the flexibility of the algorithm is limited by the availability of the
global information. The distributed energy-efficient clustering (DEEC) algorithm adds the initial energy
and residual energy of the node based on the LEACH-C algorithm. The DEEC algorithm not only
balances network energy but also extends the network life cycle [30]. The algorithm requires uniform
network energy consumption, which limits the practicability of the algorithm. The LEACH-MEEC
(LEACH mobile, energy-efficient, and connected) algorithm selects the CH by the connectivity between
adjacent nodes and the residual energy of the nodes. The LEACH-MEEC algorithm uses four mobile
models to verify the rationality of the algorithm [31]. The CH of each round is selected according
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to the state of adjacent nodes, which lacks global features. The energy-efficient unequal clustering
(EEUC) algorithm adopts a networking method of non-uniform clustering and inter-cluster multi-hop
routing [32]. The distance between the CH and the BS is taken into consideration when selecting
the CH. In order to balance the network energy, the distance between the relay node and the BS
and the energy of the relay node need to be considered when selecting the relay node. The CH
selection mechanism of the algorithm does not add the node energy factor, which has some defects.
The ant colony optimization-based uneven clustering (ACOUC) algorithm is an improved version of
EEUC algorithm, which adds a directional diffusion ant colony optimization algorithm to the EEUC
algorithm [33]. The algorithm can yield more surviving nodes in a longer period of time. The ACOUC
algorithm has extremely complex message complexity. When the network size is large, there is a
heavy network burden. The coverage and energy-aware clustering algorithm (CECA) guarantees the
rationality of the CH and cluster compactness based on parameters such as node degrees, distance
between nodes, and energy [34]. However, the rationality of the cluster size cannot be guaranteed.

Heuristic algorithms and clustering algorithms provide a better solution for reducing the energy
consumption of WSNs. Reference [35] used the k-means algorithm to optimize the LEACH and
HEED (hybrid energy-efficient distributed clustering) algorithms to increase clustering compactness
of the network based on Euclidean distance. Simulation results showed that the scheme improves
both network lifetime and energy efficiency. The two-tier distributed fuzzy logic-based protocol
(TTDFP) is a two-layer distributed fuzzy logic algorithm. The first layer of the algorithm selects CHs
through the energy competition of the provisional leaders. The second layer uses the three connectivity
parameters (node connectivity, distance to the BS, and remaining node energy) to find the optimal
path from the channel to the receiver. The clustering method of the algorithm is a fuzzy distributed
non-uniform clustering method. There is no BS involvement in the CH election process [36]. The
improved energy-efficient cluster head selection (IEECHS) algorithm selects two CHs in a single
cluster and proposes corresponding data fusion techniques according to the characteristics of the dual
CHs. Experiments showed that this method has good performance in terms of network lifetime and
energy consumption [37]. The energy-balance routing protocol (EBRP) uses the k-means++ algorithm
to divide the network into clusters and uses fuzzy logic systems (FLS) to optimize CH selection.
The algorithm uses the genetic algorithm (GA) to obtain fuzzy rules [38]. The simulation results
showed that the EBRP algorithm has a longer life cycle than the current routing protocol network.
The FL-EEC/D (fuzzy logic-based energy-efficient clustering for WSN based on minimum separation
distance) algorithm uses a k-means-based fuzzy logic CH selection model using descriptors such
as residual energy, position suitability, density, compression, and distance between nodes and the
BS [26]. The algorithm uses the Gini index to measure energy efficiency. In Reference [39], an adaptive
neuro fuzzy inference system (ANFIS) and an artificial bee colony (ABC) algorithm were proposed
to solve the problem of dangerous goods path planning. The study sought the optimal path by
considering the combination of seven factors (operating costs, emergency response, risk associated
with the environment, etc.). The Dijkstra risk (D-R) model is a new method based on the combination
of multi-standard risk analysis and the traditional Dijkstra algorithm [40]. The model uses a variety of
potential factors and normalizes the indicators to optimize path selection. The energy saving-oriented
least-hop routing algorithm (ESLHA) is based on improvements of Dijkstra’s (ESRAD) energy-efficient
routing algorithm [41]. The algorithm introduces node processing information energy consumption
and inter-node information transmission energy consumption to evaluate node indicators. Then, the
minimum energy consumption path is obtained by the Dijkstra algorithm. Reference [42] used the
weighted sum method to calculate node weights, and the node closest to the standard weight of a
particular cluster was elected as CH. The Dijkstra algorithm was used to obtain the optimal path
for information transfer. However, GA is computationally intensive and fuzzy rules apply simple
if–then rules to distribute computing whether it is machine learning, other intelligent algorithms,
or natural-based heuristic evolutionary algorithms [43], which require nodes and BSs with high
computing performance and high memory capacity. In particular, when the number of networks is
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large, the system delay increases [26]. Therefore, it is necessary to limit the network scale or application
range for increasing system real-time performance.

The communication efficiency and recovery efficiency of the nodes are challenges as discussed
in the previous discussions. To target the reduction of node energy consumption on communication
and to increase node recovery efficiency, we propose the k-means algorithm and fuzzy logic system
(KFNS), a data gathering algorithm for the recycling of marine beacons. Compared with published
methods, the algorithm takes the advantages of centralized and distributed algorithms. It not only
increases the real-time performance of the system but also reduces unnecessary data communication to
improve network lifetime. Another highlight of this work is that the algorithm proposed in this paper
has lower hardware requirements for nodes. We take into account the low power consumption factor
and assign the nodes with simplified tasks. We also introduce the FLS and Dijkstra algorithms for
optimal path selection with certain adaptability. Path selection weights are determined by a variety of
influencing factors.

The KFNS algorithm is divided into three stages: Monitoring phase, cluster routing phase, and
recovery phase. The KFNS algorithm discards network construction in the monitoring phase. The
boundary nodes are selected by Euclid distance due to the limited computing power of the nodes to
maximize network energy. In the cluster routing phase, the initial clustering center and the number of
clusters are selected according to the location of the boundary nodes and the real-time requirements of
the system to optimize the clustering effect and extend the network life cycle. In the recovery phase,
a single cluster recovery strategy is adopted; the FIS is used to optimize the Dijkstra algorithm; the
DFS is used to obtain the optimal recovery order of the nodes and accelerate the recovery efficiency of
monitoring equipment. The application background of the marine observation beacon recycling has
its unique problems compared to other WSNs application scenarios. The KFNS algorithm combines
application scenarios and phased target requirements to better suit actual requirements. The method
optimizes network energy consumption and improves network performance through these phase
divisions. The main contributions of this paper are given below.

� We divide the recycling process of the marine observation beacon into three phases. The algorithm
is designed to meet the demands of different phases.

� A novel scheme is proposed where the FLS is used to comprehensively consider the influence of
various environmental factors on the path weight, breaking through the limitations of traditional
description methods.

� We propose an effective solution by using centralized and distributed algorithms. After the BS
completes the clustering, the CH replacement is completed by the nodes in the cluster. Nodes
reduce unnecessary communication energy consumption, which extends the network life cycle.

The rest of this paper is organized as follows: Section 2 introduces the network model, including
the node model, the energy model, and the node movement model. Section 3 introduces the proposed
recovery algorithm for large-scale ocean observation beacons based on WSNs. Simulations and
experiments are shown in Section 4, and Section 5 concludes this paper.

2. Network Model

In this section, the node model, energy model, and node movement model are presented in
detail [44].

2.1. Node Model

(1) This paper assumes that nodes are distributed over a continuous two-dimensional plane. This
plane has no isolated points (beyond the communication range of all other nodes).

(2) The node uses the LoRa (Long Range Radio) module to communicate, and the nodes in different
clusters can be simultaneously communicated by changing the LoRa frequency band.
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(3) Node information: n nodes are randomly and independently distributed in a circular area. The
size of the area isπR2, where R is the radius. Node information is represented by S = {S1, S2 · · · Sn},
and the initial energy of the node is Ei = E0 × (0.9 + rand ∗ (0.1)), where E0 = 5. Due to the
difference between the beacon battery and the beacon start-up time, the initial power of each
node is different.

(4) The node controls the node communication range by controlling the transmission power.
(5) All nodes are positioned and calibrated periodically by a global positioning system (GPS).
(6) Each node has a unique identifier (ID) number and has small computing and storage capacity.
(7) It is assumed that the CH receives k bits of data from each node and can be compressed into k bits

of data.

2.2. Energy Model

All nodes satisfy the free communication model [45]. The node communication energy
consumption includes sending transmission consumption and receiving energy consumption. The
transmission energy consumption includes the energy consumption of the RF (Radio Frequency) module
and the signal amplification; the receiving energy consumption includes the energy consumption of the
receiving module. When the communication distance is less than the distance threshold, dThreshold, the
free space propagation model is adopted, and the path attenuation index is 2. When the communication
distance is greater than the threshold, dThreshold, the two-ray propagation model is adopted, and the
path attenuation index is 4.

The node transmits k bits of data through multi-hop routing between clusters, as shown in Figure 2
and its energy consumption is as follows [46]:

P ≈ k× ceil(
dtot

d1hop
) × (2Eelec + Ecpu + Eamp × dγ1hop), (1)

where P is the energy consumption for sending k bits of data, dtot is the distance from the sending
point to the target node, Eelec(nj/bit) is the RF energy consumption coefficient, Eamp

(
nj/bit/m2

)
is the

amplifier energy factor, Ecpu is processor power consumption, d1hop is the distance between neighbor
nodes and γ is the signal attenuation index.
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The optimal single-hop distance obtained from Equation (1) is as follows:

d1hop =
γ

√
k× dtot × (2Eelec + Ecpu)

Eamp × (γ− 1)
. (2)

To ensure that the signal-to-noise ratio (SNR) is within a reasonable range, the energy consumption
model of the node sending data is calculated as follows:

ETx(k, d) =
{

Eelec × k + E f s × k× d2, d ≤ dThreshold
Eelec × k + Emp × k× d4, d > dThreshold

. (3)



Sensors 2019, 19, 3726 6 of 24

The energy consumption model of the node receiving data is determined as follows:

ERx = Eelec × k, (4)

where ETx is the transmission energy consumption, d is the transmission distance, E f s
(
nj/bit/m2

)
,

Emp
(
nj/bit/m4

)
is the power dissipation factor of the amplifier under different communication models,

dThreshold is the distance threshold, and ERx is the receiving energy consumption.

2.3. Node Movement Model

In the marine environment, the simulation results based on the mobile model are reliable [47].
The entity movement model includes the following aspects:

(1) Random walk;
(2) Random waypoint mobile model;
(3) Random direction model;
(4) Gauss Markov model.

In the field environment, the velocity and direction before and after the joint motion interact with
each other. The Gauss Markov model can better describe the motional behavior of the node. The Gauss
Markov model assigns an initial velocity and initial direction to each node. After a fixed interval, the
node updates its current speed, direction, and location information as follows:

sn = αsn−1 + (1− α)s +
√
(1− α2)γm, (5)

sn = αsn−1 + (1− α)s +
√
(1− α2)γm, (6)

where sn and dn are the speed and direction of the node at time n, s and d are the average value of
the speed and direction, γm and ϕm are random variables subject to Gaussian distribution, and α is a
randomness variable generally taken as 0 ≤ α ≤ 1.

xn = xn−1 + sn−1 cos dn−1, (7)

yn = yn−1 + sn−1 sin dn−1, (8)

where (xn, yn) are the coordinates of the node at time n, and (xn−1, yn−1) are the coordinates of the
mobile node at time n−1.

3. Proposed KFNS Algorithm

In the recovery process of the marine observation beacon, it can be further divided into three
stages according to different requirements including: the monitoring phase, the cluster routing phase
and the recovery phase. The corresponding algorithm is designed over the characteristics of each stage
to improve the applicability of the algorithm in the recycling process.

We define DBS as the distance between the BS and the node network, Dmax as the distance between
the BS and the node network when it is greater than the communication distance, and Dmin as the
range in which the BS enters to recover the node.

When the BS does not reach the node network boundary, the node network is in the monitoring
phase (Dmax < DBS). The main purpose of this phase is to monitor whether the BS reaches the periphery
of the node networks and the internal nodes of the network are in sleep mode. Therefore, the network
can maximize its energy. When the BS moves to the node network boundary, the node is in the cluster
routing phase (Dmin ≤ DBS < Dmax). This phase is to complete the node networking operation. When
the BS can summarize the beacon location information. The node network information can provide
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data support for the direction of movement of the BS. When the BS moves to the node recovery range,
the node network is in the recovery phase (DBS ≤ Dmin). The main goal of this phase is the dynamic
update of the CH and the order in which the nodes are recycled. Using fuzzy rules can break through
the limitations of traditional assessment methods. Figures 3 and 4 are the work flow of each stage and
the flow chart of KFNS algorithm respectively.Sensors 2019, 19, 3726 7 of 24 
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3.1. Monitoring Phase

When Dmax < DBS, we set the initial mode of the node to monitoring mode. The node firstly
compares its own residual energy and initial energy conditions with the set threshold, as well as the
energy consumption ratio over time. When T(i) is greater than the set threshold T, the node acts as a
boundary cluster head (BCH). Based on the relationship between the ID number and the time t, the
BCH sends the contention message “HEAD” to the neighbor node with the optimal communication
distance as follows:

t = (Trec + Tsend + Tcpu + Tdelay) × ID, (9)

where t is the node information interaction and processing time, Trec is the time when the node receives
data, Tsend is the time when the node sends data, Tcpu is the data processing time, and Tdelay is the
anti-collision delay.

When the BCH receives the message from other BCHs, the receiver gives up the CH identity. The
broadcast time interval of the same BCH is then calculated as follows:

Tn+1 − Tn > n× t, (10)

where n is the number of nodes to guarantee that only one BCH works at a time. When the same BCH
broadcasts more than a certain number of times, but there is no neighbor node response, then the BCH
considers leaving the network and enters sleep mode until the periodic wake-up. The probability that
a node is elected as a BCH is as follows:

T(i) = αEi_current + (1− α)
Ei_start − Ei_current

ti_now − ti_start
, (11)

where T(i) is the probability that node i is elected as the BCH, En_current is the current node energy,
En_start is the initial energy of the node, tnow is the current time of the node, tstart is the node boot time,
and α is the proportion of energy and time.

After the surrounding node receives the BCH information, if the current neighbor node is
configured to be a BCH, the neighbor node abandons the BCH identity. All neighbor nodes send
their own location information and node energy information to the BCH in TDMA (Time Division
Multiple Access) mode with their ID number after the BCH receives the information of the neighbor
node. According to the position of the receiver, the optimal communication distance is the radius, and
the fan-shaped area with an angle of 90◦ is divided into four regions. The average energy of the nodes
in the current region is firstly calculated. Then, according to the energy and distance of the neighbor
nodes in the current domain, the probability that all neighbor nodes in the region become temporary
boundary nodes is obtained. The neighbor node with the highest probability becomes the temporary
boundary node of the domain, and the probability is calculated as follows:

P(i) = α
Ei

Eave
× (1− α)

diBCH
dave

, (12)

where P(i) is the probability that the node is elected as a temporary boundary node, Ei is the current
remaining energy of the node, Eave is the average energy of all nodes in the four regions of the BCH,
diBCH is the distance between the boundary node and the BCH, dave is the average distance from all
nodes to the BCH, and α is the specific gravity relationship of each parameter.

According to Equation (12), temporary boundary nodes of four regions of BCH can be obtained.
The BCH broadcasts regional network energy and temporary boundary node information to nodes
in the area. The BCH abandons the CH identity and enters sleep mode (timed wake up to receive
messages). The intra-area node receives the information of the BCH and then classifies it as a normal
node or a temporary boundary node. The normal node enters sleep mode, and the temporary boundary
node becomes the new BCH. The latest generated BCH continues to broadcast the “HEAD” message
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and receives node information for the other three regions. The process is repeated in turn until the
outermost corner of the network. When the BCH does not have a suitable temporary boundary node
selection in a certain area, the BCH acts as a boundary node.

Because the nodes move relative to each other, the boundary nodes need to broadcast “boundary”
messages periodically. In order to improve communication success rate and reduce signal collision,
firstly, the radio signal of the air is monitored by the channel monitoring function of the LoRa module.
When there is a radio signal in the air, it continues to monitor after a random delay. If there is no
signal communication in the air after the delay, the “boundary” message is broadcasted. Secondly, the
default zone node information is received if new node information appears. A new boundary node
is generated based on the distance and energy of the neighbor nodes. If no new boundary node is
generated, the boundary node enters the receiving mode, and other ordinary nodes enter the sleep
mode. When the energy of the boundary node is lower than 15%, the boundary node sends the final
sleep message, and the boundary node identity is abandoned to enter the sleep mode (waking up
regularly to receive the message). After receiving the final sleep message of the boundary node, the
neighbor node re-selects the boundary node.

3.2. Cluster Routing Phase

3.2.1. Temporary Network Routing

The BS periodically broadcasts the “finding” message. After the packet is received by the boundary
node, it sends its own location and energy information to the BS (Dmin ≤ DBS < Dmax). The boundary
node informs the BS that it reached the edge of the network and the BS continues to move in the
direction of the network target. After the boundary node sends its own location energy information, it
broadcasts a “collect” message to collect network node location and energy information for temporary
networking. Due to the low-power design, the microprocessor has limited computing capability.
Therefore, the temporary networking algorithm cannot be too complex. After receiving the collection
command, the neighbor node sends its own position and energy information to the boundary node in
TDMA with its own ID. The boundary node selects the temporary CH of each domain according to the
average energy of the neighbor node and the distance from the boundary node. The distance factor
from the node to the temporary CH and the energy consumption rate of the node are introduced in the
election of a temporary CH. The node that makes the most energy far away from the BS is elected as
the temporary CH, and the probability of being elected as the temporary CH is calculated as follows:

P(n) = α
En_current

En_start
+ β

diBS∑
i∈CHRe

d(ni,CHRe)
N

+ γ
En_start − En_current

tnow − tstart
, (13)

α+ β+ γ = 1, (14)

where P(n) is the probability that a node is elected as a temporary CH, En_current is the current remaining
energy of the node, En_start is the initial energy of the node, tnow is the current node time, tstart is the
node startup time, diBS is the distance from the node to the temporary CH, d(ni, CHRE) is the distance
from the node to the temporary CH, and α, β,γ are the proportion of each part.

After the boundary node selects the temporary CH, the temporary CH broadcasts the “HEAD”
message. Neighbor nodes match “HEAD” messages to join temporary clusters according to their
ID. The next suitable temporary CH is selected by Equation (13) according to the neighbor node
information until all nodes form a temporary network. The temporary network sends information to
the BS through a multi-hop route. Because the BS has no energy limitation and has certain computing
power, the BS clusters the nodes by summarizing the node information of the entire network.
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3.2.2. Enhanced K-Means Algorithm

The traditional k-means algorithm is a simple iterative clustering algorithm, which classifies all
points into k-class by selecting k initial centers. The algorithm selects the optimal clustering center
by iteration and compares the effect of each iteration with that of the previous iteration. Until the
difference between the two iterations is within the set threshold, the iteration is completed [48,49]. The
traditional k-means algorithm needs to specify the number of clusters k, which requires a certain prior
condition. an improper value of k not only affects the clustering effect but also causes uneven energy
consumption of nodes. The initial clustering center is randomly selected to increase the number of
clustering iterations and affect the clustering effect.

Combined with the application background of the marine observation beacon, the deficiencies
of the traditional k-means algorithm are improved. The improvement ideas are as follows: (1) the
number of clusters k is determined according to the real-time requirements and empirical values of the
system. The clustered optimal solution is found by comparing the clustering compactness functions
after different k value iterations. (2) The initial cluster center is determined according to the location
relationship of boundary nodes. The intra-cluster clustering is implemented by adding the intra-cluster
evaluation effect function, and the real-time processing of the information in the cluster is increased.
Therefore, it can maximize the rationality of clustering results, prolong network lifetime, and optimize
the energy consumption of boundary nodes and CHs. The improvement process is described by
Algorithm 1.

Algorithm 1 Improved k-means algorithm

Input: E = {P, Q}, P =
{
p1, p2, · · · , pi

}
, Q =

{
q1, q2, · · · , q j

}
//set of i ordinary sensor nodes and

j boundary sensor nodes.
Output: A set of k clusters C = {C1, C2 · · ·Ck}

1: for i← kmin to
√

n do
2: Ci ← ∅
3: choose centroid ri among E belong to Ci
4: for each set E j ∈ E do
5: assign E j to the cluster Ci with nearest ri i.e.

(
dis j,i

(
E j, ri

)
≤ dis j,i

(
E j, ri∗

)
; i ∈

{
kmin, · · · ,

√
n
})

6: end for
7: repeat
8: for all i ∈

(
kmin, · · · , kopt

)
and cluster Ci do

9: the centroid ri to be the center of all nodes in Ci, so that ri =
1
|Ci |

∑
j∈Ci

d
(
E j, ri

)
10: end for
11: until ri<V (i.e. ri less than the threshold)

12: calculate criterion function E =
∑k

i=1
∑

p∈Ci

∣∣∣p−mi
∣∣∣2

13: end for
14: find the minimum of E and get the optimal kopt

15: determine the optimal C
16: return C

The main work of our proposed clustering method is to narrow the judgment interval of the
optimal CH and optimize the selection of the initial convergence center. Therefore, the election of the
final CH takes into account the energy consumption of ordinary nodes, the energy consumption of the
CH, and the energy imbalance of boundary nodes. We divide the optimization process of the algorithm
into two steps, which are the cluster number selection and the initial cluster center selection.

(1) Determine the number of clusters.

At present, the best number of clusters is selected by iterating the clustering results with different k
values. Comparing the clustering evaluation function after iteration, the optimal number of clustering
is determined [50,51]. The iteration range of the k value is the empirical value 2 ≤ k ≤

√
n. However,
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the number of nodes is too large and conducted over size steps of iterations for k value, which seriously
affects the real-time performance of the system. According to the real-time requirement of the system,
this paper reduces the iteration range of the k value and speeds up the selection of the optimal k-value.
The cluster size kopt is scored by the following formula:

kmin =
nnum × (trec + tsend + tmcu + tdelay)

TC
, (15)

kmin ≤ kopt ≤
√

n, (16)

where TC is the time period required by the system, tSend the sending time of the node, trec is the time
when a node receives a message, tmcu is the time when the master unit processes the data, nnum is
the number of nodes, tdelay is the anti-collision delay, and kmin is the number of clusters that satisfy
real-time performance.

The range of cluster number k is determined according to the above formula. It not only ensures
the real-time nature of the data, but also the rationality of the number of cluster nodes. The optimal k
value is selected by comparing the clustering evaluation effect function.

(2) Selection of initial convergence centers.

Due to differences in node functions during the monitoring phase, there is a large energy difference
between different nodes. This directly affects the choice of the initial cluster center. Therefore, it is
necessary to consider the relationship between the initial cluster center and boundary nodes. The
initial cluster center is too far away from the boundary node, causing the boundary node to consume
more energy for data communication and the node to die prematurely. The initial cluster center is
too close to the boundary node to reduce the selectivity of the CH rotation and increase the network
consumption within the cluster. Therefore, the relationship between the boundary node and the CH
needs to be considered in the initial cluster center selection.

1. There are N boundary nodes in a certain network. The sum of the distances of l(l ≤ N) boundary
nodes in this network is less than the optimal communication distance. The optimal cluster center
m is selected by the farthest boundary node among the l boundary nodes. The distance between the
reference node and the boundary node, the average energy ratio, and the cosine similarity selected for
the optimal clustering center are as follows:

S =
a · b
||a|| ||b||

, (17)

Pi, j,m(m) = µ×
disi, j

disi,m + dis j,m
+ η×

Em

Eave
+ γ(1−S), (18)

µ+ η+ γ = 1, (19)

where a and b are the direction vectors of node m relative to the boundary node, S is cosine similarity,
Pi, j,m(m) is the probability that the node m selected as the cluster center, disi, j is the distance between
boundary nodes i and j, Em is the energy of node m, Eave is the average energy of the network, and
µ, η,γ are the proportion of each part.

2. The distance between the remaining two arbitrary boundary nodes is larger than the optimal
communication radius d1hop. The boundary nodes farthest from the initial clustering center are selected
as the boundary nodes for the next clustering center. The probability of a node being elected as the
cluster center is as follows:

P(i) = ω×

N−1∑
m=1

disi,m

N− 1
+ (1−ω)

Ei
Eave

, (20)
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where P(i) is the probability that the node i is selected as the cluster center, disi,m is the distance from
boundary node i to initial cluster center m, Ei is the energy of node i, Eave is the average energy of
network nodes, and ω is the proportion of each part.

3. If c (c < kopt) cluster centers are selected according to boundary nodes, according to Equation
(20), the remaining cluster centers are selected according to any selected cluster centers, and the
boundary nodes are replaced by ordinary nodes until the end of c =kopt.

The optimal clustering result is obtained from Algorithm 1. However, optimal clustering does
not guarantee minimized size. The cluster size is too large to meet the real-time requirements of the
system. Therefore, it is necessary to improve the cluster density. If a cluster is relatively dense, the
real-time performance of a single CH is poor (ni > nmax). It is necessary to increase the number of CHs
to improve the real-time performance of the system. The number of CHs is determined as follows:

ki =
Ti

num∑
i=1

(ti_send + ti_cpu) + tCH

, (21)

where ni is the number of nodes in the cluster, nmax is the maximum number of nodes to satisfy the
real-time requirement, ki is the number of clusters, Ti is the intra-cluster communication time, ti_send is
the time when a node sends data, ti_cpu is the central processing unit (CPU) processing time, and tCH is
the inter-cluster communication time.

In the above steps, the optimal clustering in the region is obtained. According to the optimal
communication distance, the clustering results are hierarchically divided. Data communication between
CHs is carried out among CHs at different levels. When the CH energy is below a certain threshold,
the CH is replaced in the cluster. Nodes close to the optimal CH with sufficient energy are selected
as the new CHs. Depending on different clustering results, the LoRa frequency band in the cluster is
replaced and the bandwidth is set. The function of simultaneously performing intra-cluster information
communication via different clusters is completed, and the real-time performance of the network is
increased. The CH is replaced with the same frequency band during inter-cluster communication.

Because of the movement characteristics of the nodes, it is necessary to monitor the status of
the current network clustering results in real time. If some nodes in the clustering network have too
large a deviation from the CH, i.e., f > fmax, then the BS re-clusters the node or restructures the whole
network. The evaluation function of the restructuring is as follows:

f = max
i=1,2,··· ,k


∑

∀ni∈CHk

d(ni, CHk)

Nnum

, (22)

where f is an evaluation factor, d(ni, CHk) is the distance from the node to the corresponding CH, and
Nnum is the number of nodes in the cluster.

The BS receives the location and energy information of each node and the clusters through KFNS
algorithm, and then sends the clustering information to the nodes. Depending on different clustering
results, nodes are divided into CHs and ordinary nodes. Ordinary nodes send data information to CHs.
After data fusion, the CH transmits the information to the superior CH until the data are transmitted
to the BS. The KFNS algorithm adopts a distributed and centralized approach in the cluster routing
phase. The BS is not limited by energy and can use high-performance CPUs and large storage devices
to perform complex algorithms.

In the process of node clustering, the BS needs to comprehensively consider the energy imbalance
of the boundary nodes, the high energy consumption of CH aggregation messages, the compactness
of clustering, and the real-time nature of network information. In the case of ensuring the energy
consumption of the boundary nodes, the cluster center should be as far as possible from the boundary
nodes. In other words, the probability is small that a boundary node is elected as a CH when updating a
CH within a cluster. In order to ensure the compactness of clustering and the real-time nature of network
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information, it is necessary to limit the number and size of networks. After the clustering is completed,
the rotation of the CH is completed by the nodes of each cluster. The BS no longer participates in
the election of the CH, and minimizes the communication energy consumption caused by the CH
replacement. The BS performs cluster routing operations based on the global information of sensor
networks, and evaluates the operation of the whole network according to the real-time data returned
by mobile nodes. Once the network clustering compactness is greater than the set threshold, the BS
re-clusters the network. The KFNS algorithm can minimize unnecessary network communication and
reduce network energy consumption under the condition of ensuring the rationality of clustering.

3.3. Recovery Phase

When the recovery ship moves to a certain range of beacon machine network (DBS ≤ Dmin), the
beacon machine needs to be recovered. Considering the recycling efficiency of the nodes, the Dijkstra
algorithm is used to plan the recycling path. In order to ensure the real-time performance of the system
and reduce the energy consumption of network reorganization, a single-cluster recovery strategy is
adopted. After the single cluster node is recovered, the node recovery of the next cluster is performed.
The recycling process not only needs to consider the residual energy of the node and the recovery
efficiency of the recovery vessel, but also the dynamical change of the CH during the recycling process.
The order of recycling of nodes is affected by a variety of factors. The best choice of fuzzy rules can
be used to obtain better parameter results, as shown in Figure 5. Therefore, this paper optimizes the
Dijkstra algorithm by fuzzy logic and adds DFS to optimize the recovery efficiency. The details of the
algorithm are shown in Algorithm 2.
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In the process of node recovery, a variety of factors work together on the node’s recycling order
and CH election. To eliminate the dimensional effects between the influencing factors, we use the
min–max normalization technique to scale the language variables [52].

yi =

xi −min
{
x j

}
1≤ j≤n

max
{
x j

}
1≤ j≤n

−min
{
x j

}
1≤ j≤n

, (23)

where yi is the normalized value, xi is the given variable, and max
{
x j

}
1≤ j≤n

and min
{
x j

}
1≤ j≤n

are the maximum

and minimum of all given variables.
The FLS has four input variables, including node energy (energy), distance between nodes (Di j),

distance between node and BS (DBS), and distance between node and CH (DiCH). The role of the
fuzzifier is mapping each input value to the fuzzy set. Two output variables are generated by the FIS
for the chance that the node is elected as the CH and for the recycling weight of the node. Weight is
related to energy, Di j, and DiCH, and CH election is related to energy, DBS, and DiCH. The membership
function of the input language variable is derived empirically. For each of the four input variables,
each input variable has more than one linguistic variable. Figure 6 shows the membership function of
each variable. Tables 1 and 2 are linguistic variables.
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Algorithm 2 Compute node recovery order

Input: Energy = {e1, e2, · · · , ei}, DiCH = {d1CH, d2CH, · · · , diCH}, Di j =
{
d12, d13, · · · , di j

}
,

DBS = {d1BS, d2BS, · · · , diBS}

Output: node recycling order

1: Min–max normalization technique: yi =

xi−min{x j}
1≤ j≤n

max{x j}
1≤ j≤n

−min{x j}
1≤ j≤n

2: add membership function of fuzzy set
3: get inter-node weights and CH chance
4: initialize dist[i], visit[θ]
5: for i← n do
6: if !visit[i] && dist[i] < min
7: min = dist[i]
8: min j = j
9: end if
10: end for
11: for j← n do// Relaxed edge
12: if !visit[i] && dist[ j] > dist[i] + tab[ j][k]
13: dist[ j] = dist[i] + tab[ j][k]
14: end if
15: end for
16: get the node to BS minimum weight path
17: DFS {
18: judging the boundary
19: for k← n do
20: DFS (step+1)
21: end for
22: return}Sensors 2019, 19, 3726 15 of 24 
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Table 2. Linguistic variables.

No.
Input Output

Energy DiCH Dij DBS Weight CH

1 Low Close Close Close Low HMid

2 Low Close Medium Medium HMid Mid

3 Low Close Far Far High LMid

4 Low Medium Close Close Low LMid

5 Low Medium Medium Medium LMid Low

6 Low Medium Far Far Mid VLow

7 Low Far Close Close VLow LMid

8 Low Far Medium Medium VLow Low

9 Low Far Far Far Low VLow

10 Medium Close Close Close HMid High

11 Medium Close Medium Medium High HMid

12 Medium Close Far Far VHigh Mid

13 Medium Medium Close Close HMid Mid

14 Medium Medium Medium Medium High LMid

15 Medium Medium Far Far VHigh Low

16 Medium Far Close Close VLow LMid

17 Medium Far Medium Medium Low Low

18 Medium Far Far Far LMid VLow

19 High Close Close Close Mid VHigh

20 High Close Medium Medium HMid High

21 High Close Far Far VHigh HMid

22 High Medium Close Close Mid HMid

23 High Medium Medium Medium High Mid

24 High Medium Far Far VHigh LMid

25 High Far Close Close Low High

26 High Far Medium Medium LMid Mid

27 High Far Far Far HMid LMid

The KFNS algorithm uses a fuzzy model to calculate the weights between nodes and elects to
collect CHs during the recovery phase. The BS uses the weight relationship between nodes to obtain
the connected node with the smallest weight of any node. The minimum weight path from any node to
the BS is obtained by the Dijkstra algorithm. Similarly, a directed weight map from the BS to the node
is obtained using DFS to traverse all nodes to get the optimal path for the reclaimed nodes. In order to
ensure the system’s real-time performance and information transmission efficiency, the BS does not
communicate directly with nodes in the network; rather, it communicates through the CH. The CH
obtained by the fuzzy model is responsible for collecting the node information of the recovered cluster
and forwarding the node information of other clusters.

4. Simulation and Experiments

In order to verify the feasibility of the algorithm, the proposed algorithm was simulated and
verified by MATLAB on an Intel Core 3.9-GHz CPU with 8 GB memory, with different requirements



Sensors 2019, 19, 3726 16 of 24

in each stage of the marine observation beacon recovery process, in terms of computing power
between nodes and BS. In the stage of recycling, network operations do not involve the participation
of BS. The node uses a low-power CPU design that greatly limits the computing power of the node.
Therefore, in the monitoring phase, we compared algorithms that include LEACH-C, DEEC, CECA,
and EEUC. In the cluster routing phase, the addition of BS greatly increases the computing power of
the network, allowing it to run more complex algorithms. Therefore, the algorithm proposed in the
EBRP and Reference [35] is compared in the cluster routing phase. We call the algorithm proposed in
Reference [35] the k-means CH. In the recovery phase, the effects of three optimal recovery strategies,
namely, optimal distance, optimal energy, and fuzzy logic, on recovery efficiency and node energy are
compared. The simulation parameters are shown in Table 3.

Table 3. Simulation parameters.

Parameter Name Parameter Value

Single-hop network size (Rs) 30 m× 30 m×π
Multi-hop network size (Rm) 100 m× 100 m×π

Number of nodes (n) 100
Initial energy (E0) Ei = E0 × (0.9 + rand ∗ (0.1)), E0 = 5

Communication range of sensors (r) 60 m
Time for each round (T) 10 s

Speed range (Vl) 1–5 m/s
Energy consumption of transmission circuit (Eelec) 50 nj/bit

Amplifier parameter for free-space model
(
Eε f s

)
10 pj/bit/m2

Amplifier parameter for multi-path model (εmp) 0.0013 pj/bit/m4

4.1. Monitoring Phase Simulation

According to the actual situation, the nodes are distributed across an area of varying size. The
node communication range may cover the whole distribution area, or it needs multi-hop routing to
complete area coverage. Both cases were simulated and analyzed.

4.1.1. Single-Hop Coverage Simulation

The simulation environment was within the distribution area of nodes, and any two nodes could
communicate with each other. That is, all nodes were within the maximum communication range of
any node. Figure 7a compares the network life cycles of the three algorithms: LEACH-C, DEEC, and
KFNS. The difference between the number of dead nodes and the time between algorithms can be
seen. Compared to the former three algorithms, KFNS had a longer network life cycle. The number
of rounds of the first dead node of the KFNS algorithm was 2195. The network life cycle increased
by 201% and 160% compared to LEACH-C and DEEC. The algorithm proposed in this paper uses a
distributed algorithm in the monitoring phase to reduce the energy loss caused by global network
communication. The tasks of this phase were completed through the information exchange of some
nodes. Figure 7b compares the relationship between the total energy of the network and the time of
the three algorithms by comparing the remaining states of the network energy when the first node
in the graph dies. The algorithm proposed in this paper has the longest survival time, and the total
network has the most residual energy. The excess of network energy compared to other algorithms can
be ignored relative to the prolongation of network lifetime. Figure 7c compares the number of CHs and
boundary nodes generated by each algorithm during operation. The more the algorithm concentrates
on the generated data, the more stable the number and size of clusters in the algorithm will be. From
the data in the figure, it can be concluded that the mobility of the node seriously affects the LEACH-C
and DEEC algorithms. There was a big difference in cluster size throughout the network life cycle.
The algorithm proposed in this paper uses local network information for clusters to interact with each
other. In this case, we assume that the physical boundary of the network does not change much, and
that the number of boundary nodes does not vary greatly.
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4.1.2. Multi-Hop Coverage Simulation

The simulation used a large set of randomly distributed nodes, whereby any two nodes may
need other nodes to forward information for communication. Figure 8a compares the network node
lifetime of the multi-hop clustering routing algorithms CECA, EEUC, and KFNS. Compared with
other algorithms, the network lifetime of the KFNS algorithm increased exponentially. The number of
rounds of the first dead node of the KFNS algorithm was 1431. The network life cycle increased by 4.88
and 3.56 times compared to CECA and EEUC. Multi-hop networks require more energy for network
communication, which leads to excessive consumption of network energy. Through the comparison of
the network life cycle, the effectiveness and feasibility of the KFNS algorithm were verified. Figure 8b
compares the total energy consumption of the three algorithms over time. The KFNS algorithm has a
longer network life cycle and longer network residual energy. Compared to other algorithms that use
most of the network energy for inter-node communication, the KFNS algorithm avoids this part of the
energy consumption. The network lifetime of KFNS is 3.5 times that of other algorithms. Figure 8c
compares the number of CHs and the number of boundary nodes generated by the three algorithms
in a multi-hop coverage environment. Similarly, CECA and EEUC are affected by node movement.
Compared with the single-hop coverage, as the coverage increased, the number of boundary nodes
also increased. The concentrated distribution of the number of boundary nodes indicates that the
KFNS algorithm can cope with the impact of node movement, and the network has higher stability.Sensors 2019, 19, 3726 18 of 24 

 

   
(a) (b) (c) 

Figure 8. (a) The curves of dead node number by rounds; (b) network energy consumption; (c) 
number of cluster heads and boundary nodes. 

In this section, the application of the KFNS algorithm in different ranges was simulated by 
MATLAB. From the simulation results, compared with other algorithms, the KFNS algorithm could 
greatly improve the lifetime of network nodes and the network energy consumption. It is particularly 
useful for large-scale multi-hop routing networks; because of the reduction of large-scale 
communication loss, the algorithm has better performance in saving network energy. 

4.2. Cluster Routing Phase Simulation 

This phase was a simulation of the node networking and information collection process to 
compare the differences in network lifetime and network energy consumption of each algorithm. 
Figure 9a compares the node lifetimes of the k-means CH, EBRP, and KFNS algorithms. The number 
of rounds of the first dead node of the KFNS algorithm was 386. The network life cycle increased by 
130% and 121% compared to k-means CH and EBRP. The k-means CH algorithm requires frequent 
network reorganization and CH replacement. The algorithm does not limit the cluster size and affects 
the real-time performance of the system. The EBRP algorithm performs clustering and then performs 
CH election and communication. The choice of the initial clustering center of the EBRP algorithm is 
only iteratively selected based on the Euclidean distance. The energy difference between nodes is 
ignored. The energy-unbalanced node may be close to or far away from the CH while ensuring that 
the CH is optimal. The node close to the CH causes selective reduction of the CH rotation, which 
increases the consumption of the common node. The node of energy imbalance being far away from 
the CH causes the node energy to be further consumed, and the node dies prematurely. Therefore, 
the clustering result has contingency, which directly affects the stability of network survival time. 
Figure 9b compares the total energy consumption of the network using the three algorithms. The 
KFNS algorithm has a lower residual network energy. The proposed algorithm has a positive effect 
on solving WSNs with extremely unbalanced node energy. Figure 9b also reflects the excessive 
network energy surplus of the EBRP algorithm. The algorithm does not consider the relationship 
between the CH and lower-energy nodes. As a result, lower-energy nodes die early, and there 
remains a large amount of energy in the cluster. 

  
(a) (b) 

Figure 9. (a) The curves of dead node number by rounds; (b) network energy consumption. 

Figure 8. (a) The curves of dead node number by rounds; (b) network energy consumption; (c) number
of cluster heads and boundary nodes.

In this section, the application of the KFNS algorithm in different ranges was simulated by
MATLAB. From the simulation results, compared with other algorithms, the KFNS algorithm could
greatly improve the lifetime of network nodes and the network energy consumption. It is particularly
useful for large-scale multi-hop routing networks; because of the reduction of large-scale communication
loss, the algorithm has better performance in saving network energy.
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4.2. Cluster Routing Phase Simulation

This phase was a simulation of the node networking and information collection process to compare
the differences in network lifetime and network energy consumption of each algorithm. Figure 9a
compares the node lifetimes of the k-means CH, EBRP, and KFNS algorithms. The number of rounds of
the first dead node of the KFNS algorithm was 386. The network life cycle increased by 130% and
121% compared to k-means CH and EBRP. The k-means CH algorithm requires frequent network
reorganization and CH replacement. The algorithm does not limit the cluster size and affects the
real-time performance of the system. The EBRP algorithm performs clustering and then performs CH
election and communication. The choice of the initial clustering center of the EBRP algorithm is only
iteratively selected based on the Euclidean distance. The energy difference between nodes is ignored.
The energy-unbalanced node may be close to or far away from the CH while ensuring that the CH is
optimal. The node close to the CH causes selective reduction of the CH rotation, which increases the
consumption of the common node. The node of energy imbalance being far away from the CH causes
the node energy to be further consumed, and the node dies prematurely. Therefore, the clustering result
has contingency, which directly affects the stability of network survival time. Figure 9b compares the
total energy consumption of the network using the three algorithms. The KFNS algorithm has a lower
residual network energy. The proposed algorithm has a positive effect on solving WSNs with extremely
unbalanced node energy. Figure 9b also reflects the excessive network energy surplus of the EBRP
algorithm. The algorithm does not consider the relationship between the CH and lower-energy nodes.
As a result, lower-energy nodes die early, and there remains a large amount of energy in the cluster.
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The lifetime and the energy consumption of the KFNS algorithm and other clustering algorithms
in the cluster routing phase were also compared by MATLAB simulation. The proposed algorithm
has advantages in terms of system real-time performance, energy consumption balance, and node
clustering rationality. In the CH election stage, the location relationship between the optimal CH and
the boundary nodes (energy-unbalanced nodes) is considered to make the CH election more reasonable.

4.3. Recovery Phase Simulation

The recycling order of nodes directly affects the recycling efficiency. Through the simulation of
the recycling process, the rationality of the proposed algorithm in the recycling process was verified.
Figure 10 shows the comparisons of optimal path, optimal energy, and the KFNS algorithm. The
energy, node position, and CH rotation order of each node were the same in the simulation process,
and the energy consumption followed Reference [45]. By comparing the two parameters of residual
energy and recovery time, the advantages and disadvantages of recovery strategy can be discussed.
Figure 11 compares the node recovery time of the three path plans with the remaining energy of the
recovered nodes. The path optimization and energy optimization had dead nodes in the recovery
process. The optimal path and optimal energy network energy fluctuation range were 2.857 and 2.835,
and the KFNS algorithm had an energy fluctuation range of 2.219. Therefore, compared with other



Sensors 2019, 19, 3726 19 of 24

path selection methods, the KFNS algorithm performs better in balancing node energy consumption
and reducing recovery time.
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4.4. Node Recycling Process Simulation

Because the recycling process of the marine observation beacon is divided into multiple stages,
and the computing power of the network in each stage is quite different, several representative
algorithms need to be combined when performing the node recovery process simulation. It can be
concluded from Figure 7 that the DEEC algorithm in the single-hop coverage simulation had better
performance. In the multi-hop coverage simulation results in Figure 8, the EEUC algorithm performed
better. Through the simulation results of the cluster routing stage in Figure 9, it can be concluded
that the EBRP algorithm was more reasonable. We compared the proposed algorithms with several
popular algorithms. Due to the different deployment scope of the marine observation beacon, we
divided the simulation environment into single-hop coverage and multi-hop coverage. Figure 12a
shows a comparison of recovery results for single-hop coverage. The average residual energy of
the recovered nodes in the proposed solution was 1.6 times and 1.88 times that of other algorithms.
Moreover, it had better performance in balancing network energy consumption. Figure 12b shows a
comparison of recovery results for multi-hop coverage. The average energy of the KFNS algorithm
recovery node was 1.9 times and 2.2 times that of other methods. This also illustrates the potential of
the proposed algorithm for the recovery of large-scale nodes. Compared with other algorithms where
node death occurs, the nodes recovered by the KFNS algorithm had a certain energy surplus. Based on
the simulation results, the KFNS algorithm can provide better performance in response to large-scale
node recovery.
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4.5. Implementation and Experiments

We verified the feasibility of the proposed algorithm and other algorithms through the hardware
platform shown in Figure 13. The platform performed channel monitoring and data communication
through the UM402 LoRa module, and the positioning and calibration time were completed by the
NEO-6M-0-001 GPS module. The experimental area was 100 m× 100 m×πwithout a building covering
a circular area. The optimal communication distance of the experimental platform was 50 m, and the
network time period was 10 s. The node received, sent, and processed data at 0.6 s/round. Equation (11)
had an energy ratio of 0.8 and a BCH selection threshold of 0.3, which led to α = 0.6, β = 0.2,γ = 0.2
in Equation (13) of the temporary network routing. In Algorithm 1, Equation (18) for selecting the
cluster center led to µ = 0.3, η = 0.5,γ = 0.2, and ω = 0.2 in Equation (20); the cluster center iteration
threshold was 0.1, and the network reorganization evaluation function threshold was set to 8. The
experiment was carried out 15 times, and the average experimental results are shown in Figure 14.
The experimental results show that the KFNS algorithm provides better performance than the other
algorithms because it solves practical problems in stages.Sensors 2019, 19, 3726 21 of 24 
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5. Conclusions

A large amount of equipment is required for environmental monitoring during the marine
development process. However, in the process of recycling marine monitoring equipment, due to the
influence of natural factors such as currents and tides, the network is unevenly distributed, leading to
communication delay and packet loss. Due to the complexity of the marine environment, the energy
storage of monitoring equipment is limited and cannot be supplemented. This brings difficulties and
challenges to the recycling of marine equipment.

In this paper, a clustering algorithm for WSNs based on the k-means algorithm and FLS was
proposed for the recovery of marine observation beacons. The KFNS algorithm was divided into three
phases: monitoring, cluster routing, and recovery. In the monitoring phase, network consumption
was reduced, and network energy was saved to the maximum extent. In the cluster routing phase,
according to the real-time requirements of the system and the location information of the boundary
nodes, the clustering size and the initial clustering center were determined, which reduced the number
of cluster iterations and made the clustering more practical. In the process of CH selection, the optimal
cluster center location, and the energy difference between common nodes and boundary nodes were
considered comprehensively. In the recovery phase, a fuzzy model was used to calculate the weight
between nodes, and the CH was selected. The Dijkstra algorithm and DFS were used to determine the
optimal recovery path of the nodes. The proposed KFNS algorithm has three main advantages over
other methods. Firstly, centralized and distributed algorithms improve the design procedures and
increase the practicality of the algorithm’s practical application. Secondly, the algorithm proposed
in this paper has a lower requirement for node hardware and it reduces production costs. Thirdly,
fuzzy rules can break through the limitations of traditional assessment methods. The simulation and
experimental results showed that the proposed KFNS algorithm has lower network consumption, a
longer network lifetime, and a more efficient recovery strategy.

For marine monitoring equipment recycling scenarios, collaboration between multiple BSs leads to
information intersections and repetitions. Therefore, in the future, we will further study the information
sharing of multi-base station cooperation. The path planning problem of multiple BSs is also one of the
future research directions.
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